

An Introduction for Today’s Digital World

Information
Technology

This page intentionally left blankThis page intentionally left blank

An Introduction for Today’s Digital World

Richard Fox

Information
Technology

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20131028

International Standard Book Number-13: 978-1-4665-6829-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

This book is dedicated in loving memory to Barrie and Bernice Fox
and Brian Garbarini. I would also like to dedicate this with much love

to Cheri Klink, Sherre Kozloff, and Laura Smith and their families.

This page intentionally left blankThis page intentionally left blank

vii

Contents

Preface, xv

How to Use This Textbook, xvii

Acknowledgments and Contributions, xix

Author, xxi

Chapter 1 ◾ Introduction to Information Technology 1
WHAT IS INFORMATION TECHNOLOGY? 1

WHO STudIES IT? 5

IT INFRASTRuCTuRE 9

Computers 9
Software 14
Users 15
Our View Today 16

FuRTHER REAdING 17

REvIEW TERMS 18

Chapter 2 ◾ Computer Organization and Hardware 21
STRuCTuRE OF A COMpuTER 22

A pROGRAM 25

ExECuTING THE pROGRAM 27

ROLE OF Cpu 31

ROLE OF MEMORY 34

ROLE OF INpuT ANd OuTpuT 37

COMpuTER HARdWARE ANd COMpuTER ASSEMbLY (INSTALLATION) 41

CPU 41
Memory 42
System Unit 42

viii ◾ Contents

Motherboard 43
Hard Disk Drive 45

FuRTHER REAdING 51

REvIEW TERMS 53

Chapter 3 ◾ binary Numbering System 57
NuMbERING SYSTEMS 58

bINARY NuMbERING SYSTEM 59

NEGATIvE NuMbERS ANd FRACTIONS 67

CHARACTER REpRESENTATIONS 71

bINARY OpERATIONS 74

ExAMpLES OF uSING bINARY NuMbERS 80

Network Addresses and Netmasks 80
Image Files 82
Error Detection and Correction 84

FuRTHER REAdING 87

REvIEW TERMS 88

Chapter 4 ◾ Introduction to Operating System Concepts 93
WHAT IS AN OpERATING SYSTEM? 94

SOME uSEFuL TERMS 94

Hardware 94
Software 94
Computer System 95
Kernel 95
Device Drivers 95
Shell 96
Utility Programs 96

OS TASkS 96

User Interface 97
Process Management 98
Scheduling 99
Memory Management 100
Resource Management 102
File System Management 104
Protection and Security 104

Contents ◾ ix

FORMS OF pROCESS MANAGEMENT 105

bOOTING ANd SYSTEM INITIALIzATION 113

AdMINISTRATOR ACCOuNT 114

INSTALLING AN OS 115

Installing Windows 116
Installing Linux 117

FuRTHER REAdING 118

REvIEW TERMS 120

Chapter 5 ◾ Files, directories, and the File System 125
FILES ANd dIRECTORIES 125

FILE SYSTEMS ANd dISkS 131

LINux FILE SYSTEM 136

Linux File Space 136
Linux Partitions 141
Linux Inodes 142

WINdOWS FILE SYSTEM 145

MOvING AROuNd THE FILE SYSTEM 146

Linux 146
DOS 149

FILE SYSTEM ANd SYSTEM AdMINISTRATION TASkS 151

FuRTHER REAdING 151

REvIEW TERMS 152

Chapter 6 ◾ users, Groups, and permissions 157
uSERS 157

SETTING up uSER ACCOuNTS 159

Linux 159
Windows 166

ROLE OF A GROup 168

pERMISSIONS 170

Linux 171
Windows 174

MISCELLANEOuS uSER ACCOuNT TOpICS 176

FuRTHER REAdING 178

REvIEW TERMS 178

x ◾ Contents

Chapter 7 ◾ History of Computers 183
EvOLuTION OF COMpuTER HARdWARE 184

Before the Generations 185
First Generation 190
Second and Third Generations 193
Fourth Generation 196

EvOLuTION OF COMpuTER SOFTWARE 200

EvOLuTION OF THE COMpuTER uSER 207

IMpACT ON SOCIETY 209

FuRTHER REAdING 210

REvIEW TERMS 211

Chapter 8 ◾ Operating Systems History 215
bEFORE LINux ANd WINdOWS 216

A HISTORY OF uNIx 218

A HISTORY OF LINux 220

dIFFERENCES ANd dISTRIbuTIONS 222

OpEN SOuRCE MOvEMENT 225

A HISTORY OF WINdOWS 226

FuRTHER REAdING 229

REvIEW TERMS 230

Chapter 9 ◾ bash Shell and Editing 233
SHELLS 234

bASH SHELL EdITING FEATuRES 235

ExpLORING THE bASH INTERpRETER 241

pERSONALIzING YOuR bASH SHELL 251

TExT EdITORS 253

The vi Editor 253
The Emacs Editor 256

FuRTHER REAdING 263

REvIEW TERMS 264

Chapter 10 ◾ Regular Expressions 269
METACHARACTERS 270

bASH ANd WILdCARdS 283

Contents ◾ xi

THE GREp pROGRAM 284

OTHER uSES OF REGuLAR ExpRESSIONS 290

FuRTHER REAdING 292

REvIEW TERMS 293

Chapter 11 ◾ processes and Services 297
STARTING A pROCESS 297

pROCESS ExECuTION 300

pROCESS STATuS 303

SCHEduLING pROCESSES 310

TERMINATING pROCESSES 314

SERvICES 316

CONFIGuRING SERvICES 324

ESTAbLISHING SERvICES AT bOOT TIME 329

FuRTHER REAdING 330

REvIEW TERMS 331

Chapter 12 ◾ Networks, Network Software, and the Internet 335
NETWORkS AT A HARdWARE LEvEL 336

NETWORkS AT A LOGICAL LEvEL 341

NETWORk pROTOCOLS 349

NETWORk SOFTWARE 357

THE INTERNET 361

How the Internet Works 364
Brief History of the Internet 365
Future of the Internet 367

FuRTHER REAdING 370

REvIEW TERMS 372

Chapter 13 ◾ Software 377
TYpES OF SOFTWARE 377

SOFTWARE-RELATEd TERMINOLOGY 381

SOFTWARE MANAGEMENT 384

SERvICES ANd SERvERS 389

Web Server 389
Proxy Server 390

xii ◾ Contents

Database Server 390
FTP Server 390
File Server 391
E-mail Server 391
Domain Name Server 391

FuRTHER REAdING 397

REvIEW TERMS 398

Chapter 14 ◾ programming 401
TYpES OF LANGuAGES 401

A bRIEF ExAMINATION OF HIGH LEvEL pROGRAMMING LANGuAGES 404

TYpES OF INSTRuCTIONS 409

Input and Output Instructions 409
Assignment Statements 411
Selection Statements 412
Iteration Statements 416
Subroutines and Subroutine Calls 419
Special Purpose Instructions 420

SCRIpTING LANGuAGES 422

Types of Instructions 422
Bash Shell Language 422
MS-DOS 431

FuRTHER REAdING 434

REvIEW TERMS 435

Chapter 15 ◾ Information 439
WHAT IS INFORMATION? 440

dATA ANd dATAbASES 441

INFORMATION ASSuRANCE ANd SECuRITY 452

THREATS ANd SOLuTIONS 456

CRYpTOGRApHY 464

LAWS 469

FuRTHER REAdING 471

REvIEW TERMS 474

Contents ◾ xiii

Chapter 16 ◾ Careers in Information Technology 479
IT CAREERS 479

Network Administration 481
Systems Administration 482
Web Administration 483
Database Administration 484
Computer Support Specialist 485
IT Management 486

RELATEd CAREERS 487

Computer Forensics 487
Web Development 488
Programming/Software Engineer 489
Information Systems 489
Computer Technician 490

IT ETHICS 491

OTHER SOCIAL CONSIdERATIONS 495

CONTINuING EduCATION 498

FuRTHER REAdING 500

REvIEW TERMS 500

AppENdIx A: GLOSSARY OF TERMS, 505

AppENdIx b: LINux ANd dOS INFORMATION, 527

INdEx, 533

This page intentionally left blankThis page intentionally left blank

xv

Preface

Why does this textbook exist? At Northern Kentucky University, we have offered
a 4-year bachelor’s degree in Computer Information Technology since 2004. This

program, like the field, continues to evolve. In 2011, we added a breadth-first introductory
course to our program. The course’s role is to introduce students to many of the concepts
that they would see throughout their IT studies and into their career: computer organiza-
tion and hardware, Windows and Linux operating systems, system administration duties,
scripting, computer networks, regular expressions, binary numbers, the Bash shell in
Linux and DOS, managing processes and services, computer security, and careers in IT.

As I was asked to develop this course, I began looking for a textbook. I realized quickly
that this wide range of topics would not be found in any single book. My only options
seemed to be to use several books or to utilize some type of computer literacy text. The
problem with computer literacy text is that no such book covers the material in the detail
we would require, nor would such a text offer a satisfactory introduction to Linux. The
problem with requiring several texts is that the students would need at least three or four,
and that was an expense that I did not want to burden our students with. As I already had
some detailed notes on many of the topics, I took it upon myself to write the text. I did
not realize the level of commitment that I was making, but once I had completed the text,
I wanted to try to get it published. Fortunately for me, the wonderful folks at CRC Press/
Taylor & Francis Group wanted to publish it as well. I am very grateful that they have
worked with me to turn my rough draft text into a presentable product.

In creating the publishable text, I reworked many of the chapters and figures (multiple
times). Based on reviewer comments, I also added several additional sections and one new
chapter. This allowed me to introduce many of the topics recommended by SIGITE (ACM
Special Interest Group on IT Education). This book, however, is incomplete and will never
be complete for two reasons. First, as the field grows and changes, any text will become
quickly outdated. For instance, as I prepare this for press, Microsoft is preparing Windows
8 for release. At that point, will all of my references to Windows 7 be obsolete? Possibly, but
hopefully not. Second, the field contains so many topics that I could literally double the
length of this text and still not cover all of the material worth mentioning. However, I have
to stop at some point, and I hope that I have hit on a wide variety of topics.

This book is suitable for any introductory IT course. It offers students a far more detailed
examination of the computer than computer literacy texts, which are commonly used in
such courses. Of particular note are the emphasis provided to Windows/DOS and Linux

xvi ◾ Preface

with numerous examples of issuing commands and controlling the operating systems.
Topics in hardware, programming, and computer networks further flush out the details.
Finally, the text covers concepts that any IT person will need to know from operating sys-
tem and hardware to information security and computer ethics.

xvii

How to Use This Textbook

The order of the 16 chapters is largely based on the order that the topics have
been covered in the first two semesters of offering our CIT 130 course at Northern

Kentucky University. This ordering is partially based on the structure of the course, which
meets one day per week for a lecture and one day per week for a laboratory session. So, for
instance, the placement of computer history in the middle of the text was caused by the fact
that the laboratory sessions that pertain to Chapters 5 and 6 carry on for 3 weeks. Similarly,
the computer assembly laboratory lasts 2 weeks, and the lectures that we cover over those
weeks are from Chapters 2 and 3. As a teacher, you might desire to rearrange the chapters
based on your own needs. In some cases, the order of the chapters is important. This is
explained below.

•	 Chapter 1 should be covered first.

•	 Chapter 2 Section 2.7 may be skipped if you are not covering PC assembly, although
it is recommended that students still read the section.

•	 Chapter 2 should be covered before Chapter 3.

•	 Chapter 3 should be covered before Chapters 12 and 15. In Chapter 3, Section 3.3
(negative numbers, floating point and fractional values) can be skipped.

•	 Chapter 4 should be covered before Chapters 8, 9, and 11.

•	 Chapter 5 should be covered before Chapter 6 (permissions in Chapter 6 to some
extent require that you have already covered the file system in Chapter 5).

•	 Chapter 7 should be covered before Chapter 8.

•	 Chapter 12 should be covered before Chapter 15.

•	 Chapter 16 should be covered last.

This page intentionally left blankThis page intentionally left blank

xix

Acknowledgments
and Contributions

I would like to thank the following individuals for their assistance in helping me put
together this book whether by providing proofreading help, input into the material,

or other forms of advice and assistance: Cheri Klink, Scot Cunningham, Justin Smith,
Jim Hughes, Wei Hao, Randi Cohen, Stan Wakefield, Renee Human, Jim Leone, Barry
Lunt, and Laurie Schlags. I would also like to thank my students in CIT 130 who helped
hammer out the content of this book, especially: Kimberly Campbell, Kaysi Cook, David
Fitzer, Jason Guilkey, William Hemmerle, James Lloyd, Dustin Mack, Frank Mansfield,
Wyatt Nolen, Mark Oliverio, Ronak Patel, Christine Pulsifer, Ishwar Ramnath, Jonathan
Richardson, Nathaniel Ridner, Matthew Riley, Jennifer Ross, William Scanlon, Glenn
Sparkes, and Adam Thompson. I would like to thank everyone who contributes to the
Open Source Community, particularly those who have supported GIMP and Inkscape,
two drawing tools that I used extensively to create or manipulate all of the figures in this
text.

I would also like to thank many friends and colleagues for all of their support through-
out the years, particularly Jim Mardis, Rick Karbowski, Stephanie Stewart, Julie Hartigan,
Vicki Uti, Jim Giantomasi, Gary Newell, Russ Proctor, John Josephson, B. Chandrasekaran,
Pearl Brazier, John Abraham, and Xiannong Meng.

This page intentionally left blankThis page intentionally left blank

xxi

Author

Richard Fox, PhD, is a professor of computer science at Northern Kentucky University
(NKU). He regularly teaches courses in both computer science (Artificial Intelligence,
Computer Systems, Data Structures, Computer Architecture, Concepts of Programming
Languages) and computer information technology (IT Fundamentals, Unix/Linux, Web
Server Administration). Dr. Fox, who has been at NKU since 2001, is the current chair of
NKU’s University Curriculum Committee, and, in 2012, he received the Faculty Excellence
Award for sustained excellence in teaching. Before coming to NKU, Dr. Fox taught for 9
years at the University of Texas–Pan American, where he received the Outstanding Faculty
Award for Teaching Excellence (1999). Dr. Fox received a PhD in Computer and Information
Sciences from the Ohio State University in 1992. He also has an MS in Computer and
Information Sciences from Ohio State (1988) and a BS in Computer Science from the
University of Missouri Rolla (now Missouri University of Science and Technology) in 1986.
Aside from this textbook, Dr. Fox has written or coauthored several computer literacy
laboratory manuals and one introductory programming course laboratory booklet. He is
also author or coauthor of more than 45 peer-reviewed research articles primarily in the
area of Artificial Intelligence. Richard Fox grew up in St. Louis, Missouri, and now lives in
Cincinnati, Ohio. He is a big science fiction fan and a progressive rock fan. As you will see
in reading this text, his favorite composer is Frank Zappa.

This page intentionally left blankThis page intentionally left blank

1

C h a p t e r 1

Introduction to
Information Technology

This textbook is an introduction to information technology (IT) intended for students in
IT-related fields. This chapter introduces the different career roles of an IT person, with
emphasis on system administration, and the types of skills required of an IT professional.
In this chapter, the elements that make up the IT infrastructure—the computer, software,
users—are introduced.

The learning objectives of this chapter are to

•	 Describe and differentiate between types of IT careers.

•	 Describe the set of skills required to succeed in IT.

•	 Introduce the types of hardware found in a computer system.

•	 Describe and differentiate between the components of a computer system: hardware,
software, and users.

WHAT IS INFORMATION TECHNOLOGY?
So, what is information technology (IT) anyway? IT is a term used to describe several
things, the task of gathering data and processing it into information, the ability to dissemi-
nate information using technology, the technology itself that permits these tasks, and the
collection of people who are in charge of maintaining the IT infrastructure (the computers,
the networks, the operating system). Generically, we will consider IT to be the technol-
ogy used in creating, maintaining, and making information accessible. In other words, IT
combines people with computing resources, software, data, and computer networks.

IT personnel, sometimes referred to collectively as “IT,” are those people whose job
it is to supply and support IT. These include computer engineers who design and build

2 ◾ Information Technology

computer chips, computer scientists who write software for computers, and administrators
who provide the IT infrastructure for organizations.

What will your role be in IT? There are many varied duties of IT personnel. In some
cases, a single individual might be the entire IT staff for an organization, but in many
cases, there will be several, perhaps dozens or hundreds of personnel involved, each with
separate roles to play. Most IT personnel, however, have two general roles: administration
and support. An administrator is someone who is in charge of some portion of the IT
infrastructure. There are a variety of administrator roles, as shown in Table 1.1.

Let us examine some of the administrator roles in Table 1.1 in more detail. The most
common role in IT is the system administrator. System administration is the process of
maintaining the operating system of a computer system. On a stand-alone computer, sys-
tem administration is minimal and usually left up to the individual(s) using the computer.
However, for a network of computers or computers that share files or other resources, sys-
tem administration becomes more significant and more challenging. The system adminis-
trator is the person (or people) who perform system administration.

Maintenance of a computer system (computers, resources, network) will include an
understanding of software, hardware, and programming. From a software point of view,
administration requires installing software, making it available, troubleshooting prob-
lems that arise during usage, and making sure that the software is running efficiently.
Additionally, the administrator(s) must understand the operating system well enough to
configure the software appropriately for the given organization, create accounts, and safe-
guard the system from outside attack.

From a hardware point of view, administration requires installing new hardware and
troubleshooting existing hardware. This may or may not include low-level tasks such as
repairing components and laying network cable. It may also require installing device
driver software whenever new hardware is added.

From a programming point of view, operating systems require “fine-tuning,” and thus
administrators will often have to write their own shell scripts to accomplish both simple

TABLE 1.1 Administrator Roles in IT

Role Job/Tasks
System
Administrator

Administer the computers in an organization; install software; modify/update
operating system; create accounts; train users; secure system; troubleshoot system;
add hardware

Network
Administrator

Purchase, configure, and connect computer network; maintain computer network;
troubleshoot network; secure network from intrusion

Database
Administrator

Install, configure, and maintain database and database management system; back up
database; create accounts; train users

Web Administrator Install, configure, and maintain website through web server; secure website; work with
developers

Web Developer Design and create web pages and scripts for web pages; maintain websites
Security
Administrator

Install, configure, and administer firewall; create security policies; troubleshoot
computer system (including network); work proactively against intrusions

Introduction to Information Technology ◾ 3

and complex tasks. In Linux, for instance, many components of the operating system rely
on configuration files. These are often shell scripts. An administrator may have to identify
a configuration file and edit it to tailor how that component works within the organization.
The goal of writing shell scripts is to automate processes so that, once written, the adminis-
trator can call upon the scripts to perform tasks that otherwise would be tedious. A simple
example might be to write a script that would take a text file of user names and create a new
account for each user name.

System administration may be limited to the administration of the computers, printers,
and file servers. However, system administration may extend to network administration
and possibly even web server, ftp server, mail server, and database server administration
depending on the needs and size of the company and abilities of the system administrator(s).
Finally, a system administrator may also be required to train users on the system. Therefore,
the skills needed for system administration can vary greatly. Specific common tasks of a
system administrator include:

•	 Account management: creating new user accounts and deleting obsolete user
accounts.

•	 Password management: making sure that all users have passwords that agree with
the security policy (e.g., passwords must be changed every month, passwords must
include at least one non-alphabetic character)—you might be surprised, but in sys-
tems without adequate password management, many users use “” as their password
(i.e., their password is just hitting the enter key). Most organizations today require
the use of strong passwords: passwords that contain at least eight characters of which
at least one is non-alphabetic and/or a combination of upper- and lower-case letters,
and are changed at least once a month without reusing passwords for several months
at a time.

•	 File protection management: making sure that files are appropriately protected (for
instance, making sure that important documents are not writable by the outside
world) and performing timely backups of the file system.

•	 Installing and configuring new hardware and troubleshooting hardware including
the network.

•	 Installing and configuring new software including updating new operating system
(OS) patches, and troubleshooting software.

•	 Providing documentation, support, and training for computer users.

•	 Performing system-level programming as necessary (usually through scripting lan-
guages rather than writing large-scale applications or systems software).

•	 Security: installing and maintaining a firewall, examining log files to see if there are
any odd patterns of attempted logins, and examining suspicious processes that per-
haps should not be running.

4 ◾ Information Technology

In many cases, the network administrator is separate from the system administrator. It
is the network administrator who is in charge of all aspects of the computer network. The
network administrator’s duties will include physically laying down cable, making connec-
tions, and working with the network hardware (for instance, routers and switches). The
network administrator will also have to configure the individual machines to be able to
communicate via the network. Thus, like the system administrator, the network adminis-
trator will edit configuration files, install software (related to the network), and so forth.
Troubleshooting the network will also be a role for the network administrator where, in
this case, troubleshooting may combine physical troubleshooting (e.g., is a cable bad?) and
software troubleshooting. There is also a security aspect to the computer network. Both the
system administrator and network administrator may work on system firewalls. Editing
configuration files, writing shell scripts, and installing software and patches will all be part
of a network administrators tasks.

Aside from administrative tasks, IT personnel provide support. Support usually comes
in two forms: training and help desk. By training, the IT person is responsible for teach-
ing new and current users how to use the IT infrastructure. This may include such simple
things as logging into the computer system, setting up printers, accessing shared files, and
perhaps training employees in how to use work-related software. The person might create
documentation, helpful websites (including wiki pages), and even audiovisual demos, or
lead group or individualized training sessions. Because training occurs only as needed
(new software, new employees), most support comes in the form of a help desk. In essence,
this requires that someone be available to respond to problems that arise at random times.
Many large organizations offer 24/7 help desks. The help desk person might simply act as
a switchboard, routing the problem to the proper IT person. In other cases, the help desk
person can solve the problem directly, often over the phone but sometimes by e-mail or in
person.

Where is IT used? IT is ubiquitous today. Nearly everyone on the planet uses some
form of computing technology through cellular phones and tablets or home computers,
or through school and work. However, most IT personnel are hired to work in IT depart-
ments for organizations. These organizations can be just a few people or corporations of
tens of thousands. Table 1.2 provides a look at the larger users of IT and how they use IT.

TABLE 1.2 Large-Scale IT Users

Type of Organization Typical Usage
Business E-commerce, customer records
Education Scholastic record keeping, support of teaching
Entertainment Digital editing, special effects, music composition, advertising
Government Record keeping, intelligence analysis, dissemination of information
Health/hospitals Record keeping, medical devices, insurance
Law enforcement Record keeping, information gathering, and dissemination
Manufacturing Design, automation/robotics
Research Computation, dissemination of information

Introduction to Information Technology ◾ 5

WHO STudIES IT?
IT personnel in the past were often drafted into the position. Consider the following
scenario. Joe received his bachelor’s degree in Computer Science from the University of
Illinois. He was immediately hired by a software firm in Chicago where he went to work
as a COBOL programmer. However, within 3 months, he was asked by the boss, being the
new guy, “surely you know something about this Linux operating system stuff, don’t you?”
Joe, of course, learned Unix as part of his undergraduate degree and answered “Sure.” So
the boss told Joe “From now on, I want you to spend 10 hours of your week putting together
this new network of computers using Linux. Make sure it can connect to our file servers
and make it secure.” Joe spent 10 hours a week reading manuals, installing the Linux oper-
ating system, playing around with the operating system, and eventually getting the system
up and running.

After some initial growing pains in using the system, more and more employees
switched to the Linux platform. Now, 9 months later, half of the company has moved to
Linux, but the system does not necessarily run smoothly. Whenever a problem arises, Joe
is usually the person who has to respond and fix it. The boss returns to Joe and says “Fine
work you did on the network. I want to move you full time to support the system.” Joe
did not go to school for this, but because he had some of the skills, and because he is an
intelligent, hardworking individual (he would have to be to graduate from University of
Illinois’s Computer Science program!), he has been successful at this endeavor. Rather than
hiring someone to maintain the system, the easier solution is to move Joe to the position
permanently. Poor Joe, he wanted to write code (although perhaps not COBOL). But now,
the only code he writes are Linux shell scripts!

Sound unlikely? Actually, it was a very common tale in the 1980s and 1990s and even into
the 2000s. It was only in the mid 2000s that an IT curriculum was developed to match the
roles of IT personnel. Otherwise, such jobs were often filled by computer scientists or by peo-
ple who just happened to be computer hobbyists. The few “qualified” personnel were those
who had associates degrees from 2-year technical colleges, but those colleges are geared more
toward covering concepts such as PC repair and troubleshooting rather than system and
network administration. Today, we expect to see IT people who have not only been trained
on the current technology, but understand all aspects of IT infrastructure including theo-
retical issues, the mathematics of computers (binary), the roles of the various components
that make up a computer system, programming techniques, the operations of databases,
networks, the Internet, and perhaps specialized knowledge such as computer forensics.

Common IT curricula include introductions to operating system platforms, program-
ming languages, and computing concepts. We would expect a student to have experience
in both Windows and Linux (or Unix). Programming languages might include both script-
ing languages such as Linux/Unix shell scripting, Ruby or Python, and JavaScript, and
compiled languages such as C, C++, Java, or Visual Basic. Concepts will include operating
systems and networks but may go beyond these to include web infrastructure, computer
architectures, software applications (e.g., business software), digital media and storage, and
e-commerce.

6 ◾ Information Technology

Who should study IT? To be an IT person, you do not necessarily have to have the
rigorous mathematical or engineering background of computer scientists and computer
engineers; there are many overlapping talents. Perhaps the most important talent is to have
troubleshooting skills. Much of being an IT person is figuring out what is going wrong in
your system. These diagnostic skills cannot be purely taught. You must have experience,
background knowledge, and instinct. Above all, you have to know how the system works
whether the system is a Linux operating system, a computer network, a web server, or
other. Another talent is the ability to write program code—in all likelihood, you would
write small programs, or scripts, as opposed to the software engineer who will be involved
in large-scale projects.

You should also be able to communicate with others so that you can understand the
problems reported by your colleagues or clients, and in turn describe solutions to them.
This interaction might take place over the phone rather than in person. You should also be
able to write technically. You may often be asked to produce documentation and reports.
Finally, you will need the ability to learn on your own as technology is ever-changing.
What you have learned in school or through training may be obsolete within a year or two.
Yet, what you learn should form a foundation from which you can continue to learn. See
Table 1.3, which highlights the skills expected or desired from IT personnel.

Types of IT programs

Although the 4-year IT degree is relatively new, it is also not standardized. different universi-
ties that offer such an IT program come at the degree from different perspectives. Here, we
look at the more common approaches.

First are the programs that are offshoots of computer science degrees. It seems natural
to couple the degrees together because there is a good deal of overlap in what the two
disciplines must cover: hardware technology, programming, database design, computer eth-
ics, networking. However, the computer science degree has always heavily revolved around
programming, and the IT degree may require less of it. Additionally, math plays a significant
role in computer science, but it is unclear whether that amount of math is required for IT.

Next, there are the management information systems variations. The idea is that IT should
be taught from a usage perspective—more on the applications, the data storage, the data-
base, and less on the technology underlying the business applications. E-commerce, data-
base design, data mining, computer ethics, and law are promoted here. Furthermore, the
course work may include concepts related to managing IT.

Then there is the engineering technology approach that concentrates on hardware—cir-
cuit boards, disk drives, PC construction and troubleshooting, physical aspects of networking.
There is less emphasis on programming, although there is still a programming component.

Another school of thought is to provide the foundations of computer systems themselves.
This textbook follows this idea by presenting first the hardware of the computer system and
then the operating systems. We also look at computer networks, programming, and com-
puter storage to have a well-rounded understanding of the technology side to IT. The IT
graduate should be able to not only work on IT, say as an administrator, but also design IT
systems architecturally from the hardware to the network to the software.

SIGITE, the ACM Special Interest Group on IT Education, provides useful guidelines to
build a model IT curriculum.

Introduction to Information Technology ◾ 7

There probably is not a prototypical IT student. But an IT student should:

 1. Enjoy playing around with the computer—not just using it, but learning how it works,
learning how to do things on it at the system level

 2. Enjoy learning on your own—liking the challenge of figuring things out, especially
new things

 3. Think that technology is cool—to not be afraid of technology but to embrace it in all
of its forms

 4. Enjoy troubleshooting

It is not necessarily the case that the IT student will enjoy programming. In fact, many
students who select IT as a career make this choice because they first start with computer
science but soon tire of the heavy programming requirements of that discipline. This is not
to say that the IT student does not program, but that the programming is less intensive,
requiring mostly writing small shell scripts. As an example, a student of computer science
might, in the course of his or her studies, write a word processor, a database management
system, or a language translator, whereas an IT student might write scripts to automate
user account creation, or write client-side scripts to ensure that web forms have been filled
in correctly, or write server-side scripts to process web forms.

There are many facets of the system administration position not covered above that
are worth noting. Students may think that by studying for an IT career, they will get a job
where they get to “play around” with technology. It is fun, but it is also a challenge—it is

TABLE 1.3 IT Skills

Skill Description Example(s)
Troubleshooting,
problem solving

Detect a problem
Diagnose its cause
Find a solution (means of fixing it)

Poor processor performance
Disk space full
Virus or Trojan horse infection

Knowledge of
operating
systems

Operating system installation
Application software installation
User account creation
System monitoring

Versions of Linux
Versions of Unix
Windows
Mac OS

System level
programming

Shell scripts to automate processes
Manipulating configuration files for
system services

Bash, Csh scripts
DOS scripts
Ruby scripts
C/C++ programs

System security Ensuring proper system security is in
place

Following or drafting policies for users
Monitoring for threats

Configuring a system firewall
Installing antiviral/antimalware software
Examining log files for evidence of
intrusion and system security holes

Keeping up with the latest security patches
Hardware Installing and configuring new hardware

Troubleshooting, replacing or repairing
defective hardware

Replacing CPUs and disk drives
Connecting network cables to network
hubs, switches, routers

8 ◾ Information Technology

almost something that they already do as a hobby. And yet the student, when hired, might
be responsible for maintaining the IT infrastructure in an organization of dozens or hun-
dreds of employees. The equipment may cost hundreds of thousands of dollars, but the
business itself might make millions of dollars. Therefore, the IT specialist must take their
job seriously—downtime, system errors, intrusions, and so forth could cost the organiza-
tion greatly. The IT specialist has duties that go beyond just being a system administrator.
Some of these expectations are elaborated upon below.

To start, the system administrator must be aware of developments in the field. At a
minimum, the system administrator has to know the security problems that arise and
how to protect against them. These might include securing the system from virus, network
intrusions, denial of service attacks, and SQL injection attacks. In addition, the system
administrator should keep up on new releases of the operating system and/or server soft-
ware that he/she maintains. However, a system administrator may have to go well beyond
by reading up on new hardware, new software, and other such developments in the field.

In order for the system administrator to keep up with the new technology, new trends,
and new security fixes, continuing education is essential. The system administrator should
be a life-long learner and a self-starter. The system administrator might look toward Internet
forums but should also regularly read technology news and be willing to follow up on articles
through their own research. The system administrator should also be willing to dive into
new software and experiment with it to determine its potential use within the organization.

A system administrator will often be “on call” during off hours. When disaster strikes, the
system administrator must be accessible. An emergency call at 3 a.m. or while you are on vaca-
tion is quite possible. Although every employee deserves their own down time, a system admin-
istrator’s contract may include clauses about being reachable 24/7. Without such assurance, an
organization may find themselves with inaccessible data files or the inability to perform trans-
actions for several hours, which could result in millions of dollars of damage. Some companies’
reputations have been harmed by denial of service attacks and the inability to recover quickly.

The system administrator must also behave ethically. However, it is often a surprise to
students that ethics is even an issue. Yet, what would you do if you are faced with some
moral dilemma? For instance, your employer is worried that too many employees are using
company e-mail for personal things, and so the boss asks you to search through everyone’s
e-mail. How would you feel? Now, imagine there is a policy in the company that states
that employees can use company e-mail for personal purposes as long as e-mail does not
divulge any company secrets. In this case, if you are asked to search through employee
e-mail, would this change how you feel about it?

Unethical behavior might include:

•	 Spying on others (e-mail, web browsing habits, examining files)

•	 Setting up backdoor accounts to illegally access computer systems

•	 Illegally downloading software or files, or encouraging/permitting others to do so

•	 Performing theft or sabotage because of your system administration access

Introduction to Information Technology ◾ 9

IT INFRASTRuCTuRE
IT revolves around the computer. Have you used a computer today? Even if you have not
touched your desktop (or laptop) computer to check your e-mail, chances are that you have
used a computer. Your cell phone is a computer as is your Kindle. These are far less power-
ful than desktop units, but they are computers nonetheless. There are computer compo-
nents in your car and on the city streets that you drive. The building you work or study in
might use computers to control the lighting and air conditioning. Yes, computers are all
around us even if we do not recognize them.

We will define a computer to be a piece of electronic equipment that is capable of run-
ning programs, interacting with a user (via input–output devices), and storing data. These
tasks are often referred to as the IPOS (input, processing, output, storage) cycle. A general-
purpose computer is one that can run any program. Many devices today are computers
but may not be as general purpose as others. For instance, your iPod is capable of playing
music; it has a user interface, and may have a small number of applications loaded into it
to handle a calendar, show you the time of day, and offer a few games. Your cell phone has
an even greater number of applications, but it is not capable of running most software. The
degree to which a computer is general purpose is largely based on its storage capacity and
whether programs have been specifically compiled for the processor.

Computers range in size and capability—from supercomputers that can fill a room, to
desktop units that are not very heavy but are not intended to be portable, to laptop units
that are as light as perhaps a heavy textbook, to handheld devices such as cell phones and
mp3 players. The general difference between a handheld unit and a desktop or laptop unit
is the types of peripheral devices available (full-sized keyboard and mouse versus touch
screen, 20-in. monitor versus 2-in. screen), the amount of memory and hard disk storage
space, and whether external storage is available such as flash drives via USB ports or optical
disks via an optical disk drive.

Computers

We will study what makes up a computer in more detail in the next chapter. For now, we
will look at the computer in more general terms. A computer is an electronic, program-
mable device. To run a program, the device needs a processor [Central Processing Unit
(CPU)], memory to store the program and data, input and output capabilities, and pos-
sibly long-term storage and network capabilities (these last two are optional). Based on this
definition, computers not only encompass desktop and laptop units, servers, mainframe
computers, and supercomputers, but also netbooks, cell phones, computer game consoles,
mp3 players, and book readers (e.g., Kindles). In the latter two cases, the devices are spe-
cial-purpose—they run only a few select programs. The notion of the historical computer
is gone. Today, we live with computers everywhere.

Figure 1.1 illustrates some of the range in computers. Desktop units with large moni-
tors and system units are common as are laptop computers today with large monitors.
Even more popular are handheld devices including personal digital assistants (PDAs),
cell phones, and e-book readers. Monitors are flat screens. We no longer expect to find

10 ◾ Information Technology

bulky monitors on our desktop computers. Even so, the system unit, which allows us to
have numerous disk drive devices and other components, is bulky. We sacrifice some
of the peripheral devices when we use laptop computers. We sacrifice a greater amount
of accessibility when we move on to handheld devices. In the case of the PDA, laptop,
and notebook, the chips and motherboard, and whatever other forms of storage, must
be placed inside a very small area. For the PDA, there is probably just a wireless card to
permit access to the cell phone network (and possibly wi-fi). For the laptop and notebook
computers, there is probably a hard disk drive. The laptop will also probably have an opti-
cal disk drive.

FIGuRE 1.1 Types of computers. (Adapted from Shutterstock/tele52.)

Introduction to Information Technology ◾ 11

The main component of a computer is the processor. The processor’s role is to process—
that is, it executes the programs we run on the computer. To run a program on a given
computer, the program has to be compiled for that computer. Compilation is a language
translation process that converts a program from a more readable form (say Python or
Java) into a computer’s machine language. A computer can only run programs that are
written in that machine’s language. We discuss this concept in more detail, and the specific
role of the CPU, in Chapter 2. We examine programming languages later in the textbook.

Aside from the processor, computers need storage. There are two types of storage—
short-term storage and long-term storage. Short-term storage is most commonly random
access memory (RAM). Unfortunately, RAM can describe several different types of mem-
ories. Our modern computers typically have three forms of RAM, dynamic RAM (what we
typically call main memory), static RAM (cache memory and registers), and ROM (read-
only memory). We differentiate between these types of memory in Chapter 2. For now, just
consider all three to be “memory”.

Main memory (dynamic RAM) is composed of chips. Dynamic RAM offers fast access
and often large storage capacity. However, some handheld devices do not have room for
much dynamic RAM storage. Instead, they use flash memory storage, which is more lim-
ited in capacity. Long-term storage most commonly uses hard disk drives but can also
comprise optical disk, flash memory, and magnetic tape. Long-term storage is far greater
in capacity than the short-term storage of main memory, and because additional storage
space can always be purchased, we might view long-term storage capacity as unlimited.
Typical desktop and laptop computer short-term storage is in the 1–8 GB range. 1 GB
means 1 gigabyte, which is roughly 1 billion bytes. Think of a byte as 1 character (letter)
such that 1 GB will store 1 billion characters. A typical book is probably on the order of
250,000 to 1 million characters. 1 GB would store at least 1000 books (without pictures).
Hard disks can now store 1 TB, or 1 terabyte, which is 1 trillion bytes. Obviously, long-
term storage is far greater in capacity than short-term storage. Some common storage sizes
are shown in Table 1.4. We will study storage sizes in more detail in Chapters 2 and 3.

TABLE 1.4 Storage Sizes

Size Meaning Example
1 bit A single 0 or 1 Smallest unit of storage, might store 1 black-and-white pixel or 1 true/false

value, usually we have to combine many bits to create anything meaningful
1 byte (1B) 8 bits We might store a number from 0 to 255 or –128 to 127, or a single character

(letter of the alphabet, digit, punctuation mark)
1 word 32 or 64 bits One piece of data such as a number or a program instruction
1 KB 1024 bytes We might store a block of memory in this size
1 MB ~1 million bytes A small image or a large text file, an mp3 file of a song might take between

3 and 10 MB, a 50-min TV show highly compressed might take 350 MB
1 GB ~1 billion bytes A library of songs or images, dozens of books, a DVD requires several

gigabytes of storage (4–8 GB)
1 TB ~1 trillion bytes A library of movies

12 ◾ Information Technology

Do we need both forms of storage? It depends on the type of device and your intended
usage, but in general, yes we need them both. Why? To run a program, we need to load
that program into a storage space that responds quickly. Long-term storage is far slower
than RAM, so unless you are willing to have a very slow computer, you need short-term
storage. On the other hand, short-term storage is far more limited in capacity and the
programs we run tend to be very large. We also often have very large data files (music files,
movies, etc.) such that we cannot rely solely on short-term storage. Handheld devices offer
a compromise—they often use flash memory instead of RAM, which results in a slower
access time when compared to desktop/laptop computers, and they have a limited long-
term storage space (if any), requiring that the user move files between the handheld devices
and a permanent storage space (say on a desktop computer) fairly often.

Aside from the difference in speed and storage capacity between memory and long-term
storage, another differentiating factor is their volatility. The term volatile, when describing
memory, indicates whether the type of memory can retain its contents when the power
supply has been shut off. Main memory (DRAM) and cache/register memory (SRAM)
are volatile forms of memory. Once you turn the power off, the contents are lost. This is
why, when you turn on your computer, memory is initially empty and the device must go
through a “boot” process. Nonvolatile memories include ROM, flash drives, hard disk, and
optical disk. The nonvolatile memory retains its contents indefinitely. In the case of ROM,
the contents are never lost. In the case of flash drives and disks, the contents are retained
until you decide to erase them.

Computers also require peripheral devices (although require is not the right word;
perhaps we should say that for the user’s convenience, we add peripheral devices). The
word peripheral means “on the outskirts” but in the case of a computer, we usually refer
to peripherals as devices that are outside the computer, or more specifically, outside of the
system unit. The system unit is the box that contains the motherboard (which houses the
CPU and memory) and the disk drive units. The peripherals are devices that are either
too large to fit inside the system unit, or devices that must be accessible by the human
users (Figure 1.2). These devices are our input and output devices—keyboard, mouse, track
point, track ball or joystick, monitor, printer, speakers, pen and tablet (writing area) or
light pen, etc. Without these input and output devices (known as I/O devices collectively),
humans would not be able to interact with the computer. If all input data comes from a
disk file and all output data similarly will be stored to disk file, there may be no need for the
computer to interact with the human. But the human will eventually want to know what
the program did.

Among the peripheral devices are the communication device(s). A communication
device is one that lets a computer communicate with other computers. These devices are
typically MODEMs, which can either require connection to a telephone line (or perhaps a
cable TV coaxial line) or be wireless. Nearly all laptop computers today come with wireless
MODEMs, whereas desktop units may come with a wired or wireless MODEM. However,
in cases where computers are connected to a local area network (LAN), the computer
requires a network connection instead of or in addition to the MODEM. The LAN con-
nection is by means of a network card, often an Ethernet card. For high-speed networks,

Introduction to Information Technology ◾ 13

the network card offers a much higher bandwidth (transmission rate) than a MODEM. We
will study wired and wireless MODEMs and network cards later in the textbook when we
look at computer networks.

Let us now summarize our computer. A computer is in essence a collection of different
devices, each of which performs a different type of task. The typical computer will com-
prise the following:

 1. System unit, which houses

 a. The motherboard, which contains

 i. The CPU

 ii. A cooling unit for the CPU

 iii. Possibly extra processors (for instance, for graphics)

 iv. Memory chips for RAM, ROM

 v. Connectors for peripherals (sometimes known as ports)

FIGuRE 1.2 Computer peripherals. (Courtesy of Shutterstock/Nevena.)

14 ◾ Information Technology

 vi. Expansion slots for other peripheral device cards

 vii. The ROM BIOS for booting and basic input and output instructions

 viii. Power supply connector

 b. Disk drives

 c. Fan units

 d. Power supply

 2. A monitor and keyboard

 3. Typically some form of pointing device (mouse, track point, track ball)

 4. Speakers (optional)

 5. MODEM or network card (these are typically located inside the system unit, plugged
into one of the expansion slots)

 6. Printer (optional)

 7. External storage devices such as external hard disk and tape drive

Chapter 2 has pictures to illustrate many of the above components.
Now we have defined a computer. But the computer is only a part of the story. Without

software, the computer would have nothing to do. And without people, the computer
would not know what program to run, nor on what data. So, our computer system includes
these components.

Software

What is the point of a computer? To run programs. Without programs, the computer has
nothing to do. A program, also known as software (to differentiate it from the physical
components of the computer, the hardware), is a list of instructions that detail to the com-
puter what to do. These instructions are written in a programming language, such as Java
or Python. Programming language instructions must be very descriptive. For instance, if
you want the computer to input two numbers from the user and output which one is larger,
you could not just say “input two numbers and output the larger of the two.” Instead, you
must describe the actions to take place as an algorithm, broken into step-by-step instruc-
tions. The instructions must be written in a programming language. For instance, the
problem described in this paragraph might be broken into four steps:

Input number1

Input number2

Compare the two numbers and if the first is greater than the second, output number1

Otherwise output number2

Introduction to Information Technology ◾ 15

In a language like C, this would look like this:

scanf(“%d”, &number1);
scanf(“%d”, &number2);
if(number1 > number2) printf(“%d is greater”, number1);
else printf(“%d is greater”, number2);

The scanf instruction inputs a value, the printf instruction, outputs a value or message.
The if instruction is used to compare two values and make a decision. Some of the syntax
in C is peculiar, for instance the & before “number1” and “number2” in the scanf state-
ments, the use of the semicolon to end instructions, and the use of %d. Every language will
have its own syntax and in many cases, the syntax can appear very odd to someone who is
not a programmer or has not learned that language.

Programs are not just a list of executable statements. Programs also require various defi-
nitions. These might include variable declarations, functions or methods, and classes. In C,
for instance, we would have to define number1 and number2 as being variables to be used
in the above code. In this example, they would be declared as integer numbers.

There are many forms of software, but we generally divide them into two categories:
system software (the operating system) and application software (programs that we run to
accomplish our tasks such as a word processor, an Internet browser or a computer game).
Usually, our software is written by professionals—software engineers. However, once you
learn to program, you can write your own software if you desire. As an IT student, you will
learn to write short pieces of code, scripts. Scripts can be used to support either the operat-
ing system or an application. For instance, you might write a Bash shell script to support
an activity such as automatically creating user accounts for a new group of users. Or you
might write a server-side script in Perl to test a URL for security threats in a web server.

users

Without the human, the computer would not have anything to do. It is the user who initi-
ates the processes on the computer. “Do this now, do that later.” We may want to inter-
act with the programs while they run. This interactivity is done through the I/O devices.
Today, we are so used to interactivity that we probably cannot imagine using computers
without it. But in earlier days (1940s–1970s), most—if not all—processing was done with-
out human interaction at all. The user specified the program, the source of input, the loca-
tion of output, and sent the program off to run. The user would see the results once the
computer ran the program, which might have been immediately, or many hours later!

Users have progressed over time, just as the technology has progressed. The earliest com-
puter users were the engineers who built and programmed them. Computers were so com-
plicated and expensive that no one else would have access. As computer costs permitted
organizations to purchase them (for millions of dollars), computer users were those employ-
ees who had received specialized training to use them. Things began to change with the
advent of personal computers, first released in the 1970s. But it was not until windowing
operating systems came about that computer users could learn to use the computers with

16 ◾ Information Technology

little to no training. And so today, it is common that anyone and everyone can use a com-
puter. In fact, computers are so commonplace that people may not realize that they are using
a computer when they program their GPS or run an application on their smart phone.

Our View Today

Computers used to be easily identifiable. They were monstrously expensive devices that
would weigh tons, filled up a room or more, required clean room environments and spe-
cial air conditioning. People would not actually touch the computer; they would interface
with the computer through terminals and networks. With personal computers, comput-
ers for individuals became affordable and many people began to have computers in their
own homes. Telecommunication, over LANs or over telephone networks, allowed people
to connect their computers together, to communicate to each other and share e-mail mes-
sages, files, programs, etc. The Internet, which was first turned on in its earliest form in
1969, became commercially available to home computer users in the mid-1990s. Early
in this period, people connected to the Internet via slow MODEM access over their tele-
phones. But over the past 15 years, telecommunications has changed completely. Now, we
have wireless access, high-speed Internet connections, cell phones, and more.

Today, computers are not easily identifiable. They are no longer limited to mainframe
computers or desktop units. You can have a network computer or a laptop, a notebook
computer, a tablet computer, a handheld computer. We even have devices smaller than
handheld units that use processors and memory. And our connectivity has changed
equally. Your access to telecommunications is no longer limited by the telephone port in
your home. With wireless, you can gain access anywhere in your household or anywhere
in a remote location that has hot spots. Want a coffee break? No problem, go to Starbucks
and you can still access the Internet through your laptop. Or, taking a drive? You can still
access the Internet over your cell phone (as long as you are in reasonable proximity to a
cell phone tower). We are a world united through nearly instantaneous communication no
matter where we are. And we are a world of billions upon billions of processors. We used
to count computers by the millions, but today, there are tens of billions of processors and
most of these can communicate with each other.

This gentle introduction to IT will serve as our starting point in this text. Over the
chapters to come, we will study many IT-related concepts. We first look at computer com-
ponents, gain an understanding of what they do, how they work, and how we connect
them to a computer. We also study a related topic, binary numbers and how we use binary.
These next two chapters on computer organization and binary are often material covered
in computer science curricula. They are included here so that, as an IT person, you under-
stand more than what a processor and a motherboard are when it comes to the computer
hardware. By having a firm foundation of what the computer components do and how they
work, you should be able to understand the necessity of when to increase RAM, or how
to evaluate a processor. The inclusion of binary in this text is largely to support concepts
found in computer networks.

The focus shifts to system software, that is, operating systems. We examine two of the
most common operating system platforms: Windows (Windows 7) and Unix (Red Hat

Introduction to Information Technology ◾ 17

Linux). We will compare and contrast what they look like, how we use them, and how we
configure them. Operating system topics include file systems, users, accounts and per-
missions, processes and process management, and services. We also examine two Linux-
specific topics: the Bash shell and the use of regular expressions in Linux.

The text examines several different histories. The evolution of computer hardware, the
evolution of operating systems, the evolution of computer programming, the history of
both Linux and Windows, and the history of the Internet are all covered (although not
in the same chapter). Although perhaps not necessary for an IT person, it does help set
a backdrop to how technology has changed so that you will have an appreciation of the
rapidity behind the changes in IT. Additionally, by understanding the past, it might help
you understand where IT might lead.

The final collection of chapters covers other IT topics. Computer networks are consid-
ered from several different perspectives. The logical structure of a network, the physical
nature of a network, the network protocols that proscribe how transmitted data are to be
treated, and some of the more common network software are all examined in one chap-
ter. Software management describes the types of software available and provides details
for how to install software in a computer system, particularly in Linux with open source
software. Another chapter concentrates on programming, offering examples of writing
scripts in both the Linux shell and DOS. The penultimate chapter of the text covers the
information side of IT. In this chapter, we examine such ideas as information management
and information assurance and security. A final chapter wraps up the text by considering
careers in IT and various topics related to IT professionals.

FuRTHER REAdING
There are a number of websites that provide information on IT careers, some of which are
listed below.

•	 http://www.wetfeet.com/careers-industries/careers/information-technology

•	 http://www.cio.com/article/101314/The_Hottest_Jobs_In_Information_Technology

•	 http://www.careeroverview.com/technology-careers.html

•	 http://www.techcareers.com/

•	 http://information-technology.careerbuilder.com/

The best source for IT education can be found through the special interest group on IT
education (SIGITE) at http://www.sigite.org/it-model-curriculum.

General introductions to computer hardware, software, and users can be found in any
number of computer literacy texts such as these:

•	 Beekman, G. and Beekman, B. Tomorrow’s Technology and You. Upper Saddle River,
NJ: Prentice Hall, 2008.

18 ◾ Information Technology

•	 Fuller, F. and Larson, B. Computers: Understanding Technology. St. Paul, MN: ECM
Paradigm Publishing, 2010.

•	 Meyer, M., Baber, R., and Pfaffenberger, B. Computers in Your Future. Upper Saddle
River, NJ: Prentice Hall, 2007.

•	 Laberta, C. Computers Are Your Future. Upper Saddle River, NJ: Prentice Hall, 2011.

•	 Williams, B. and Sawyer, S. Using Information Technology. New York: McGraw-Hill,
2010.

•	 Snyder, L. Fluency with Information Technology: Skills, Concepts and Capabilities.
Upper Saddle River, NJ: Prentice Hall, 2010.

However, as someone who wishes to make a career of IT, you would be better served
with more detailed material. Such texts will be listed in later chapters as we cover material
in greater depth. See the further readings in Chapter 2 for more information on computer
hardware, Chapter 4 for more information on operating systems, Chapter 14 for more
information on programming, and Chapter 16 for more information on IT careers.

REVIEW TERMS
The following terms were introduced in this chapter:

Administrator Peripheral

Computer Processor

Hardware Network administrator

Help desk Software

Information Technology Storage capacity

IT specialist System administrator

MODEM User

REviEw QUESTiOnS

 1. What are the skills expected of an IT specialist?

 2. What does administration mean in reference to IT?

 3. What does training mean in reference to IT?

 4. How does the study of IT differ from a 2-year technical degree in computers?

 5. To what extent should an IT specialist be able to write computer programs?

Introduction to Information Technology ◾ 19

 6. What is a system administrator? What is a network administrator? How do the two
jobs differ?

 7. Define a computer.

 8. What is the IPOS cycle?

 9. Should a cell phone be considered a computer?

 10. How does a computer system differ from a computer?

 11. How do short-term and long-term storage differ?

 12. What is software? What are the two general forms of software?

DiScUSSiOn QUESTiOnS

 1. As a student of IT, what brought about your interests in studying IT? Having read
this chapter, are you as interested in IT as you were before, more interested or less
interested?

 2. Organize the IT skills listed in Table 1.2 in order of most important to least impor-
tant for a system administrator. Defend your listing based on the types of tasks that a
system administrator will be required to undertake.

 3. Table 1.2 did not include “soft skills” such as the ability to communicate with others,
the ability to work in groups, and the ability to manage projects. Are these types of
skills taught or are they learned in other ways? Should a 4-year IT program include
courses that cover such skills?

 4. What are the differences between computer information technology and computer
science? Should a program in computer science include computer information tech-
nology courses, or should they be separate programs?

 5. How does a 4-year IT degree differ from a 2-year IT degree or a degree earned at an
IT technical school?

 6. Compare computers of today to those that existed in the 1950s.

 7. In your lifetime, what changes have you seen in computers and other information
technology (particularly handheld devices)? What changes do you expect to see in
the next 10–15 years?

 8. Many people are surprised to learn that smart phones should be considered comput-
ers. In what ways are smart phones similar to desktop and laptop computers? In what
ways are they different? Should ordinary cell phones be considered computers?

This page intentionally left blankThis page intentionally left blank

21

C h a p t e r 2

Computer Organization
and Hardware

This chapter examines the hardware of a computer: the central processing unit (CPU),
memory, the I/O subsystem, and the bus. Each of these components is described in detail
to provide an understanding of its role. In examining the CPU, the chapter emphasizes the
fetch–execute cycle. An example program is used to illustrate the fetch–execute cycle. The
CPU’s components are themselves examined: the control unit, the arithmetic logic unit,
and registers. In examining memory, the memory hierarchy is introduced and the differ-
ent forms of memory are discussed: RAM, SRAM, DRAM, ROM, virtual memory. In the
discussion of input and output devices, topics of human–computer interaction (HCI) and
ergonomics are emphasized. The chapter includes a discussion on how to assemble the
various computer components. The intent of this chapter is to provide the IT student with
a solid foundation in computer hardware.

The learning objectives of this chapter are to

•	 Identify the components of a computer and their roles.

•	 Describe the fetch–execute cycle.

•	 Discuss characteristics that impact a processor’s performance.

•	 Describe the different levels of the memory hierarchy.

•	 Describe the role of the various types of input and output devices.

•	 Discuss the impact that I/O devices have on the human body and the importance of
HCI.

•	 Illustrate how a computer can be assembled from component parts.

Computer organization is the study of the components of a computer, their function, their
structure (how they work), and how they are connected together. This topic is common

22 ◾ Information Technology

in computer science programs as a sophomore or junior level class. Here, while we will
look at these components, we will look more at their function and how they are connected
together. By studying computing organization, you will gain an understanding of how
computers work and the importance of each of the primary components, as introduced in
Chapter 1. This chapter concludes with a section that discusses computer hardware and the
process of assembling (building) a computer from component parts.

A computer consists of a central processing unit (CPU), memory and storage, and
peripheral devices (including some form of network connection). A computer performs
four operations:

 1. Input

 2. Processing

 3. Output

 4. Storage

The IPOS cycle—input–processing–output–storage—describes roughly how we use a
computer. We input data, process it, output the results, and store any information that we
want to keep permanently. Figure 2.1 illustrates the IPOS cycle. Describing the computer
at this level does not really tell us what is going on—for instance, how does storage differ
from memory, and how does the processing take place? So we will take a closer look here.

STrucTure of a compuTer
Figure 2.2 shows the overall structure of most computer systems. As you can see, there
are four components: the CPU (or processor), memory, input/output (I/O) subsystem, and
the bus. The CPU is the device that not only executes your programs’ instructions, but
also commands the various components in the computer. Memory stores the program(s)
being executed and the data that each program is using. The I/O subsystem includes all
peripheral devices (input, output, storage, network) where storage consists of the long-term

Input

Output

Processing
Storage

Results can
be stored
for permanent
record

Information
output so
user can see
results

Processing
converts
data to
information

Input from user
informs computer
(program) what
to do

fIGure 2.1 IPOS cycle.

computer organization and Hardware ◾ 23

storage devices (disk drives, tape). The bus is the device that permits information to move
between each component.

Before we continue with our look at the computer’s components, we have to understand
that the devices in the computer are digital devices. Inside the computer, digital data are
represented as electrical current being in one of two states: high or low. High means that
there is a noticeable current flowing through the component, and low means that there is
no, or nearly no, current flowing. We will assign the number 1 to be high current and 0
to be low (or no) current. The bus then is perhaps an easy device to understand. The bus
consists of a number of wires, each wire allows 1 bit (a single 1 or 0, high or low current) to
flow over it. We discussed storage capacity previously in Chapter 1 (see Table 1.4) but for
now, we will define three terms: a bit (a single 1 or 0), a byte (8 bits, using eight wires on the
bus, usually the smallest unit of data transfer), and a word (today, computers have either
32-bit or 64-bit words; the word size is the typical size of a datum).

The bus actually consists of three parts: the address bus, the control bus, and the data
bus. These three parts of the bus perform the following operations:

•	 The address bus is used by the CPU to send addresses to either memory or the I/O
subsystem. An address is the location that the CPU either wants to retrieve a datum
from, or the location that the CPU wants to store a datum to. The CPU more com-
monly addresses memory than I/O. Note that a datum might either be a value to be
used in a program, or a program instruction.

•	 The control bus is used by the CPU to send out commands. Commands might be
“read” or “write” to memory, or “input”, “output”, or “are you available” to an I/O
device. The control bus is also used by the various devices in the computer to send
signals back to the CPU. The primary signal is known as an interrupt, which is a
request by a device (e.g., disk drive, printer) to interrupt the CPU and ask for its
attention.

•	 The data bus is used to send data (including program instructions) from memory to
the CPU, or data from the CPU to memory, or between I/O devices and the CPU or
memory.

CPU
ALU
Control unit
Registers

System
bus

Memory
SRAM
DRAM
ROM

I/O Bus

I/O Subsystem
Input devices
Output devices
Storage devices

fIGure 2.2 Structure of modern computers.

24 ◾ Information Technology

The size of the data bus is typically the size of the computer’s word. The size of address
bus is based on the size of addressable memory. The size of the control bus is based on the
number of different commands that the CPU might send out. See Figure 2.3, where the
data bus would probably be 32 bits in size, and the address and control bus size would
depend on a number of different issues. The bus shown in this figure is the system bus.
Another bus, the local bus, connects the components of the CPU [ALU (arithmetic/logic
unit), control unit, registers] and yet another bus connects the I/O devices together.

What are Pins?

Take a look at a cpu. You will see a number of metal pins that come out of the bottom. The pins
are used to connect the cpu into a socket. The socket connects to the system bus. Therefore,
each pin connects to one line of the bus. earlier cpus had few pins, whereas today cpus can
have more than a thousand pins! Thus, pins have to be very small to fit. also, every pin requires
a certain amount of power so that current could potentially flow over any or all pins at any time.
So our modern cpus require greater power consumption. This, in turn, gives off more heat,
so we need more powerful cooling of the cpu. Below are two Intel cpus, an early cpu from
the 1970s with just a few dozen pins, and a modern pentium processor with almost 500 pins.

(adapted from Kimmo palossaari, http://commons.wikimedia.org/wiki/file:Ic_DIp_chips
.JpG, and Stonda, http://commons.wikimedia.org/wiki/file:pentium-60-back.jpg.)

CPU
Main memoryALU

Control unit
Registers

System bus

Address bus

Data bus

Control bus

fIGure 2.3 System bus connecting CPU and memory.

computer organization and Hardware ◾ 25

a proGram
In order to understand the CPU, we have to understand a computer program. This is
because the CPU executes programs. So, we will first examine a simple program. The fol-
lowing program is written in C although it could be written in nearly any language. The
only thing that would change is the syntax. The // marks indicate comments. Comments
will help you understand the program.

#include <stdio.h> //input/output library
void main() //start of the program
{
 int a, b, c; //use 3 integer variables
 scanf(“%d”, &a); //input a
 scanf(“%d”, &b); //input b
 if(a < b) //compare a to b, if a is less then b
 c = a + b; //then set c to be their sum
 else c = a-b; //otherwise set c to be their difference
 printf(“%d”, c); //output the result, c
}

This program inputs two integer values from the user, and if the first is less than the
second, it computes c = a + b (c is the sum of the two) otherwise, it computes c = a – b (c is
a minus b). It then outputs c. If, for instance, the user inputs 5 and 10, it computes c = 15
and outputs 15. If instead the user inputs 5 and 3, it computes c = 2 and outputs 2. This is a
fairly pointless program, but it will serve for our example.

Once written, what happens to the C program? Can I run this program? No. No com-
puter understands the C programming language. Instead, I have to run a special program
called a compiler. The compiler translates a program into a simpler language called machine
language. The machine language version of the program can then be executed. Machine
language is archaic and very difficult to read, so we will look at an intermediate form of the
program, the assembly language version. Again, comments will occur after // marks.

 Input 33 //assume 33 is the keyboard, input a value
 //from keyboard
 Store a //and store the value in the variable a
 Input 33 //repeat the input for b
 Store b
 Load a //move a from memory to CPU, a location
 //called the accumulator
 Subt b //subtract b from the accumulator
 //(accumulator = a – b)
 Jge else //if the result is greater than or equal
 //to 0, go to location “else”
 Load a //otherwise, here we do the then clause,
 //load a into accumulator
 Add b //add b (accumulator is now a + b)
 Store c //store the result (a + b) in c

26 ◾ Information Technology

 Jump next //go to the location called next
else: Load a //here is the else clause, load a into the
 //accumulator
 Subt b //subtract b (accumulator is now a – b)
 Store c //store the result (a – b) into c
next: Load c //load c into the accumulator
 Output 2049 //send the accumulator value to the output
 //device 2049, assume this is the monitor
 Halt //end the program

The assembly language version of the program consists of more primitive instructions
than the C version. For instance, the single scanf statement in C, which can actually be used
to input multiple values at a time, is broken into input and store pairs for each input. The C if
statement is broken into numerous lesser statements. Now, recall that an assembly language
program is supposed to be simpler than a high level language program. It is simpler in that
each assembly language instruction essentially does one primitive thing. However, for our
programs to accomplish anything useful, we need far more assembly language instructions
than high level language instructions. You might think of the two types of languages in this
way: an assembly language instruction is like the nuts and bolts of construction, whereas
the high level language instruction is like prefabricated components such as hinges and
locks. The computer cannot do something like scanf, or an if–else statement directly in one
instruction, but it can do a load, add, store, or jump in single operations.

As with the C program, a computer cannot execute an assembly language program
either. So, our program must next be converted from assembly language into machine
language. The reason why we showed the assembly language program is that it is easier to
understand than a machine language program.

A compiler is a program that translates a source program written in a high-level lan-
guage, such as C, into machine language. An assembler is a program that translates an
assembly language program into machine language. So imagine that we have translated
the previous assembly program into machine language. A portion of the final program
might look something like this:

 1000100 0000000000000000000100001 —input (from keyboard)
 1000111 0010011000100101101010001 —store the datum in a
 1000100 0000000000000000000100001 —input (from keyboard)
 1000111 0010011000100101101010010 —store the datum in b

The remainder of the machine language program is omitted because it would make no
more sense than the above listing of 1s and 0s. If you look at the 1s and 0s, or binary num-
bers, you might notice that they are formatted into two parts. These two parts represent
each instruction’s operation (the first 7 bits) and the operand, or datum. Here, the operation
denotes one of perhaps 100 different instructions. 1000100 represents “input” and 1000111
represents “store”. There would similarly be operations for “add”, “subt”, “jge”, “load”, and
“jump”. The operand denotes a memory location written in binary (for instance, datum a
is stored at location 0010011000100101101010001, which is address 5,000,017, and the value

computer organization and Hardware ◾ 27

0000000000000000000100001 denotes a device number, 33, for the keyboard). Although
this machine language code is made up for the example, it is not too different from what
we might find if we studied specific machine languages.

execuTInG THe proGram
Okay, back to computer organization. We want to run this simple program. The first thing
that happens when you want to run a program is that the operating system loads the program
from where it is stored on the hard disk into a free section of memory. We will assume that
the operating system has placed it at memory location 5,000,000. Because there are 17 instruc-
tions, the program will be stored consecutively from memory location 5,000,000 to 5,000,016.
We will also assume that the variables, a, b, and c, are stored immediately after the program,
in memory locations 5,000,017 through 5,000,019, respectively, for a, b, and c. Once loaded,
the operating system transfers control to the processor (CPU) to begin running this program.

Now we have to understand in more detail what the CPU and memory do. The CPU
consists of the control unit, the ALU, and registers. One of those registers is called the
program counter, or PC (not to be confused with the generic name of a home computer).
The PC gets the address of the first program instruction in memory, 5,000,000. Another
register is called the instruction register (IR). It stores the current instruction. Another
register is called the status flags (SFs); it stores the result of the most recent ALU computa-
tion in terms of whether the result was positive, negative, zero, caused an overflow, caused
an interrupt, had a value of even parity, and so forth. Each of these items is stored in 1 bit,
so the SF will store multiple results, although most of the bits will be 0. Other registers are
data registers—they store data that we are currently using. One special data register, called
the accumulator (AC), is used for storing the most recent value computed or used.

We are ready to look at how the CPU runs the program. The CPU performs what is
known as the fetch–execute cycle. The idea behind this cycle is that the CPU first fetches an
instruction from memory, and then executes it. In fact, there is more to it than that. The
typical fetch–execute cycle (the cycle differs depending on the processor) will have four or
five, or maybe more, stages (Figure 2.4).

CPU
PC (1)Control

unit

ALU

IR (2)

Address bus

Data bus

Control bus

Memory

Program code
current instruction

Program data

1. Control unit moves PC to address bus
 and signals memory “read” command over
 control bus, memory returns instruction
 over data bus to be stored in IR
2. Control unit decodes instruction in IR
3. Execute instruction in the ALU using
 datum in AC, putting result back in the AC

AC (3)

fIGure 2.4 Three-part fetch–execute cycle.

28 ◾ Information Technology

For our example, we will assume a five-part cycle* with the following stages:

 1. Fetch instruction from memory.

 2. Decode the instruction from machine language into microcode.

 3. Fetch the operands from registers.

 4. Execute the instruction.

 5. Store the result back into a register.

In Figure 2.4, steps 3–5 are all indicated as step 3, executing the instruction using the
data register. However, in many CPUs, there are several, even dozens of registers. This
requires that steps 3 and 5 be separated from step 4.

Step 4 from our five-part cycle is where the instruction is executed. However, as you see,
this is not the only step required to execute an assembly language operations. Without all
of the stages, the program does not run correctly. Microcode, mentioned in step 2, will be
discussed later in the chapter.

So let us see how the program discussed in the last section will be executed on this five-
part cycle. The first thing that happens is that the CPU fetches the first program instruc-
tion. This occurs by sending the value stored in the PC (the memory location of the first
instruction) to memory over the address bus, and sending a “read” signal over the control
bus. Memory receives both the address and the “read” command, and performs the read
access at the given memory location. Whatever it finds is then sent back to the CPU over the
data bus. In this case, what is sent back to the CPU is not a datum but a program instruc-
tion, and in the case of our program, it is the instruction “Input”, written in binary as:

 1000100 0000000000000000000100001

Once the instruction is received by the CPU, it is stored in the IR. To end this stage,
the CPU increments the PC to 5,000,001 so that it now indicates the location of the next
instruction to be fetched.

The next stage is to decode the instruction. The control unit breaks the instruction
into two or more parts—the operation (in this case, the first 7 bits) and the operand(s).
In essence, the control unit consults a table of operations to find 1000100, the instruction
“Input”. This informs the CPU that to execute the instruction, it needs to perform an input
operation from the input device given by the address in the operand. The operand is the
binary number for 33, which (in our fictitious computer) is the keyboard.

As there are no operands to fetch, stage 3 is skipped. Stage 4 is the execution of the
instruction. The input instruction requires that the CPU communicate with the input
device (the keyboard) and retrieve the next datum entered. The execution of the input
instruction is not typical in that the CPU does not proceed until the user has entered
something. At that point, the CPU retrieves the datum over the data bus and brings it into

* Different processors have different lengths for their fetch–execute cycles, from just a few to dozens.

computer organization and Hardware ◾ 29

the CPU. The fifth and final stage requires moving the value from the data bus into the AC
register.

We have now seen the full execution of our program’s first instruction. What happens
next? The entire fetch–execute cycle repeats. In fact, it will continue repeating until the
program terminates.

For the second instruction, the first step is to fetch the instruction from memory. Now,
the PC has the address 5,000,001, so the CPU fetches the instruction at that location from
memory. The PC value is placed on the address bus, the control unit signals a memory read
across the control bus, memory looks up that address and returns the contents over the
data bus, and the item is stored in the IR. The last step of the fetch phase is to increment the
PC to now point at 5,000,002. The instruction in the IR is

 1000111 0010011000100101101010001

which is “store a”.
The decode stage determines that the operation is a store operation, which requires

moving a datum from the AC into main memory. The address that will receive the datum
from the AC is stored as the second portion of the instruction, 5,000,017 (the address of a).

To execute the instruction, the latter part of the IR is moved to the address bus, the value
in the AC is moved to the data bus, and the control unit signals a memory “write” over the
control bus. The execution of the instruction is now in the hands of main memory, which
takes the value from the data bus and stores it at the memory location received over the
address bus (5,000,017). This instruction does not require a fifth step as the CPU itself does
not need to store anything.

The next two instructions occur in an almost identical manner except that these instruc-
tions are at 5,000,002 and 5,000,003, respectively, and the second datum is stored at mem-
ory location 5,000,018 (b). By the time these two instructions have been executed, the PC
will be pointing at location 5,000,004, and memory locations 5,000,017 and 5,000,018 will
store the first two input values, a and b, respectively.

The fifth instruction is fetched and stored in the IR. This instruction is “load a”. The exe-
cution of this instruction sends the address, 5,000,017, across the address bus and a memory
read signal over the control bus. Memory looks up the datum stored at this location and
sends it back over the data bus. The final stage of this instruction is to store the resulting
datum in the AC. Notice that unlike the previous “memory read” operations discussed in
this section, this is a memory read of a true datum, not of an instruction. Figure 2.5 illus-
trates the difference between the “load” (upper portion of the figure) and “store” (lower por-
tion of the figure) instructions, that is, between a memory read and a memory write.

The sixth instruction, “subt b”, starts off similar to the fifth, “load a”. The instruction is
fetched as before, with the “subt b” placed in the IR and the PC incremented. The control
unit then decodes this instruction. However, the execution stage for subtraction differs
from load because this instruction requires two separate execution steps. First, memory
is read, similar to “load a” but in this case, the address is 5,000,018 (the variable b). The
datum that is returned from memory is not stored in the AC though. Instead, the contents

30 ◾ Information Technology

of the AC and the datum returned from memory are both sent to the ALU. The control
unit signals the ALU to perform a subtraction. The subtraction circuit operates on the two
data and the result, coming out of the ALU, is the value from the AC minus the value from
memory (i.e., a – b). The store result step of this instruction is to take that result from the
ALU and move it to the AC.

The ALU also sets a status flag based on the result of the subtraction. The SFs are used
to indicate the results of ALU operations, such as whether the result was positive, zero, or
negative, or whether the result caused an overflow or a carry out or an interrupt. The flags
are usually denoted as PF (positive flag), ZF (zero flag), NF (negative flag), OF (overflow
flag), and so forth. Any ALU operation will result in at least one flag being set (changing
from 0 to 1). We will see how these flags are used in the next instruction.

The seventh instruction (at 5,000,006) is the first instruction that you might not under-
stand by reading the assembly language code. It says “jge else”. This means “jump on
greater than or equal to the location else”. The location “else” is another memory location.
Because the first instruction in the program is at memory location 5,000,000, the “else”
location is at 5,000,011 (it is the 12th instruction in the program). Refer back to the pro-
gram in the last section. As with all previous instructions, this instruction (“jge else”) is
fetched from memory into the IR and decoded. The execution stage works as follows:

If either the PF or ZF is set (the subtraction resulted in a positive or zero result), then
reset the PC to the location of “else”. If the NF is set, then do nothing.

CPU

IR

AC

Control
unit

Memory

1. Address from IR to address bus
 control unit signals memory read
 over control bus
2. Memory accesses address
 returns datum over data bus
3. Datum stored in AC

CPU

IR

AC

Control
unit

Memory

1. Address from IR to address bus
 datum from AC over data bus
 control unit signals memory write
 over control bus
2. Memory accesses address
 stores datum from data bus to
 memory location

fIGure 2.5 Memory read (top) versus memory write (bottom).

computer organization and Hardware ◾ 31

This means that, if the previous instruction (the subtraction) resulted in a positive or
zero result, branch to location “else”. We use the PF and ZF here because the instruction
specifies “greater than or equal to”. Had the instruction been “less than”, we would only
use the NF. Other comparisons include “equal to”, “not equal to”, “greater than”, and “less
than or equal to”. At the end of this instruction, the PC will either be 5,000,007 (the next
sequential instruction) or 5,000,011 (the location of else).

The eighth instruction then depends on what happened in the seventh. Either the CPU
fetches the instruction at 5,000,007 or 5,000,011. Whichever is the case, the next three
instructions are nearly identical. They are to “load a”, “add/subt b”, and “store c”. That is,
the group of three instructions either perform c = a + b or c = a – b depending on which of
the two sets of code is executed. Assuming that we have executed the instructions starting
at 5,000,007, then the instruction at 5,000,010 is “jump next”. This instruction will change
the PC value to be 5,000,012 (the location of next). Whichever path led us here, the last
three instructions are “load c”, “output”, “halt”. The output instruction takes whatever is in
the AC and moves it to the output device listed (2049, presumably the monitor). When the
CPU executes the “halt” instruction, the program ends and control reverts to the operating
system.

role of cpu
The CPU processes our programs. It does so using two different pieces of hardware. The
first is the ALU, which executes all arithmetic and logic operations. The ALU has individ-
ual circuits for performing the various operations. An adder is used to perform both addi-
tion and subtraction. A multiplier is used for multiplication. A divider is used for division.
A comparator is used to compare two values (for instance, to determine if a > b). Other
circuits perform shifting, rotating, and parity computation (see Chapter 3).

The second piece of hardware is the control unit. The control unit is responsible for con-
trolling (commanding) all of the components in the computer. As we saw in the example
in Executing the Program, the control unit sends out such signals as a memory read or a
memory write. It also sends signals to the ALU such as to perform a subtraction or a com-
parison. The control unit controls the fetch–execute cycle. First, it accomplishes the fetch
stage. Then it decodes the fetched instruction into microcode. This, in turn, instructs the
control unit on how to execute the instruction. Therefore, the control unit will have sepa-
rate sets of commands for the instruction fetch stage, and for every machine instruction.
Some instructions require an operand, and so the control unit handles how to acquire the
operand (stage 3 from the fetch–execute cycle discussed in Executing the Program). Some
instructions require the ALU, so the control unit informs the proper ALU circuit to oper-
ate. Some instructions require that a result be stored (stage 5 of the fetch–execute cycle
from Executing the Program), so the control unit moves the datum from its source to the
AC (or other register).

Microcode is a confusing topic; however, we will briefly describe it here. Recall that the
control unit sends out control signals to all of the components in the computer. This might
be a signal to memory to perform a read, or a signal to the ALU to perform an add, or a sig-
nal to move a datum from one location (say the output of the adder) to a register. Microcode

32 ◾ Information Technology

is the specific operations that should take place within the given clock cycle. For instance,
at the beginning of a fetch, the first step is to move the value from the PC to the address
bus and signal memory to perform a read. Those two commands are the only two actions
to take place during that clock cycle. The microcode for that step will be a binary listing of
which actual components should receive a command. The binary listing is almost entirely
made up of zeroes because, as we see with the instruction fetch, only two components out
of the entire computer do anything. So the microcode for this step has two 1s and the rest
are 0s. In this way, microcode looks much like machine language. However, although our
example machine language in A Program consisted of 32-bit instructions, our microcode
instructions are as long as there are components in the computer. For instance, if there are
50 different components to command, the microcode instruction would be 50 bits long.
Here, let us imagine that the computer has 50 components to command, and that the com-
mand to move the PC value to the address bus is control signal 0 and the signal to memory
to perform a read is control signal 15. Microcode for this step would be:

 10000000000000100000000000000000000000000000000000

A single microcode instruction is sometimes called a micro-operation. There is a dif-
ferent micro-operation for each step of the fetch–execute cycle, plus one or more micro-
operations for every machine language instruction. Recall that step 2 of the fetch–execute
cycle was to convert the machine instruction (such as “load a”) into microcode. Once this
is done, executing the step is merely a matter of the control unit sending out the signals,
where each bit in the micro-operation denotes a bit to be sent out over a different control
bus line. This topic is very advanced and if you do not understand it, do not worry, because
it is not important for the material in this text.

We have already talked about various registers. There are two different classes of regis-
ters: those used by the control unit and those used to store data for the ALU. The control
unit uses the PC (program counter), IR (instruction register), SFs, Stack Pointer, and pos-
sibly others. Although our example in A Program and Executing the Program referenced
a single data register, the AC (accumulator), modern computers have several, possibly hun-
dreds of, registers. The Intel 8088 processor (used in early IBM PC computers) and later
the Pentium processors use four integer data registers given the names EAX, EBX, ECX,
and EDX. Other computers might name their registers as R0, R1, R2, and so forth. These
registers store data to be used during computations in the ALU.

The speed of a computer is usually provided in terms of clock speed. Modern computers
have clock speeds of several GHz (gigahertz). What does this term actually mean? 1 GHz
means 1 billion clock cycles per second, or that the clock operates at a speed of 1 billionth
of a second. This makes it sound like a 1-GHz CPU executes 1 billion instructions per sec-
ond. This is not true. Recall that a fetch–execute cycle might consist of five stages or more.
It turns out that each stage of the fetch–execute cycle requires at least 1 clock cycle for that
stage to be accomplished.

Consider the fetch stage as discussed in Executing the Program. It required at least three
clock cycles. In the first cycle, the PC value is sent across the address bus to memory and

computer organization and Hardware ◾ 33

the control unit signals a memory read. In the second cycle, memory returns the instruc-
tion across the data bus. In the third cycle, the instruction is stored in the IR, and the PC
is incremented. If we assume that decoding takes one cycle, if operand fetching takes one
cycle, that execution of the instruction takes anywhere from one to three cycles, and stor-
ing the result takes one cycle, then a single fetch–execute cycle, equivalent to one machine
language instruction, will take six to eight clock cycles. Notice though that different pro-
cessors will have different length fetch–execute cycles. A 1-GHz processor might have a
five-stage cycle requiring eight clock cycles per instruction. A 2.5-GHz processor might
have a 12-stage cycle requiring some 20 clock cycles per instruction. Which is faster? The
2.5-GHz processor has a faster clock but takes more cycles to execute an instruction. In
fact, in this case, the two would have equal performance (20/2.5 billion = 8/1 billion).

Another way to gauge the speed of a processor is to count how many instructions can be
executed within 1 second. This value is often expressed in MIPS (millions of instructions
per second). Since computer graphics and many computations require the use of floating
point values (numbers with decimal points), another term is Megaflops (millions of float-
ing point operations per second).

None of these, however, tells the full story of our processor speed. Processor speed is
also impacted by the following:

•	 Word size, which limits the size of data moved at any one time (the word size is typi-
cally the size of the data bus and the size of the registers; smaller word sizes usually
mean more data transfers over the bus and lengthier execution times to compute
large values)

•	 Cache performance (see the next section) and memory speed and size

•	 The program itself (some programs require resources that are slower or more time
consuming than others)

•	 Whether the computer is running multiple programs at a time versus running on an
unloaded system

•	 The impact of the operating system on performance

•	 The impact of virtual memory on performance

•	 Many other issues

To obtain a true picture of the processor’s performance, computer architects will test
processors against benchmark programs. The performance on any single program can be
misleading, so the benchmarks that are used to test out processors are suites of programs
that test different aspects of the processor. Only by looking at the overall benchmark per-
formance can we gain a good understanding of how a processor performs. But the impor-
tant point here is not to be fooled by the GHz rating of a processor—it tells you something
about the processor, but not as much as you might think. If you had to order computers for
your organization, you would be best served by not just reading the packaging and seeing

34 ◾ Information Technology

the GHz rating, but by reading about each processor’s performance in publications (e.g.,
Consumer Reports, PC World) and websites (www.cpubenchmark.net, www.geek.com).

role of memorY
Early in the history of computers, it was thought that memory would only store the data
being processed. The computer program being executed would be input one instruction
at a time from punch card. However, with computers such as the ENIAC (Electronic
Numerical Integrator and Computer) being able to execute 5000 instructions per second,
inputting program instructions from punch cards would reduce the ENIAC’s performance
to that of the punch card reader. John von Neumann was the first to conceive of the stored
program computer. The idea is that a computer’s memory would store both program code
and program data. In this way, the CPU would not be burdened by the slow input offered
by the punch card reader. However, there is a significant problem with relying on memory
(RAM) and that is that CPU speeds continue to improve substantially every year but RAM
access speed improves only very gradually over the years. The result is that the CPU now
has to wait on memory to respond. Figure 2.6 illustrates the enormous improvement in
processor speed versus the modest improvement in memory access time. Notice that the
performance increase shown on the Y axis is in an exponential scale, increasing by units
of 2. For instance, between 1982 and 1986, memory access time barely increased, whereas
CPU performance quadrupled. As the CPU’s performance roughly doubles every couple
of years, whereas main memory access time barely increases over the years, main memory
access speed lags behind CPU speed more and more with each passing year.

The CPU relies on memory at least once per instruction—to fetch the instruction from
memory. Some instructions require either reading from memory (load instructions) or

2048

1024

512

256

128

64

32

16

8

4

2

1
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

Year

CPU
Memory

Pe
rf

or
m

an
ce

fIGure 2.6 Improvement in CPU speed over memory access time.

computer organization and Hardware ◾ 35

writing results to memory (store instructions). In such an instruction, there will be two
memory accesses per instruction, one instruction fetch and one data load or store. In fact,
some processors allow multiple reads and writes to memory with each instruction. If the
CPU is much faster than memory, what happens? Does this ruin the processor’s perfor-
mance because it is always waiting on memory?

Before continuing, we need to define RAM. RAM stands for random access memory. The
idea is that we send memory an address and a read command. Memory looks up the item
and returns it. Alternatively, we send memory an address, a datum, and a write command.
Memory then stores the item at that location. The term “random” is meant to convey that
addresses will be sent in a seemingly random pattern. The term is also meant to express
that access to any address should take the same amount of time no matter which address
is sent. This differentiates RAM from forms of storage that take different amounts of time
depending on the location of the item being sought (tape, for instance, might require a
good deal of fast-forwarding or rewinding, and disk takes time for the read/write head to
be moved accordingly). Unfortunately, the term RAM is somewhat ambiguous—there are
three forms of memory that all qualify as RAM.

We differentiate these forms of RAM as dynamic RAM (DRAM), static RAM (SRAM),
and ROM. ROM is read-only memory. It is memory where the information being stored is
permanently fused into place, so it can only be read, not written to. Most computers store
the boot program in ROM along with the basic input/output system (BIOS) but little else.
We will not worry about ROM in this text. Of the other two forms of RAM, DRAM is the
older. DRAM consists of capacitors, which can be miniaturized to such an extent that we
can literally have billions on a single chip. DRAM is also very inexpensive. DRAM, how-
ever, is relatively slow when compared to the CPU (refer back to Figure 2.6). So, on the one
hand, we have an inexpensive means of providing a great deal of memory storage, but on
the other hand, the access time is much slower than the CPU (by a factor of between 25
and 100!).

SRAM is built using several transistors, units known as flip-flops. We use SRAM to
build both registers in the CPU and cache (pronounced “cash”) memory. Cache is a newer
technology in computing than DRAM but very valuable. SRAM is far more expensive than
DRAM though, so we tend to use a good deal less of it in our computers. However, SRAM
is roughly as fast as the CPU, and therefore when the CPU accesses SRAM for instructions
or data, the CPU is not forced to wait like it does when accessing DRAM.

This leaves us with an interesting dilemma. Since we have a small amount of SRAM,
how can we ensure that when we need something from memory, it has been moved
(copied) into SRAM from DRAM? For that, we design the memory of our computer into
what we call the memory hierarchy. This comprises several layers where each layer going
down will be slower, less expensive memory, but also of a far larger storage capacity
(Figure 2.7).

In the memory hierarchy, registers are part of the CPU. There are anywhere from a few
to a few dozen registers, each able to store a word,* so a CPU might have a few dozen to a

* Some processors have double registers, capable of storing two Words.

36 ◾ Information Technology

few hundred bytes of register storage. They operate at roughly the same speed as the sys-
tem clock. There are often two different levels of cache: on-chip and off-chip. The on-chip
cache is located on the CPU although is not in the same area of the CPU as the registers.
Although on-chip cache is the same technology as registers, additional addressing hard-
ware is needed that causes on-chip cache to be slightly slower, perhaps as much as twice
as slow as register access. The off-chip cache, located separately on the motherboard, uses
the same technology as on-chip cache. However, because the off-chip cache is a greater dis-
tance away from the CPU, it requires a longer time to access it, perhaps 3 to 10 times slower
than the on-chip cache. Because the on-chip cache is located on the CPU itself, it must
share space with the rest of the CPU. The off-chip cache can be far larger and therefore a
far greater storage capacity. An on-chip cache might consist only of 32 or 64 KB, whereas
an off-chip cache might be anywhere from 1 to 8 MB in size. Even so, the off-chip cache is
far smaller than DRAM capacities, which today are at least 4 GB. Yet, the DRAM speed is
far slower still, perhaps 25 to 100 times slower than the CPU itself.

Notice that the memory hierarchy does not end with DRAM. The programs that we run
today are often larger than the size of memory itself! How then can we squeeze them into
memory? Also consider that we tend to run several programs at a time. In order to handle
the need for greater amount of memory than we have, we extend main memory using a
concept called virtual memory. In virtual memory, whatever is not currently being used
is shipped off to an area known as swap space. Swap space is stored on the hard disk in a
separate area known as the swap partition. This partition is set up differently from the rest
of the file system disk space—it is partitioned to be faster even though the partitioning is
not as efficient in terms of space utilization. But by having it operate quickly, we can swap
pieces of memory in and out as needed.

Each level of the memory hierarchy acts as a “backstop” for the next higher level. We
start by loading the entire program and space for data from hard disk (or removable stor-
age) into virtual memory and copy only the parts that are needed immediately (e.g., the
start of the program) into DRAM. Then, as we begin to access instructions and data, they
are copied into the on-chip and off-chip caches. Once the on-chip cache fills up, any addi-
tional items loaded into the cache first require that something be discarded.

Registers

On-chip cache

Off-chip cache

DRAM (main memory)

Virtual memory (swap
space on hard disk)

Hard disk storage (file system)

Removable storage (optical disk, flash drive, tape)

fIGure 2.7 Memory hierarchy.

computer organization and Hardware ◾ 37

As you move up the hierarchy, the space restrictions are greater and so discarding happens
more often. Selecting wisely results in items being in the cache when the CPU needs them.
Selecting poorly causes poorer performance. We refer to the efficiency of cache by the hit rate
(how often what we want is found in the cache). Surprisingly, even for small on-chip caches,
hit rates can be as high as 98% to 99%. As you move down the hierarchy, hit rates improve.
Variations of the hierarchy have been tried including a third level of cache and including a cache
with the hard disk. These variations, although more expensive, tend to improve performance.

role of InpuT anD ouTpuT
The I/O subsystem consists of input and output devices (including storage devices), a bus
to connect the devices together and to the system bus, and interface devices such as expan-
sion cards and ports. Strictly speaking, a computer does not need input or output devices
to function. The computer program is stored in memory along with program data, and
results are stored back into memory. However, without input and output devices, we are
unable to interact with the computer. We cannot tell the computer what we want done, nor
can we view the results.

The earliest forms of input and output were restricted to magnetic tape, punch cards,
and computer printout. There was no direct interaction; instead, the user would prepare
both the program code and data using a teletype device, whose results would appear on
punch cards (one card per instruction or datum). The stack of punch cards would be input
through a punch card reader and stored on magnetic tape. The tape would be mounted, the
program and data input and executed, and the output stored back to magnetic tape. The
tape would be removed and mounted onto a printer, which would print the output. This
was not a very satisfying way to use a computer!

Today, of course, there are a great number of devices available to make the computer
accessible in any number of situations. The key word behind I/O today is ease of use. We
refer to the design philosophy of this interaction as human–computer interaction (HCI). In
HCI, we view computer usage as human-centric rather than machine-centric. Table 2.1 lists
some of the more common I/O devices in use today and the primary reason for their use.
Storage devices are omitted from the table but would include internal and external hard
disk, optical disk, flash memory, magnetic tape, and network storage devices. Network
storage is commonly hard disk, accessible over a network.

In HCI, the emphasis is on promoting more natural ways of communicating with a
computer. This area of study, which brings in branches of computer science, psychology,
design, and health, among others, provides guidelines for more accessible computer usage.
For instance, Braille output devices are available for users with visual impairments. Larger
monitors and operating systems that can easily change screen resolution (the size of the
objects on the screen) can also aid those with visual impairments. Microphones are often
used by people who cannot use a keyboard and/or mouse.

HCI also focuses on devices that will reduce the strain placed on the human body
through excessive computer interaction. Ergonomics is the study of designing systems and
objects to better fit human usage. For computers, these include improved keyboards that
put less strain on the human wrist, better pointing devices such as an improved mouse or a

38 ◾ Information Technology

touch point, as well as improved furniture. Both keyboard and mouse usage have led many
people to developing carpal tunnel syndrome, one of the many forms of repetitive stress
injuries. A repetitive stress injury arises from doing similar actions over and over in such
a way that it causes wear and tear on the body. For instance, using a keyboard incorrectly
can strain the muscles in the wrist, leading to carpal tunnel syndrome. Poor posture when
sitting in front of a computer for hours at a time can lead to other forms of stress.

The Rehabilitation Act of 1973, which authorizes grants to states that promote services
for citizens with severe handicaps, has been amended (section 508) to promote accessibility
in all forms of IT. The standards set forth in section 508 include guidelines for IT products
including websites, software, operating systems, and hardware. For instance, all desktop
and laptop computers are now required to come with expansion slots that support the vari-
ous HCI devices (e.g., microphone, trackball). Operating systems are required to permit
change in screen resolution to accommodate visual impairments. Government-supported
websites are required to be easily traversable, for instance, by permitting the use of the tab
key (or other hot keys) rather than the mouse to move from one area to another.

Aside from the Rehabilitation Act section 508, there are many other accessibility guide-
lines. These include the national instructional materials accessibility standards, promoted
by the American Foundation for the Blind, UDL Guidelines 2.0 from the National Center
on Universal Design for Learning, and the Web Content Accessibility Guidelines as rec-
ommended by the World Wide Web Consortium. Each of these focuses on different tech-
nologies, but they all promote the ideology that accessibility is important. Through HCI,
information technology has become more usable to a greater population.

TaBle 2.1 Input and Output Devices

Bar code reader Input packaging information, used primarily in stores
Camera Input video image (still or moving)
Goggles Output video image, used primarily in virtual reality
Joystick Input motion/pointing information, used primarily for computer games
Keyboard Input text information, primary means of input for most users
Microphone Input voice information, used in cases where either the user is unable to use hands or has

a large amount of information to input; sometimes inaccurate
Monitor Primary output device
Mouse Input user interactions with GUI windowing system
MIDI device Input of musical instrument data
Pen tablet Input written information when keyboard is undesirable; sometimes inaccurate
Printer Output text and/or images to paper
Scanner Input text and/or images from paper
Speakers Output music and sound
Touch pad/point Alternate pointing input device when mouse is not desired (because of portability issues

or health issues)
Touch screen Alternate pointing input device when mouse and touch pad/point is not desired, primary

input device for handheld devices
Trackball Alternate pointing input device when mouse is not desired (because of portability issues

or health issues), sometimes used for computer games

computer organization and Hardware ◾ 39

Although both accessibility and reduced injury are important goals of HCI, studies
today primarily explore how to put the human at the center of the computer’s interaction.
From a data perspective, how can we improve human ability to input into the computer?
For instance, would a microphone coupled with speech recognition technology allow a
human to input more accurately and quickly than a keyboard? For the processed informa-
tion (output), is the monitor the best output device? Would 3-D goggles provide a more
precise way of conveying information?

Issues in HCI include not only improved devices, but improvements to existing devices.
Two examples are to provide higher resolution displays to make output more legible and
to provide redundancy in output to ensure that the output signals are understood. Other
concepts include matching mental models of the human mind, providing related informa-
tion in close proximity to other related information, using visual output rather than text to
better match human memory capabilities, and so forth.

One last issue with HCI is permitting the human to move away from the stationary
computer and take computing with him or her. This concept, sometimes referred to as
ubiquitous computing, is now available through the use of handheld devices. However,
small screens do not seem to support the concepts listed above. Therefore, new I/O devices
are being developed that allow us to take our computing with us. These devices combine
wireless and cell phone-based technologies with some of the more advanced input and out-
put devices such as goggles for displays, microphones for input, and headphones for audio
output. Sometimes referred to as wearables, these devices will probably become common-
place over the next 5 to 10 years.

As an example of what a wearable could do, imagine that you are riding the bus. The
bus provides wireless Internet access. Your wearable devices connect to your home com-
puter through the wireless, so all processing and storage is on your home computer. Your
goggles are presenting to you visual information such as text-based news or a video. Your
headphones not only serve to provide you audio output, but also attempt to block sounds
coming from the outside world. Your microphone allows you to speak to your computer
to control what you are doing. Finally, the goggles are not entirely opaque, they are semi-
transparent so that you can also see the outside world as necessary (for instance, so that
you can see when you arrive at your bus stop). But the goggles do more than just present
an image from your computer. Your computer has been programmed to block unwanted
images. And so, as you walk off the bus, you do not see the advertisements displayed on
the side of the bus, instead those images are replaced with blank spots or images that you
find appealing. Does this sound farfetched? Perhaps it is today, but it will not be as HCI
continues to improve.

Aside from wearables, there are a number of other forms of emerging technology worth
mentioning. Touch screens are obviously a large part of our lives today as they are a part
of all smart phones and tablet devices. Touch screens are both input and output devices
as they are displays that have sensors to note locations where a person is making contact
with the screen. Touch screens have existed since the late 1960s, but were too prohibitively
expensive to use in computing devices. However, today, touch screens are used not only
for handheld device interfaces, but for computer games, kiosks, and medical devices, and

40 ◾ Information Technology

may soon also be found as a standard interface for desktop and laptop computers. Today’s
touch screens do not require a pen-based (stylus) interface and are capable of responding
to multiple touches at the same time.

Virtual reality (VR) is a technology still in its infancy even though it has been around
since the late 1980s. In VR, the computer creates an illusionary world and through various
types of input and output devices, the human is deposited in that world. The human inter-
acts with the virtual world based on the motion and orientation of the head, via a headset
with a motion sensor, and data gloves. The user sees and hears the virtual world through
goggles and headphones (Figure 2.8). In addition, a full body suit can provide the user with
other forms of sensation.

With VR, a human can be immersed in a location that normally the human could not
reach, such as walking on Mars or walking into an active volcano, or swimming deep in
the ocean. Practical uses of VR include exploration, design and analysis (imagine inspect-
ing an aircraft that only exists in the design stage), education, and entertainment. However,
in spite of the potential that VR offers, it is not commonplace because there are many
obstacles to overcome. Primarily, the limitations in I/O devices to portray a realistic illu-
sion leave a lot to be desired. Additionally, VR requires an excessive amount of computa-
tion to properly model and present an illusionary world. Thus, VR is still fairly expensive
with data gloves and headsets costing between $500 and $5000 each.

fIGure 2.8 Virtual reality headset and data glove in use. (Courtesy of NASA, http://gimp-savvy
.com/cgi-bin/img.cgi?ailsxmzVhD8OjEo694.)

computer organization and Hardware ◾ 41

One last form of emerging I/O technology worth noting is the sensor network. Sensors
are devices that can sense some aspect of the environment such as temperature, water pres-
sure, or sound vibration. Most devices that contain sensors usually have limited sensors,
positioned in specific locations on the device. A sensor network is a distributed collection
of sensors so that the device is able to obtain a more realistic “view” of the environment.
Today, sensors are cheap enough that sensor networks are becoming more commonplace.
We combine sensors with wireless communication to create a wireless sensor network, con-
sisting of as many as a few thousand individual sensors, each of which can communicate
with each other and a base computer to process the sense data. Sensor networks are found
in a variety of consumer devices, vehicles, health monitoring devices, and military hard-
ware. An entire sensor network may cost as little as a few hundred dollars. Applications for
sensor networks include surveillance, monitoring atmospheric conditions (weather, green-
house gases, air pollution), health monitoring, seismic activity, and exploration.

To wrap up this discussion of I/O devices, we also need to address two other technolo-
gies that have improved users’ abilities to connect the devices to their computers. These
are plug-and-play and USB. The idea behind plug-and-play is that you are able to connect a
new device to your computer at any time and that the device, once recognized by the oper-
ating system, is ready for use. Before plug-and-play, you would have to reboot your com-
puter once you connected the new device so that the device could be recognized during the
boot process. Plug-and-play was first pioneered for the Windows 95 operating system but
has since become standard in most operating systems.

The most common (although not only) means of attaching a new I/O device to your
computer is through the USB port. USB stands for Universal Serial Bus, a standard inter-
face for computers since the 1990s. The USB standard defines the connectivity, which dic-
tates the type of cable used, the method of communication between device and computer,
and the power supply that will exist between the computer and device. Today, most devices
can be attached via USB including keyboards, pointing devices, printers, external disk
drives, smart phones, and other handheld devices. USB drives, or flash memory, give a user
a decent amount of external storage (1–8 GB) that is portable. The USB port has replaced
serial and parallel ports used by such devices. In addition, the USB port can supply power
to the device.

compuTer HarDware anD compuTer aSSemBlY (InSTallaTIon)
In this section, we examine the more common computer components and examine a basic
assembly (installation) for windows-based desktop computers.

cpu

The central processing unit, or processor, is stored on a single chip, known as the micro-
processor. The CPU has a number of small pins on one side of it. It is best to never touch
these pins—bending them will most likely ruin the CPU. You insert the CPU into a special
socket on the motherboard. You might notice that one corner of the CPU has a triangle on
it. This will help you position the CPU correctly when you insert it into its socket.

42 ◾ Information Technology

(Adapted from Gyga, http://commons.wikimedia
.org/wiki/File:Sockel7-cpus.JPG.)

memory

Most computer memory is stored in RAM. We usually refer to this as memory or main
memory, although there are other types of memory in the computer (ROM, cache). Memory
chips today come already placed on a circuit board. You slip the circuit board into a special
slot on the motherboard. Again, you will have to position the circuit board correctly into
the slot. If you notice in the figure, there are pins that run along the bottom of this circuit.
One set of pins is longer than the other; this will help you decide the proper orientation in
the memory slot.

(Courtesy of Laszlo Szalai, http://commons.wikimedia.org/wiki/
File:DDR_RAM-3.jpg.)

System unit

This is a case into which you will place several key components of the computer. The most
important component is the motherboard. The motherboard will sit on top of “standoffs”
to elevate it above the surface. It will actually be placed along one side of the system unit,
not on the bottom. Looking at the system unit, you can see many screw holes; some of these
will have the standoffs. Also inserted into the system unit are a power supply, a fan, and
some storage devices such as an optical disk drive and a hard disk drive. There is room for
other devices in the slots along the front of the system unit.

computer organization and Hardware ◾ 43

Screw holes for standoffs

(Courtesy of Norman Rogers, http://commons.wikimedia.org/wiki/
File:Stripped-computer-case.JPG.)

motherboard

The motherboard provides the connections between the CPU, memory, and other compo-
nents. These devices will connect to the motherboard via expansion slots and rear panel
ports. The motherboard is a piece of fiberglass or plastic on which sockets and bus lines
are attached. The sockets include one (or more) socket for the CPU, sockets for DRAM
memory, expansion slots for cards that are interfaces with peripheral devices, connectors
for storage devices, power supply connections, and ports that will stick through the rear
panel of the system unit. ROM memory chips are already attached to the motherboard.

Memory card slots

Disk drive connectors

Screw
Holes

Expansion slots CPU socket Rear panel ports

Power

connector

front panel

power

connectors

(Adapted from Shutterstock/Albo.)

44 ◾ Information Technology

The motherboard has screw holes so that you can attach it to the system unit. As the
system unit will usually stand vertically, the motherboard will actually be positioned verti-
cally as well, so it is important that the motherboard be attached firmly. Additionally, the
standoffs ensure that the motherboard does not physically touch the inner surface of
the system unit. Since electrical current flows across the motherboard, if it were to touch
the metallic inner surface of the system unit, this could short out the current flow resulting
in a lack of current making it to the appropriate chips.

The underside of the motherboard contains “wires”—soldered lines that make up a por-
tion of the system bus. Current flows over these lines. Therefore, it is important that these
lines do not touch anything else that is metal. This is one reason why we will mount the
motherboard on top of “standoffs”. This will elevate the motherboard off of the side of the
system unit. Notice that the underside of the motherboard is rough (bumpy) with little
pieces of hardware and solder sticking out. When you work on the motherboard, it is best
to place it on top of a soft, yielding surface, but also one that will not conduct any electric-
ity. The box that the motherboard came in would be one possibility, and the plastic bag that
contained the motherboard would be another.

Bus wires

(Courtesy of Shutterstock/jakelv7500.)

computer organization and Hardware ◾ 45

Hard Disk Drive

The hard disk is the standard unit of long-term storage. In the earliest days of computers,
magnetic tape was used (reel-to-reel then magnetic tape cassettes and cartridges).

(Courtesy of Hubert Berberich, http://commons
.wikimedia.org/wiki/File:Seagate-ST4702N-03.jpg.)

Today, the hard disk drive stores a great quantity (typical storage sizes are about 1/2 TB to a
full TB). Our computers also contain optical disk drives more to allow our computers to serve
as entertainment consoles (to play music CDs and movie DVDs) than for storage purposes. The
hard disk drive contains several hard disk platters onto which information is stored as magnetic
charges. Read/write heads move in unison over the various disk surfaces. The hard disk drive
also contains the logic and mechanisms to spin the disks and move the read/write head arm.

There are generally two types of drives that we use today: IDE (Integrated Drive
Electronics) and SATA (Serial Advanced Technology Attachment). Shown below are the
back of a SATA drive where you can see two connections, one for the power supply and one
for data. To the right of the drive is a power cable for the SATA drive. Notice how the SATA
connector has an “L-shape” to it, which helps you orient the connector when you plug it in.

(Courtesy of Shutterstock/Matee Nuserm.)

(Adapted from Martixer, http://commons
.wikimedia.org/wiki/File:Molex-to-SATA-
power_009.jpg.)

An example of the back of an IDE drive is shown below. To its right is an IDE data con-
nector. The power connection for the IDE drive consists of four holes to match the four
prongs on the left (as shown here, the drive is upside down so in fact the four prongs would
be on the right) of the drive.

46 ◾ Information Technology

(Adapted from Zzubnik, http://commons
.wikimedia.org/wiki/File:Hard-drive.jpg.)

(Courtesy of Jonas Bergsten, http://commons
.wikimedia.org/wiki/File:Ata_20070127_001
.jpg.)

In addition to the motherboard and drive units, you will also insert a power supply unit
into the system unit. The power supply unit connects to a number of cables. These cables
are connected to the motherboard to power the motherboard, CPU, the display panel (on
the front of the system unit), the fan, and the drives. This figure shows the cables all bun-
dled together. You will have to be careful as you connect the various power cables to their
locations on the motherboard or drives as these cables can be awkward to connect cor-
rectly such that they do not get in your way as you continue with the assembly process.

Buying a ComPuter

So you want to buy a computer. what are your choices? Before answering this question, you must
first decide what you will use the computer for. This will help you classify which type you might need:

•	 Server
•	 Desktop
•	 laptop
•	 notebook

once you have selected the type of computer, you have other choices. If you are looking
at anything other than a server, your choices basically boil down to

•	 macintosh
•	 pc running windows
•	 pc running linux
•	 other (this is primarily a choice for notebook and server)

and now within these choices, you must select

•	 processor type (speed, cache size, 32-bit or 64-bit)
•	 Amount of main memory (DRAM)
•	 Size of hard disk
•	 Optical drive?
•	 Monitor size
•	 MODEM speed (or network card)
•	 other peripheral devices

Your choices here are predicated on the use of the computer, the software requirements of
software you intend to use, and the amount of money you are willing to spend.

computer organization and Hardware ◾ 47

(Courtesy of Winhistory, http://commons
.wikimedia.org/wiki/File:At-netzteil.jpg.)

You might wonder, what about the connectors for the keyboard, mouse, and display?
These connections are already part of the motherboard. You will remove a panel from the
back of the system unit so that the various connectors (ports) are accessible from outside.

Now that you have seen the various components, let us look at how they go together. The first
thing you should do is identify all of the components. These will include the motherboard, CPU,
memory circuit boards (chips), power supply, hard disk drive, optical disk drive, screws and stand-
offs, a grounding strap, and tools. Although you do not have to wear the grounding strap yet, be
aware that it is very important that you put it on before touching any of the electronics (mother-
board, chips). To further protect the hardware, do not work on carpeting and wear lose clothes
that will not retain a static charge. A static charge could damage any of the chips, most especially
the CPU. In addition, keep the work area clean of clutter and debris. Do not plug in the power
supply yet, and always plug the power supply in to a power strip, not directly into a wall socket

(Courtesy of http://www.freeimagespot.com/
Countries/grounding-strap.html, author unknown.)

After identifying and organizing your components, the first step is to mount the power
supply into the power supply bay of the system unit. You will need to remove the side panel
off of the system unit. Place the power supply in its proper place and screw it in. You will
also need to remove the rear port panel. This should snap right out.

Next, you will insert the DVD and hard drive. You will have to remove the front “bezel” off of
the system unit in the location of where you want to insert the DVD drive (you do not need to do
this for the hard disk since the hard disk drive’s surface will not need to be visible, but the DVD

48 ◾ Information Technology

drive needs to open). Depending on the type of system unit shell you have, you will either have
to attach plastic rails onto the drives to slide them into their slots, or slide the drives in and attach
them using the slot “arms”. Once your drives are in place, do not yet connect any cables to them.
The cables would interfere with other work, so it is best to save the connections until the last steps.

Install drive rails
to the side of
the hard disk

Slide hard disk into empty drive bay
in system init sliding drive rails appropriately

Now, you will begin to assemble the components on the motherboard. For this, you
need to wear a grounding strap. You should attach the lose end of the grounding strap to
something metal, preferably the metal “cage” of the system unit. Using the motherboard,
determine where the standoffs are needed in the system unit. Do not affix the motherboard
yet, but screw in the standoffs in their proper position (again, using the motherboard to
determine where—you will need to look for the screw holes in the motherboard and match
then to screw holes in the side of the system unit).

The first component to insert onto the motherboard is the CPU. Make sure you have the
CPU aligned properly (look for the arrow), lift the locking lever bar, flip up the CPU socket
lid, slip the CPU into its socket, lower the lid, and then lock the lever into place.

(Courtesy of Vdblquote, http://commons
.wikimedia.org/wiki/File:Intel_80486DX4_
Pins_and_socket_3.jpeg.)

computer organization and Hardware ◾ 49

Next, you will affix the CPU’s cooling unit. First, you need to place a dab of heat trans-
fer paste onto the outer surface of the CPU. The amount you place onto the CPU is small,
about the size of a small pea. Next, orient the cooling unit so that its four connectors (pegs)
are positioned over the four holes surrounding the CPU socket. Make sure that the unit is
oriented so that the power cord can easily fit into the power socket on the motherboard.
Once it is positioned correctly, push down on each of the four pins one at a time. Once all
four pins have been pushed through the motherboard, lift up the motherboard to confirm
this. Then, turn each of the pins as indicated on the surface to lock the pins in place.

Dab of heat transfer paste

(Courtesy of Shutterstock/Bretislav Horak.)

Next, take a memory circuit board and insert it into one of the memory slots. Make sure that
the board is aligned properly by looking for the gap in the pins and match it to the gap in the
slot. Make sure the tabs along the side of the slots are “open”. Slide the circuit board onto the
opening and then using your thumbs only, press down until you see the tabs close automati-
cally. You would repeat this step for each memory circuit that you wish to add to your computer.

(Courtesy of Shutterstock/Jultud.)

50 ◾ Information Technology

With these units in place, you can now screw the motherboard into place on the stand-
offs inserted earlier. To finish off the installation, you will now need to make all of the con-
nections between the power supply unit, drives, fan, and motherboard. First, find the cable
that has four 2-pin connectors (note: depending on the power supply unit, this might be
a single eight-pin connector). The attachments will be shown on the motherboard instal-
lation document. For instance, the drawing below indicates the connections to power the
disk drive LED, the reset (reboot) button, the power LED, and the on/off switch. Failure to
connect the connectors to the proper pins will result in these components not functioning.
In the diagram below, pins 1/3 are used for the hard disk drive LED. Pins 2/4 power the on/
off LED. Pins 5/7 are used for the reboot button. Pins 6/8 are used for the on/off button’s
light. Finally, pin 9 does nothing.

HD
LED

Power1 2

3 4 LED

On/
OffReset

No
Connection

5 6

7 8

9

+ +
- -

Next, connect your drives. You will probably have two drives to connect, an optical
drive and a hard disk drive. Chances are, the hard disk is an IDE as IDE drives are more
common in PC-style computers. The optical drive may be either SATA or IDE. Identify
the type to determine which plugs to use. First, insert the drives into available bays in the
system unit. You will probably want to insert the optical drive on top. This is because the
optical drive will interface with the outside world so it is more common to have it appear
near the top of the system unit. You will have to remove the cover over that bay so that the
optical drive is accessible from outside. Different system units will have different types of
bays. Commonly though, all you need to do is slide the drive into the bay and then turn the
key on the side of the bay.

Once both (or all) drives are in their bays, you must connect them to the motherboard
and the power supply unit. Find the appropriate power cable to attach to the power sup-
ply and the appropriate data cable to connect to the motherboard. The last connection is
to plug the fan power cable into the power supply cable and to connect this to the moth-
erboard. At this point, you can plug in the power supply unit to both the computer and
the surge protector. Make sure the surge protector is plugged into an electrical outlet and
turned on. Now you can boot your computer!

If the computer successfully boots, it will boot to the ROM BIOS but because there is
no operating system on your hard disk, it will not reach windows. If you have successfully
assembled your computer, insert a Windows installation CD into the optical drive, shut
down the computer, and reboot. Once the computer has booted to ROM BIOS, you can go
through the Windows installation (this is briefly covered in Chapter 4). Congratulations!

computer organization and Hardware ◾ 51

furTHer reaDInG
Computer science and computer engineering programs typically require a course on com-
puter organization and architecture. Texts for such courses go well beyond the introduc-
tory level presented in this chapter. Among the topics covered in such classes are Boolean
algebra and circuit design, binary representations and arithmetic (which we introduce in
Chapter 3), CPU implementation details and performance, cache and DRAM technolo-
gies, and the I/O system. The seminal texts are the following:

•	 Patterson, D. and Hennessy, J. Computer Organization and Design: The Hardware/
Software Interface. San Francisco: Morgan Kaufmann, 1998.

•	 Hennesey, J. and Patterson, D. Computer Architecture: A Quantitative Approach. San
Francisco: Morgan Kaufmann, 2012.

The first text is primarily targeted at juniors in college, whereas the latter is aimed at
seniors and graduate students. Both of these texts are challenging even for the brightest
computer science majors. Other computer organization and architecture textbooks include
the following, the third of which might be one of the more accessible books particularly
for non-majors:

•	 Clements, A. The Principles of Computer Hardware. New York: Oxford, 2000.

•	 Hamacher, C., Vranesci, Z., Zaky, S., and Manjikian, N. Computer Organization and
Embedded Systems. New York: McGraw Hill, 2012.

•	 Null, L. and Lobur, J. The Essentials of Computer Organization and Architecture.
Sudbury, MA: Jones and Bartlett, 2012.

•	 Stallings, W. Computer Organization and Architecture: Designing for Performance.
Upper Saddle River, NJ: Prentice Hall, 2003.

•	 Tanenbaum, A. Structured Computer Organization. Upper Saddle River, NJ: Prentice
Hall, 1999.

You can find a nice demonstration on the fetch–execute cycle at http://www.eastaughs
.fsnet.co.uk/cpu/execution-fetch.htm. Additionally, the website http://courses.cs.vt.edu/
csonline/MachineArchitecture/Lessons/CPU/Lesson.html provides a nice diagram of the
most important parts of a CPU along with a description of how they are used during the
fetch–execute cycle.

One of the best sources for comparing CPU performance on benchmarks is the website
www.cpubenchmark.net. You can also find useful pricing comparisons of computers and
computer hardware at www.pricewatch.com.

Texts covering just the memory hierarchy tend to cover design and algorithms for effi-
cient memory usage or leading-edge technology with DRAM and SRAM. The following

52 ◾ Information Technology

text though will shed more light on the role of the components that make up the memory
system:

•	 Jacob, B. and Wang, D. Memory Systems: Cache, DRAM, Disk. San Francisco: Morgan
Kaufmann, 2007.

There are a number of texts dealing with input, output, HCI, and related topics, some of
which are listed here.

•	 Dargie, W. and Poellabauer, C. Fundamentals of Wireless Sensor Networks: Theory
and Practice. Hoboken, NJ: Wiley, 2010.

•	 Dix, A., Finlay, J., Abowd, G., and Beale, R. Human–Computer Interaction. Englewood
Cliffs, NJ: Prentice Hall, 2003.

•	 Heim, S. The Resonant Interface: HCI Foundations for Interaction Design. Reading,
MA: Addison Wesley, 2007.

•	 Kortum, P. HCI Beyond the GUI: Design for Haptic, Speech, Olfactory and Other
Nontraditional Interfaces. San Francisco: Morgan Kaufmann, 2008.

•	 Lumsden, J. Human–Computer Interaction and Innovation in Handheld, Mobile and
Wearable Technologies. Hershey, PA: IGI Global, 2011.

•	 McCann, J. and Bryson, D. (editors). Smart Clothes and Wearable Technology.
Cambridge: Woodhead Publishing, 2009.

•	 Salvendy, G. (editor). Handbook of Human Factors and Ergonomics. Hoboken, NJ:
Wiley, 2006.

•	 Sherman, W. and Craig, A. Understanding Virtual Reality: Interface, Application and
Design. San Francisco: Morgan Kaufmann, 2002.

The following government-run website details section 508 of the Rehabilitation Act of
1973, describing accessibility standards: http://www.section508.gov/index.cfm.

This chapter also provided a brief introduction to personal computer components and
assembly. There are numerous books on the topic such as

•	 Chambers, M. Build Your Own PC Do-It-Yourself for Dummies. Hoboken, NJ: Wiley, 2009.

•	 Heaton, J. Build a Computer From Scratch. St. Louis, MO: Heaton Research, Inc.,
2006.

•	 Majlak, D. Building Your Own Computer. No Frills, No Filler, Just Answers (a Kindle
book). Seattle, WA: Amazon Digital Services, 2011.

•	 Mueller, S. Upgrading and Repairing PCs. Indiana, IN: Que, 2011.

•	 Thompson, B. and Thompson, B. Building the Perfect PC. Massachusetts: O’Reilly, 2010.

computer organization and Hardware ◾ 53

Although we briefly introduced programming, we will cover that topic in greater detail
later in the text.

revIew TermS
Terminology used in this chapter:

Accessibility Input

Accumulator (AC) Instruction register (IR)

Assembly program IPOS cycle

Address bus Load

ALU Megaflops

Bit Memory

Bus Memory chips

Byte Memory hierarchy

Compiler MIPS

Control bus Mother board

Control unit Off-chip cache

CPU On-chip cache

CPU cooling unit Output

Data bus Power supply

Decode Processing

DRAM Processor (CPU)

Ergonomics Program counter (PC)

Fan Read

Fetch–execute cycle Register

GHz SATA drive

Grounding strap Sensor network

Hard disk drive SRAM

HCI Standoffs

Hit rate Status flags (SF)

IDE drive Storage

54 ◾ Information Technology

Store Virtual reality

Swap space Wearable

System unit Word

Virtual memory Write

Review Questions

 1. What happens during the fetch stage of the fetch–execute cycle?

 2. What happens during the decode stage of the fetch–execute cycle?

 3. What happens during the execute stage of the fetch–execute cycle?

 4. What is a load?

 5. What is a store?

 6. What is an operand?

 7. What is the ALU? What are some of the circuits in the ALU?

 8. What does the control unit do?

 9. What does the PC store?

 10. What does the IR store?

 11. What does the AC store?

 12. Is the AC the only data register?

 13. What is moved over the data bus?

 14. What is moved over the address bus?

 15. What is moved over the control bus?

 16. Why does a processor’s GHz rating not necessarily tell you how fast it is?

 17. What is MIPS and how does it differ from GHz?

 18. What is Megaflops and how does it differ from MIPS?

 19. What is a benchmark?

 20. What is the memory hierarchy?

 21. Which form of memory is faster, DRAM or SRAM?

 22. Why are there both on-chip and off-chip caches?

computer organization and Hardware ◾ 55

 23. What happens if the CPU looks for something at one level of the memory hierarchy
and does not find it?

 24. Where is virtual memory stored?

 25. What were the forms of input and output found in early computers?

 26. What is HCI? What does it study?

 27. What is a repetitive stress injury?

 28. What types of input and output devices could you use as wearable technology?

 29. What are some of the applications for virtual reality?

 30. Why is it important to wear a grounding strap?

 31. What might happen if you discharge static while working with the motherboard?

 32. Why should you install the CPU onto the motherboard before installing the mother-
board into the system unit?

 33. What does the CPU cooling unit do? Why is it necessary?

 34. When installing a storage drive, how does the SATA data connector differ from the
IDE data connector?

Discussion Questions

 1. How important is it for an IT person to understand the functions of individual com-
puter components such as the role of the CPU and memory? How important is it for
an IT person to understand concepts such as cache memory, pipelining processors,
the use of the bus, the fetch–execute cycle, and the use of registers? How important
is it for an IT person to understand the differences between SRAM, DRAM, and
ROM?

 2. As an IT person, do you ever expect to program in assembly language? If so, provide
some examples and if not, explain why not.

 3. Which is more significant in IT education, understanding the function of the hard-
ware of the computer or understanding how to assemble (build) a computer? Explain.

 4. Most people believe that the processor’s clock speed is the most important factor in a
processor’s performance. Discuss all of the factors that can impact the performance
of a processor. Rank your factors in the order that you feel will have the most signifi-
cant impact on performance. Where did the clock speed rank?

 5. In HCI, why do they need to study human psychology to design improved I/O
devices?

56 ◾ Information Technology

 6. For the input and output devices listed in Table 2.1, which ones could cause repetitive
stress injuries? Which ones might you identify as replacements to prevent repetitive
stress injuries?

 7. Provide a list of five ways that you might use virtual reality in your day-to-day life.

 8. You work for a large organization. Your employer asks you to put together the speci-
fications for new desktop computers for the employees. As these are work computers,
there will not be a high demand on multimedia performance, but instead there is
a desire for ease of use, efficient communications, and large storage. Put together a
specification in terms of what you would look for, including platform (e.g., Windows,
Mac, Linux), processor type and speed, amount of cache, memory, word size, and
secondary storage. What other factors will impact your decision?

 9. Imagine that you are assembling your own computer as described in “Computer
Hardware and Computer Assembly (Installation)”. You have completed the assembly,
plugged in the computer and turned on the power switch. Nothing happens. What
are some of the possible problems that might have occurred during assembly that will
prevent the computer from booting?

57

C h a p t e r 3

Binary Numbering System

In Chapter 2, we saw that the digital computer operates by moving electrical current
through its component parts. We must then find a way to convert information into a
binary representation. We may then examine how to compute using binary. In this chap-
ter, we study the binary numbering system. The chapter covers conversion methods from
binary to decimal and decimal to binary for unsigned (positive) integers, negative integers,
fractional, and floating point numbers. The chapter also introduces the octal and hexa-
decimal numbering systems. Character representations are discussed. The chapter then
turns to binary (Boolean) operations and how to compute with them. Finally, the chapter
introduces three example uses of binary: network addressing, image files, and parity for
error detection and correction.

The learning objectives of this chapter are to

•	 Provide methods for numeric conversion between bases: decimal, binary, octal, and
hexadecimal, for positive and negative integers and floating point numbers.

•	 Describe how characters are stored in computer memory.

•	 Demonstrate the application of binary (Boolean) operations of AND, OR, NOT, and
XOR on binary numbers.

•	 Illustrate the use of binary in a computer with a focus on IP addresses, image file
storage, and parity bits.

The computer processes and stores information in binary form. So we need to under-
stand what binary is, how to represent information in binary, and how to apply binary
(Boolean) operators. This chapter looks at the binary numbering system and a couple of
related numbering systems. Although it is critical that a computer scientist understand
binary, in information technology (IT) you will find that binary comes up occasionally and
so is worth understanding.

58 ◾ Information Technology

NumberINg SySTemS
A numbering system (also known as a numeral system) is a writing system for expressing
numbers. In mathematics, there are an infinite number of numbering systems although
we tend to largely focus on only two, decimal and binary. Table 3.1 presents the commonly
used and historically used numbering systems.

Formally, we will define a numbering system as base k (k being a positive integer), where

•	 Any number in this base will contain digits from 0 to k – 1.

•	 The interpretation of a digit is its value * power.

•	 The power is based on the column, or position, where power = basecolumn, and where
column is counted from the right to the left with the rightmost column being column 0.

For example, decimal is base 10. This means we can use digits 0 through 9. The power
will be 10column. If our number is 130, this represents the value 1 * 102 + 3 * 101 + 0 * 100, or
1 in the hundreds column, 3 in the tens column, and 0 in the ones column.

Unary, base 1, is an odd base for two reasons. First, following the definition above, base 1
means that our only digits are 0, but this would mean that all of our possible numbers, say
0000, 0000000000, 0, will all be 0 because the value in the formula value * power is always
0. For this reason, in unary, we will use the digit 1 instead of 0. Second, notice that all of the
powers will be 1 (10 = 1, 11 = 1, 12 = 1, 13 = 1). The result is that the number being represented
is merely the sum of the number of digits. So, for instance, in unary, 111 is the representa-
tion for the value 3, and 111111111 is the representation for the value 9.

Let us consider base 5. For this base, we use only digits 0 to 4 and the “columns” of any
number represent from right to left the one’s column, the five’s column, the twenty-five’s
column (52), the hundred twenty-five’s column (53), the six hundred twenty-five’s column
(54), and so forth. The number 1234 in base 5 is the value 1 * 125 + 2 * 25 + 3 * 5 + 4 * 1 =
194 in decimal.

TAbLe 3.1 Common Numbering Systems

Base Name Reason Used/Popularity
1 Unary Used in theoretical computer science when dealing with Turing machines, not very

common
2 Binary Digital computers use binary and therefore is studied in computer-related disciplines
8 Octal Groups of three binary digits create an octal digit, used in computer-related

disciplines to make binary more readable
10 Decimal Primary human numbering system
16 Hexadecimal Groups of four binary digits create a hexadecimal digit, used in computer-related

disciplines to make binary more readable, easier to read than octal (requires fewer
digits) but is more complex because of the inclusion of digits A–F

20 Vigesimal Used by the Pre-Columbian Mayan civilization; dots and lines represented digits, 0–4
are denoted by 0 to 4 dots, 5–9 are denoted by 0 to 4 dots with an underline, 10–14
are denoted by 0 to 4 dots with 2 underlines, 15–19 are denoted by 0 to 4 dots with 3
underlines; not used outside of the Mayan civilization

60 Cuneiform Used by the ancient Babylonian civilization

binary Numbering System ◾ 59

Given any number anan–1…a1a0 in some base b, the number is interpreted using the

following summation (*)a bj
i

i

n

=∑ 0
. That is, we take the rightmost digit and multiply it

by b0 and add it to the next rightmost digit and multiply it by b1 and add it to the next
rightmost digit and multiply it by b2, …, and add it to the second to leftmost digit (in
column n – 1), then multiply it by bn–1 and add it to the leftmost digit (in column n) and
multiply it by bn.

Notice that the rightmost column’s power will always be 1 no matter what base. Why
is this? The rightmost column will always have a power of basecolumn where column is 0, or
base0. In mathematics, any positive integer (1 or greater) raised to the 0th power is always 1.

Since there are an infinite number of numbering systems (any positive k is a legal base),
we need to be able to denote what base a number is in. We do this by placing the base as a
subscript at the end of the number. So 12345 is 1234 in base 5, which as we saw above is the
same as 19410. For convenience sake, we are allowed to omit the base if we are dealing with
base 10 (decimal) because that is the default base, so we would say 12345 = 194.

Let us consider a base larger than 10, say base 12. We might have the number 24612. This
number is actually 2 * 122 + 4 * 12 + 6 * 1 = 342. But recall that in any base k, we are permit-
ted to use digits 0..k – 1. For base 12, this would be any digits 0–11. Now, we have a problem,
because 10 and 11 are not single digits. If I were to write the number 1112, it would look
like I meant 1 in the twelve’s column and 1 in the one’s column instead of 11 in the one’s
column. This would lead us to have confusion, is 1112 = 13 (a two digit number) or 1112 = 11
(a one-digit number)? So we need to find an alternative way to represent the digits in a base
larger than 10. Luckily for us, we tend to only use one base larger than 10, base 16, also
known as hexadecimal. For this base, it was decided that the digits used to represent 10, 11,
12, 13, 14, and 15 would be A, B, C, D, E, and F, respectively. Thus, the value 3AB216 means
3 in the 163 column, A (or 10) in the 162 column, B (or 11) in the 161 column and 2 in the
one’s column. So what does 3AB216 represent? 3 * 163 + 10 * 162 + 11 * 161 + 2 * 1 = 15,026.

bINAry NumberINg SySTem
Why is all this important? It would not be if our computers used base 10 (decimal), but
computers store all information, transmit all information, and process all information in
binary instead of decimal. And although as an IT specialist, you may never have to worry
about looking at or expressing data in binary, the use of non-decimal numbering systems
does come up from time to time. The most common occurrence of a non-decimal num-
bering system is that of network communication. IP addresses are sometimes denoted
in binary, and IPv6 addresses are denoted in hexadecimal. Octal is also used for various
computer applications, but that is happening far less often. In this section, we look first at
binary and then octal and hexadecimal.

Binary is probably the most important numbering system outside of decimal. Because
of the digital nature of computers (i.e., everything is stored in one of two ways, current
or no current), everything has to be represented as ons and offs. So we use binary, where
1 means on and 0 means off. This means that everything the computer stores will have to
first be converted into 1s and 0s. We will call a single 1 or 0 value a bit (for binary digit).

60 ◾ Information Technology

Data movement requires one wire for every bit so that the transmission of a datum (say of
8 bits) can be done at one time, 1 bit per wire, rather than 1 bit at a time. The digital circuits
in the CPU operate on bits, both registers and memory store bits. As a computer scientist or
computer engineer, you might occasionally have to look at data or program code in binary.
If you were to look at a thousand bits, it would be difficult to focus on it. So instead, we
break up our data into groups. Eight bits are placed together into a unit called a byte. It was
common in earlier computers that a datum would be stored in one byte, possibly two. A
byte, being 8 bits, can store any combination of 8 zeroes and ones, for instance, 11111111,
10101010, 10001000, 00000000, 01111110, and 01011011. There are 256 different combina-
tions of ones and zeroes that can be placed in 8 bits (1 byte). We get that number by simply
computing 28 (multiply two together eight times).

The numeric conversion from binary to decimal can be done using the formula from the
previous page. However, there is an easier way to think about it. Let us take as an example a
byte storing 010101012. According to the formula, we would convert this as 0 * 27 + 1 * 26 +
0 * 25 + 1 * 24 + 0 * 23 + 1 * 22 + 0 * 21 + 1 * 20 = 0 * 128 + 1 * 64 + 0 * 32 + 1 * 16 + 0 * 8 +
1 * 4 + 0 * 2 + 1 * 1 = 85. Notice that every digit in our binary number is either a 0 or a 1,
unlike say the base 5 example in the previous section, which allowed digits 0, 1, 2, 3, and 4.
When converting from binary to decimal, you do not need to worry about multiplying
the digit times the power. Instead, the digit will be a 0, in which case 0 * power = 0 and
can be dropped out of the summation, or the digit is a 1, in which case 1 * power = power.
Therefore, our summation is merely the powers of 2 of the columns that contain a 1. Going
back to the previous example, we really could write 010101012 as 0 + 64 + 0 + 16 + 0 + 4 +
0 + 1 = 85, as shown in Figure 3.1. If we can learn the powers of each column (the powers
of 2), then all we are doing is adding up those column values whose associated digits are 1s.

Table 3.2 shows many of the powers of base 2. You get this by starting at 1 and then dou-
bling the number for each higher power (or each column as you move to the left). Notice
that the powers of 2 raised to units of 10 (10, 20, 30) are all abbreviated for convenience.
210 = 1024 or 1 K or approximately 1000 (if we do not mind rounding off a little). 220 = 1 M
or approximately 1 million (as shown in Table 3.2, the exact value is 1,048,576). 230 = 1 G or
approximately 1 billion. 240 = 1 T or approximately 1 trillion. 250 (not shown in the table) =
1 P for a peta, which is approximately 1 quadrillion.

Let us try to put the powers of 2 in Table 3.2 to use. Given any binary number, just add up
the power of 2 from the chart in Table 3.2 based on the location of the 1s, where the right-
most digit represents the value 20. For instance, 1101 would contain a 23, a 22, but no 21, and a
20, or 23 + 22 + 20 = 8 + 4 + 1 = 13. We will stick with byte-long numbers (8 bits) for simplicity.

27 26 25 24 23 22 21 20

0 1 0 1 0 1 0 1

64 16 4 1 = 85

FIgure 3.1 Sample binary to decimal conversion.

binary Numbering System ◾ 61

11000110: 27 + 26 + 22 + 21 = 128 + 64 + 4 + 2 = 198

10101010: 27 + 25 + 23 + 21 = 128 + 32 + 8 + 2 = 170

01000111: 26 + 22 + 21 + 20 = 64 + 4 + 2 + 1 = 71

00001110: 23 + 22 + 21 = 8 + 4 + 2 = 14

00110011: 25 + 24 + 21 + 20 = 32 + 16 + 2 + 1 = 51

00000000: 0

11111111: 27 + 26 + 25 + 24 + 23 + 22 + 21 + 20 =

 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255

Notice in this last case, we have the largest 8-bit number, which is equal to 28 – 1.
What about converting from decimal to binary? There are two strategies that we can

apply. Below is the traditional strategy, but another—possibly easier—strategy will be
shown next.

Take the decimal value and divide by 2. Take the quotient and divide by 2. Continue
doing this until you are left with 0. Record the remainders of the division (the remainder
when dividing by 2 will either be a 1 or 0). The collection of remainders in reverse order (or
from bottom up) is the binary value. For example, let us try 89:

TAbLe 3.2 Powers of Two

Power of 2 Value
20 1
21 2
22 4
23 8
24 16
25 32
26 64
27 128
28 256
29 512
210 1,024
211 2,048
212 4,096
213 8,192
214 16,384
215 32,768
216 65,536
220 1,048,576
230 1,073,741,824
240 1,099,511,627,776

62 ◾ Information Technology

89/2 = 44 with a remainder of 1

44/2 = 22 with a remainder of 0

22/2 = 11 with a remainder of 0

11/2 = 5 with a remainder of 1

5/2 = 2 with a remainder of 1

2/2 = 1 with a remainder of 0

1/2 = 0 with a remainder of 1

We are done (we have reached 0). The binary equivalent of 89 is 01011001 (the remain-
ders in reverse order, with an added bit in the front to make it an 8-bit number). We can
confirm this by converting this number back to decimal: 01011001 = 64 + 16 + 8 + 1 = 89.

Let us try another one, 251:

251/2 = 125 with a remainder of 1

125/2 = 62 with a remainder of 1

62/2 = 31 with a remainder of 0

31/2 = 15 with a remainder of 1

15/2 = 7 with a remainder of 1

7/2 = 3 with a remainder of 1

3/2 = 1 with a remainder of 1

1/2 = 0 with a remainder of 1

So 251 is 11111011. We convert back to check, 11111011 = 128 + 64 + 32 + 16 + 8 + 2 + 1 = 251.
The division approach is simple although not necessarily intuitive, because you have to

reverse the order of the remainders to form the binary number. Another way to convert
from decimal to binary is to use subtractions. Given a decimal number, identify the largest
power of 2 that can be subtracted from it while still leaving a positive number or 0. Do this
until your decimal number is 0. For each power of 2 that is subtracted into the number,
write a 1 in that corresponding column.

Let us consider as an example the same value we just converted, 251. Referring back to
Table 3.2, the largest power of 2 that can we can subtract from 251 is 128. In subtracting 128
from 251, we have 123. The largest power of 2 that we can subtract from 123 is 64, leaving 59.
The largest power of 2 that we can subtract from 59 is 32 leaving 27. The largest power of 2
we can subtract from 27 is 16 leaving 11. The largest power of 2 we can subtract from 11 is 8,
leaving 3. The largest power of 2 we can subtract from 3 is 2 leaving 1. The largest power of
2 we can subtract from 1 is 1 leaving 0. We are done. Our conversion process went like this:

binary Numbering System ◾ 63

251 – 128 = 123

123 – 64 = 59

59 – 32 = 27

27 – 16 = 11

11 – 8 = 3

3 – 2 = 1

1 – 1 = 0

Thus, 251 = 128 + 64 + 32 + 16 + 8 + 2 + 1. So our binary equivalent has 1s in the col-
umns representing 128, 64, 32, 16, 8, 2, and 1 and 0s elsewhere (the only other column
represents 4). This gives us 11111011. We can check our work, as shown in Figure 3.2, which
converts 11111011 back to decimal, 251.

Let us do another example. Convert 140 into binary. The largest power of 2 that we can
subtract into 140 is 128 leaving 12. The largest power of 2 that we can subtract into 12 is 8
leaving 4. The largest power of 2 that we can subtract into 4 is 4 leaving 0.

140 – 128 = 12

12 – 8 = 4

4 – 4 = 0

140 = 128 + 8 + 4. So we have 1s in the columns that represent 128, 8, and 4, 0s elsewhere.
This is the value 10001100, so 140 = 10001100.

So far, we have limited our binary numbers to 8 bits. Recall that with 8 bits, we have 256
different combinations of 1s and 0s. Since 00000000 is 0, the 8 bit (1 byte) range of values is
0 to 255. What if we want to store a larger number? Then we need more bits. For instance,
in 2 bytes (16 bits), we can store any number from 0 to 65535. Recall that 216 = 65536. In
general, if we have n bits, we can store any number from 0 to 2n – 1. Although we will
often use the byte as a convenient amount of storage (instead of 1 or a few bits), limiting
ourselves to 1 byte is too restrictive. Today’s computers typically provide 32 bits (4 bytes)
or 64 bits (8 bytes) for the typical storage size. We refer to the typical storage size as the
computer’s word size.

27 26 25 24 23 22 21 20

1 1 1 1 1 0 1 1

128 64 32 16 8 2 1 = 251

FIgure 3.2 Converting back to check answer.

64 ◾ Information Technology

How big is 32 bits? It gives us this range of values:

00000000000000000000000000000000 = 0

 …

11111111111111111111111111111111 = 4294967296 (nearly 4.3 billion)

For most applications, 32 bits gives us ample space for storage. In 64 bits, the largest
number we can store is more than 18 quadrillion (18 followed by 15 zeroes!) These are huge
numbers. Are 32- or 64-bit word sizes wasteful of memory? It depends on the application.
However, with memory sizes of at least 4 billion bytes and disk storage of at least half a tril-
lion bytes, using 32 or 64 bits to store numbers should not be a cause for concern.

Consider having to look at a series of numbers stored in 32-bit binary values. Because
all of the digits are 1 and 0 and because there are a lot of them, the resulting list becomes
very difficult to look at, almost like looking at an optical illusion. For convenience, we may
translate binary numbers into different representations, commonly octal (base 8) or hexa-
decimal (base 16). Let us try with the following list. Imagine pages and pages of this stuff!

11101100100010110010101100000111

00101100010100101010110110010001

10001011001001001011011100100111

10001000101001111010001110101011

00001001010100000111100010101100

You might notice that 8 and 16 are multiples of 2. This makes translating from base 2
to base 8 or base 16 simple (as compared to translating from base 2 to base 10 or base 10
to base 2). For base 8, take 3 binary bits and group them together and then convert those
3 bits from binary to octal. This works because 23 = 8. Note that because octal uses only
eight digits (0 to 7), converting 3 bits from binary to octal is the same as converting 3 bits
from binary to decimal. Table 3.3 shows you how to convert 3 bits between the two bases.

TAbLe 3.3 Binary to Octal Conversion Table

Binary Octal
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

binary Numbering System ◾ 65

Using the first 32-bit number from the previous page, we will convert it to octal.

11101100100010110010101100000111

First, divide the 32-bit number into 3-bit segments starting from the right end

11 101 100 100 010 110 010 101 100 000 111

Second, since the leftmost segment is not 3 bits, we add leading 0s to make it 3 bits

011 101 100 100 010 110 010 101 100 000 111

Third, using the above table, we convert each group of 3 bits into its equivalent octal
value

3 5 4 4 2 6 2 5 4 0 7

Finally, we combine the individual octal digits into a single value: 35442625407.
Therefore, 111011001000101100101011000001112 = 354426254078.
The other four numbers are converted as follows:

00 101 100 010 100 101 010 110 110 010 001 = 054245266218

10 001 011 001 001 001 011 011 100 100 111 = 213111334478

10 001 000 101 001 111 010 001 110 101 011 = 210517216538

00 001 001 010 100 000 111 100 010 101 100 = 011240742548

The entire list of numbers is then

35442625407

05424526621

21311133447

21051721653

01124074254

There are still a lot of digits to deal with in our octal listing of numbers. We can reduce
the size of the list even more by converting the binary number to hexadecimal. In hexa-
decimal, we will group 4-bit binary numbers and convert them to the equivalent hexa-
decimal digit. Table 3.4 shows the binary, hexadecimal, and decimal equivalents for single
hexadecimal digits (the first numbers 0–15 in decimal). Notice, as discussed earlier, that for
10–15, we use A–F so that we can store these values as single digits.

66 ◾ Information Technology

Let us use the same number as before, 111011001000101100101011000001112, and con-
vert it to hexadecimal. We use the same approach that we did when converting from binary
to octal except that we use groups of 4 bits. Refer to Table 3.4 to see the hexadecimal digits.

1110 1100 1000 1011 0010 1011 0000 0111

 E C 8 B 2 B 0 7

As shown above, 111011001000101100101011000001112 = EC8B2B0716.
The other numbers in our list will be converted as follows:

0010 1100 0101 0010 1010 1101 1001 0001 = 2C52AD9116

1000 1011 0010 0100 1011 0111 0010 0111 = 8B24B72716

1000 1000 1010 0111 1010 0011 1010 1011 = 88A7A3AB16

0000 1001 0101 0000 0111 1000 1010 1100 = 095078AC16

To convert an octal value back into binary, just replace each octal digit with its three-
digit binary equivalent. Make sure you use all 3 digits in binary though. For instance,
7238 = 111 010 0112, not 111 10 112. The value 123456708 = 001 010 011 100 101 110 111 000 =
0010100111001011101110002, and if this was to be stored in 32 bits, we would add leading
zeroes to extend it to 32 bits, giving us:

000000000010100111001011101110002

TAbLe 3.4 Binary and Hexadecimal Conversion

Binary Hexadecimal Decimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

binary Numbering System ◾ 67

To convert a value from hexadecimal to binary, just replace each hex digit with its equiv-
alent 4-bit binary value. For instance 2468BDF016 = 0010 0100 0110 1000 1011 1101 1111
00002 = 001001000110100010111101111100002. The advantage of using octal or hexadeci-
mal over binary is that the numbers are easier to read.

NegATIve NumberS ANd FrAcTIoNS
In Binary Numbering System, we saw how any positive whole number (integer) can be
converted from decimal to binary. All we need is enough bits to store the binary number.
How do we store negative numbers and numbers with a decimal point? We need to use
different representations.

For negative numbers, computers use a representation called two’s complement. A two’s
complement number is identical to the normal binary number if the value is positive. If
the number is negative, we have to perform a conversion. The conversion requires that you
take the positive binary number, flip all of the bits (0s become 1s, 1s become 0s), and add 1.
Binary addition is covered in Binary Operations, but we will apply it to some simple exam-
ples here.

Imagine that we have the number 61, and we want to store it as an 8-bit two’s comple-
ment value. Since it is positive, we use the normal decimal to binary conversion: 61 = 32 +
16 + 8 + 4 + 1 = 00111101, so 61 is 00111101.

What about –61? Since 61 = 00111101, to get –61, flip all of the bits and add 1. Flipping
the bits of 00111101 gives us 11000010 (just make every 0 a 1 and every 1 a 0). Now add 1
to 11000010 and you get 11000011. So –61 = 11000011. Notice that the leading bit is a 1. In
two’s complement, a negative number will always start with a 1 and a positive number will
always start with a 0.

Let us try another one, 15. This will be 8 + 4 + 2 + 1 = 00001111. So –15 requires that we
flip all the bits to get 11110000 and then add 1 to get 11110001. Again, notice that the posi-
tive version starts with a 0 and the negative version starts with a 1.

To convert from binary to decimal, if the number is positive, just convert it as usual. For
instance, 00111101 is positive, so the number will be 32 + 16 + 8 + 4 + 1 = 61, and 00001111
is positive so the number will be 8 + 4 + 2 + 1 = 15.

What about 11000011? This is a negative number. We use the same conversion technique
that we used to convert from decimal to binary: flip all bits and add 1. So 11000011 becomes
00111100 + 1 = 00111101, which is the decimal number 61, so 11000011 must be –61. And
11110001 is negative, so we flip all bits and add 1 giving us 00001110 + 1 = 00001111, which
is the decimal number 15, so 11110001 must be –15.

Now let us try to convert –48 to binary. We again start with +48 = 32 + 16 = 00110000.
Since we want –48, we have to flip all bits and add one. In flipping all bits, we go from
00110000 to 11001111. Now we have to add 1. What is 11001111 + 1? Well, that requires a
little binary arithmetic to solve. It is not that difficult; you just have to perform some car-
ries that would give you 11010000. So –48 is 11010000.

Since binary arithmetic is covered in Binary Operations, for now, we will consider an
alternative approach to converting negative numbers to binary. We again start with a nega-
tive number in decimal. Convert the positive version of the number into binary, as we did

68 ◾ Information Technology

in the previous approach. We must convert the positive binary number into its negative
equivalent in two’s complement. Now you can apply this simpler strategy:

 1. Start at the rightmost digit, working right to left, copy every 0 until you reach the first
1 bit

 2. Copy the first 1 bit

 3. Continue working right to left flipping all remaining bits

For instance, 00110000 would be converted as follows:

 1. Starting from the right, we copy down all of the 0s

 …0000

 2. When we reach the first 1, copy it

 …1 0000

 3. Flip all remaining bits, in this case 001 becomes 110

 110 1 0000

So converting 00110000 from positive to negative gives us 11010000. What if the num-
ber has 1 in the rightmost position? Let us start with the number 11000011 (–61). Step 1 is
not used because there are no 0s; so, instead, we write down the rightmost 1 and then flip
the rest of the bits, giving us 00111101 (+61).

Fractional numbers are both easier and more complex to understand. They are easier to

understand because they are an extension to the formula presented earlier, (*)a bi
i

i

n

=∑ 0
,

except that we extend i to include negative numbers for those that appear on the right side
of the decimal point. You might recall from basic algebra that b–i = 1/bi. So, b–3 is really 1/
b3. In binary, b is always 2, so we have to learn some negative powers of 2. Table 3.5 shows
several negative powers of 2.

TAbLe 3.5 Negative (Fractional) Powers of 2

Exponential Form Value as a Fraction Value as a Real Number
2–1 = 1/21 1/2 0.5
2–2 = 1/22 1/4 0.25
2–3 = 1/23 1/8 0.125
2–4 = 1/24 1/16 0.0625
2–5 = 1/25 1/32 0.03125
2–6 = 1/26 1/64 0.015625
2–7 = 1/27 1/128 0.0078125

binary Numbering System ◾ 69

Let us look at an example. What is the binary number 110111.01? Using our formula
from above, 110111.01 = 1 * 25 + 1 * 24 + 0 * 23 + 1 * 22 + 1 * 21 + 1 * 20 + 0 * 2–1 + 1 * 2–2 =
32 + 16 + 4 + 2 + 1 + ¼ = 55.25.

Another example is 101.101 = 4 + 1 + 1/2 + 1/8 = 5.625. Can you work out the next
examples?

1111.1001

0.1111

10101.101

Converting from binary to decimal is not very difficult. However, there is a problem.
When we want to store a value such as 55.25 in the computer, it must be translated into
binary, so we get 110111.01. However, the computer only stores 1s and 0s, how do we specify
the decimal point? The answer is that we do not try to store a decimal point, but we record
where the decimal point should be.

In order to denote where the decimal point is, we use a more complex strategy based
on scientific notation. In scientific notation, the value 55.25 is actually represented as
0.5525 * 102. That is, the decimal point is shifted to precede the first non-zero digit. In shift-
ing the decimal point however, we must multiply the value by a power of 10. Thus, 55.25
becomes 0.5525 * 102. Now we have two numbers to store, 0.5525 and 2. We can omit the
decimal point as implied, that is, the decimal point will always precede the first non-zero
digit. We can also omit the 10 because it is implied to be base 10.

In binary, we do the same basic thing. We start with 110111.01, shift the decimal point to
precede non-zero digit (the first 1) by multiplying by a power of 2. We then omit the decimal
point and the 2 and store the number as two parts. Using 110111.01 as our example, we first
shift the decimal point giving us .11011101 * 26. We get 26 because we shifted the decimal point
6 positions to the left. Since our number got smaller (went from 110111.01 to .11011101), we
had to multiply by a large value. Now, we simply store this as two numbers, 11011101 and 110
(the exponent 6). The value 2 used in the multiplication is the base. Since base 2 is implied, we
can remove it from our number. We actually add a third number to our storage, a sign bit. We
will use 0 for positive and 1 for negative. So our number becomes 0 for the sign bit, 110 for the
exponent and 11011101 for the actual number. We refer to this portion as the mantissa.

We organize the three parts of this storage as sign bit, exponent bits, mantissa bits. The sign
bit is always a single bit. We must select a size in bits for the exponent and mantissa. The size we
select will impact the precision of our representation. Let us create a 16-bit floating point repre-
sentation as follows: 1 sign bit, 5 exponent bits, 10 mantissa bits. The exponent will be stored in
two’s complement so that we can have both positive and negative exponents. The mantissa is a
positive number because the sign bit will indicate whether the number is positive or negative.

Taking 55.25 as our original decimal number, we first convert it into binary as 110111.01.
Now we shift the decimal point to give us .11011101 * 26. We convert the exponent into
binary using 5 bits, 00110. Finally, we convert the mantissa to 10 bits giving us 1101110100.
Notice that when we added 0s to the mantissa, we added trailing zeroes. This is because the

70 ◾ Information Technology

number is a fraction, and so adding zeroes at the end does not change the value. We added
leading zeroes to the exponent because the exponent is not a fraction. It would be like add-
ing 0s to 12.34, we would add leading zeroes to the left of the whole portion and trailing
zeroes to the right of the fractional portion, giving us for instance 0012.340000. Now, our
floating point value for 55.25 is 0 (sign bit), 00110 (exponent bits), 1101110100 (mantissa).
This is stored as a 16-bit value as 0001101101110100.

Let us try to convert another decimal number to binary using this 16-bit floating point
representation. We will try –14.75. First, we will disregard the minus sign for now. We
convert 14.75 into binary as follows: 14.75 = 8 + 4 + 2 + .5 + .25 or 8 + 4 + 2 + 1/2 + 1/4.
This is the binary number 1110.11. Now, we must shift the decimal point to precede the
first 1 giving us .111011 * 24. Thus, our mantissa is 111011 and our exponent is 4, or 100.
We extend the mantissa to 10 bits giving us 1110110000 and our exponent to 5 bits giving
us 00100. Finally, we started with a negative number, so the sign bit is 1. Thus, –14.75 = 1
00100 1110110000 = 1001001110110000.

We will do one more for conversion from decimal to binary. We will convert 0.1875 to
binary. This looks tricky because there is no whole portion in our number. 0.1875 consists
of 1/8 + 1/16 or the binary number 0.0011. Recall that we must shift the decimal point
to precede the first 1. In this case, we are shifting the decimal point to the right instead
of the left. Thus, 0.0011 is becoming larger, not smaller as we saw with the previous two
examples. We must therefore multiply by a negative power of 2, not a positive power of
2. 0.0011 = 0.11 * 2–2. Our exponent is a negative number. We can store positive and nega-
tive numbers in two’s complement. In 5 bits, –2 = 11110. So our exponent is 11110. Our sign
bit is 0. Finally, our mantissa, extended to 10 bits is 1100000000. Therefore, 0.1875 = 0 11110
1100000000 or 01111011000000000.

Let us now convert from our 16-bit floating point representation back into decimal. We
will use the number 1001111100010110. We break this number into its three parts, we have 1
00111 1100010110. The initial 1 tells us it is a negative number. The next group of digits is the
exponent. 00111 is binary for 7, so our exponent is 7 meaning that we will shift the decimal
point 7 positions to the right. Finally, the last group of digits is the mantissa. A decimal point is
implied to precede these digits. So 1100010110 is really .1100010110 * 200111. When we multiply
by 200111, we get 1100010.110. Now, we convert this number from binary to decimal. This is the
number 64 + 32 + 2 + ½ + ¼ = 98.75, and since the sign bit was 1, this is the number –98.75.

Here is another example, 0111011010000000, which is 0 11101 1010000000. This number
is positive. The exponent is 11101, which is a negative number in two’s complement. We
convert it to its two’s complement positive version, which is 00011, or 3. So the exponent
is really –3, which means that we will shift the decimal point three positions to the left
(instead of right). The mantissa is .10100000000, or .101 for convenience. Thus, our number
is .101 * −3 = .000101. Using our binary to decimal conversion algorithm, .000101 = 1 * 2–4 +
1 * 2–6 = 1/24 + 1/26 = 1/16 + 1/64 = 3/64 = 0.046875.

Our 16-bit representation is not actually used in computers. There are two popular for-
mats, or representations, used by today’s computers. They are often referred to as single
precision and double precision. In single precision, 32 bits are used for the sign, exponent,
and mantissa. In double precision, 64 bits are used.

binary Numbering System ◾ 71

chArAcTer repreSeNTATIoNS
Aside from numbers, we also want to store text in the computer. We will store text by
breaking it up into individual characters. Each character will be stored in some distinct
amount of memory (for instance, 1 byte per character). Therefore, text, such as this
chapter, would require converting each character to its character representation and
then storing each character representation in a byte of memory. The character repre-
sentations would have to include not only the 26 letters of the alphabet, but whether the
letters are upper or lower case (52 total letters), the 10 digits (for when we are referencing
digits, not numbers, such as someone’s zip code or phone number), punctuation marks
such as #, $, &, *, +, the blank space (space bar), and the end of line (carriage return or
enter key).

We cannot use a representation like we did for numbers because there is no natural map-
ping from characters to numbers. So, instead, we make up our own. There are two com-
mon forms of character representation, ASCII (American Standard Code for Information
Interchange) and Unicode. A third form, EBCDIC, was extensively used in the 1960s and
1970s. We will briefly discuss these three forms of representation here.

Each of these forms of representation is manmade—that is, someone invented them.
In each case, someone decided that a given character would be stored using a specific bit
pattern. Although it is not all that important for us to know these bit patterns, two of the
three representations are shown in Figures 3.3 and 3.4. Figure 3.3 demonstrates the ASCII

FIgure 3.3 ASCII table. Each character is shown in decimal, hex, and octal. (Courtesy of ZZT32,
http://commons.wikimedia.org/wiki/File:Ascii_Table-nocolor.svg.)

72 ◾ Information Technology

Decimal Character Decimal Character Decimal Character Decimal Character

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

036

037

038

039

042 126SM

ESC

ETB

LF

BYP

FS

SOS

DS

IUS

IRS

IGS

IFS

CU1

CC

EM

CAN

IL

BS

NL

RES

TM

DC2
DC1

DLE

SI

SO

CR

FF

VT

SMM

RLF

GE

DEL

LC

HT
PF

ETX

STX
SOH

NUL 043

045

046

047

050

052

053

054

055

059

060

061

063

064

074

075

076

077

078

079

090

091

092
093

094

095

096

097

106

107

108

109

110

111

121

122

123

124

125
=
'

@

#

:

`

?

>
–

%
,

/

-

¬
;
)

*

$

!

|

(

<
.

¢

BLANK

SUB

NAK

DC4

CUB

EOT

UC

RS

PN

SYN

BEL

ACK

ENQ

CU2 127

129

130

131

132
133

134

135

136

137

145

146

147

148

149

150

151

152

153

161

162

163

164

165

166

167

168
169

192

193

194

195

196

197

198

199

200

201

208

209 J
}

I

H

G

F

E

D

C

B

A

{

z

y
x

w

v

u

t

s

~

r

q

p

o

n

m

l

k

j

i

h
g

f

e

d

c

b

a

" 210

211

212

213

214

215

216

217

224

226

227

228

229

230

231

232

233

240

241

242

243

244

245

246

247

248

249 9

8

7
6

5

4

3

2

1
0

Z

Y

X

W

V

U

T

S

\

R

Q

P

O

N

M

L

K

¦

+

FIgure 3.4 EBCDIC table. (From www.LookupTables.com, http://www.lookuptables.com/
ebcdic_scancodes.php. With permission.)

binary Numbering System ◾ 73

representation. Figure 3.4 demonstrates the EBCDIC representation. Note that some of the
characters are control or non-printable characters and so do not appear in the table.

EBCDIC was only used in IBM mainframe computers and was discontinued in part
because it was not a very logical representation. If you look over the ASCII representation,
you will see that for any two letters, the ASCII representation is in the same cardinal order
as the letters appear in the alphabet; so, for instance, ‘a’ immediately precedes ‘b’, which
immediately precedes ‘c’, and so forth. The representation is organized so that upper case
letters appear before lower case letters. This means that ‘A’ is less than ‘a’ when we compare
them. In EBCDIC, although letters are in order (‘a’ before ‘b’ before ‘c’), they do not neces-
sarily immediately follow one another, for instance ‘j’ does not immediately follow ‘i’.

The way ASCII works is that in place of the character, we have the binary sequence. For
instance, ‘a’ is stored as the decimal value 97, or the hexadecimal value 61. Using either
decimal to binary or hexadecimal to binary, you will see that ‘a’ is 01100001. Compare this
to ‘A’, which is decimal 65 (hexadecimal 41), which is 01000001. Interestingly, ‘a’ and ‘A’ are
nearly identical, the only difference is with the third bit from the left. The upper case ver-
sion of every letter has a third bit of 0 and the lower case version of every letter has a third
bit of 1.

The ASCII representation uses 7 bits, which gives us 128 different combinations. With
the 52 letters, 10 digits, and various punctuation marks, there is room left over for other
characters. These include what are known as escape sequences such as the tab key and
the return key (or “end of line”). In spite of using 7 bits for ASCII, each ASCII char-
acter is stored in 1 byte, so the last bit becomes a 0. This 0 will be inserted as the lead-
ing bit (leftmost). The EBCDIC representation uses 8 bits and so contains 256 different
combinations.

Let’s consider an example. We want to store the string “Hello”. How is this done? In
ASCII, each of the characters is represented by a different code. “H” is 01001000, “e” is
01100101, “l” occurs twice, both times 01101101, and “o” is 01101111. So “Hello” is stored
as a sequence of five 8-bit sequences, or five bytes: 01001000 01100101 01101101 01101101
01101111. In EBCDIC, it takes as much storage (five bytes) to store “Hello”, but the rep-
resentations differ. In EBCDIC, we have instead: 11001000 10000101 10010111 10010111
10010110.

Neither ASCII nor EBCDIC has any representations for letters outside of the English
alphabet. With the international nature of computing today, there is a need to represent
other languages’ symbols; for instance, the Arabic letters, the Cyrillic letters or Russian, the
Chinese and Japanese characters. However, a majority of computer users do speak English.
So the decision was made to expand ASCII from 7 bits to 16 bits, which gives us 65,356
different combinations, or the ability to store more than 65,000 characters. This became
UNICODE. In UNICODE, the first 128 characters are the same as in ASCII. However, the
remainder are used to store the characters found in other languages along with other sym-
bols. These other symbols include the zodiac elements, symbols for chess pieces, the peace
sign, the yin/yang symbol, smiley/frowny faces, currency symbols, mathematical symbols,
and arrows.

74 ◾ Information Technology

The previous example for “Hello” will look similar in Unicode because the first 128
characters of Unicode are the same as the 128 characters of ASCII. However, in UNICODE,
each character is stored in 16 bits rather than 7. So, “Hello” becomes:

0000000001001000 “H”

0000000001100101 “e”

0000000001101101 “l”

0000000001101101 “l”

0000000001101111 “o”

Thus, “Hello” requires twice the storage space in Unicode as it does in either ASCII or
EBCDIC. At the end of this chapter, we will find another use for the leading bit in ASCII
(the leftmost bit, into which we inserted a 0).

bINAry operATIoNS
Aside from converting numbers, a computer needs to process values. We typically think of
computers performing operations such as addition, subtraction, multiplication, division,
and comparison (compare two values to determine if they are equal or which is less than
the other). However, the computer operates only on binary values and performs binary
operations (these are the same as Boolean operations). The operations are

AND—are the two values both on (1s)?

OR—is either value on (1s)?

NOT—convert the value to its opposite (1 becomes 0, 0 becomes 1)

XOR—exclusive or, are the two values different?

The truth tables for these four basic Boolean operations are shown in Figure 3.5.
Let us consider a few brief examples of applying the binary, or Boolean, operations.

First, we will look at simple 1-bit examples.

0 OR 0 = 0 0 OR 1 = 1 1 OR 1 = 1
0 XOR 0 = 0 0 XOR 1 = 1 1 XOR 1 = 0
0 AND 0 = 0 0 AND 1 = 0 1 AND 1 = 0

X X XY Y YOR NOT XOR
0
0

0

0

0
0
0

0
0

0

0 0 0 0
0

0

0

0
0

1
1 1

1

1 1
1

1 1 1
1

1
1 1

1
11 1

1
11

ANDX

FIgure 3.5 Basic logic operation truth tables.

binary Numbering System ◾ 75

In essence, we take the two bits and look up the row in the appropriate truth table. For 0
XOR 1, we look at the row where X = 0 and Y = 1.

Even though we apply AND, OR, and XOR to just two bits (and NOT to just 1), it is more
interesting and useful to look at larger binary operations. For instance, 11110000 AND
10101010. In this case, we apply the binary operation in a bit-wise fashion. That is, we would
apply AND to the first bit of each binary number, and then to the second bit of each binary
number, and then…, recording in this case an 8-bit answer because each number is 8 bits
long. The operation can be easily performed by lining the two numbers up on two lines,
and then applying the operation column by column.

Let us compute 11110000 AND 10101010.

1 1 1 1 0 0 0 0
1 0 1 0 1 0 1 0
1 0 1 0 0 0 0 0

AND

Starting with the leftmost bit, 1 AND 1 is 1. In the next column moving right, 1 AND 0
is 0. Next, 1 AND 1 is 1. Next, 1 AND 0 is 0. Now, notice that the remainder of the bits in
the top number as we move right are all 0. 0 AND anything is 0, so the last 4 bits will all
be 0.

Let us try XOR, which is slightly more complicated. 10101111 XOR 00111100.

1 0 1 0 1 1 1 1
0 0 1 1 1 1 0 0
1 0 0 1 0 0 1 1

XOR

Here, if the two bits are the same, the result is a 0 and if the two bits differ, the result is 1.
A more complicated series of operations can be applied, for instance, NOT (10110011)

AND (11110000 XOR 11001100). First, we will apply the XOR:

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
0 0 1 1 1 1 0 0

XOR

Next, we apply NOT (10110011). This merely flips each bit giving us 01001100. Finally,
we apply the AND.

0 1 0 0 1 1 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 0 0

AND

76 ◾ Information Technology

Therefore, NOT (10110011) AND (11110000 XOR 11001100) = 00001100.
You might wonder why we are bothering with such simple operations. At its most basic

level, these four operations are all the computer uses to compute with. So we will have to
use these four operations to perform such tasks as addition, subtraction, multiplication,
division, and comparison. How?

Before answering that question, let us look at how to perform binary addition using our
ordinary addition operator, +. Let us do 0111 + 0110. We would accomplish this addition
in a similar way to adding two decimal values together. We line them up, we add them
column by column in a right-to-left manner, writing down the sum, and if necessary, car-
rying a unit over to the next column on the left. However, for binary, the only digits we are
allowed are 0 and 1, and our carries will be not in units of 10 but units of 2.

Let us now solve 0111 + 0110. The solution is shown in Figure 3.6. We start with the
rightmost column. There is no carry in to that column (or more precisely, the carry in
is 0). So we want to add 0 (the carry) + 1 + 0 (the rightmost digits of our two numbers).
What is 0 + 1 + 0? It is 1. So we write a sum of 1, with no carry over. In the next column,
we have 0 (the carry) + 1 + 1. 0 + 1 + 1 is 2. However, we are not allowed to write 2 down as
the only digits allowable are 0 and 1. What is 2 in binary? 102. This tells us that we should
write down a 0 (the rightmost digit of 102), and carry a 1. Recall that the carry is a power
of 2, so we are carrying a unit of 2, not 10. Even so, we write the carry as a 1 digit over the
next column. Now in the third-from-right column, we have 1 (the carry) + 1 + 1. This is 3.
Again, we cannot write down a 3. But 3 in binary is 112. So we write a 1 and carry a 1. In the
leftmost column, we have 1 (the carry) + 0 + 0 = 1. So we write a 1 and have no carry. The
carry coming out of the leftmost column can be recorded in the status flags (see Chapter
2) under the carry bit. This may be useful because, if there is a carry out produced, it may
be a situation known as an overflow. That is, the two numbers were too large to fit into the
destination, so we overflowed the destination (a register or memory).

Notice in Figure 3.6 that, for each column, we are computing two things. We compute
the sum of the three digits (including the carry in) and the carry out to be taken to the next
column as the carry in. We will always add three numbers: the two digits from the number
and the carry in. We will always compute two different results, the sum of that column
and the carry out. The carry out for one column becomes the carry in for the next column.

The sum algorithm can be expressed as follows:

 1. Line up the two binary numbers.

 2. The carry in for the rightmost column is always 0.

Carry:
X:
Y:
Sum:

1 1
1
1
1

1
1

1

1

0
0

0

0

0

0

Initial carry
in is 0

Carry Carry No
carry

1

FIgure 3.6 Binary addition showing sum and carry out/carry in.

binary Numbering System ◾ 77

 3. Working right to left, repeat the following, column by column.

 a. Compute the sum of the two binary digits plus the carry in, as follows:

All three are 0: 0

One of the three is a 1: 1

Two of the three are 1: 0 (1 + 1 + 0 = 2, or 10, sum of 0, carry of 1)

All three are 1: 1 (1 + 1 + 1 = 3, or 11, sum of 1, carry of 1)

 b. Compute the carry out of the two binary digits plus the carry in, as follows:

All three are 0: 0

One of the three is a 1: 0

Two of the three are 1: 1

All three are 1: 1

 c. The carry out of this column becomes the carry in of the next column.

Let us give it a try. We will add 1001 + 0011. First, we line up the numbers:

1001
0001+

For the rightmost column, the carry in is a 0. This gives us 0, 1, and 1. According to step
3a above, two 1 bits give a sum of 0. According to step 3b, two 1 bits give us a carry of 1. So
we have the following partial result after one column.

Carry

: --10
1001
0011

0
+

Now going into the second column (from the right), we have a carry in of 1, and the two
digits are 0 and 1, so we have two 1 bits. This gives us a sum of 0 and a carry of 1. Now our
partial result is as follows.

Carry

--

: -110
1001
0011
00

+

78 ◾ Information Technology

For the third column, we have a carry in of 1, and two 0 digits. This gives us a sum of 1
and a carry of 0. Now our partial result is as follows:

Carry : 0110
1001
0011
100

+
−

Our leftmost column has a carry in of 0 and digits of 1 and 0. This gives us a sum of 1
and a carry of 0. Our resulting sum is then 1100. If we were to convert problem into deci-
mal, we would find that we have just performed 9 + 3 = 12.

Try a few on your own and see how you do.

0001 + 0101 = 0110

1001 + 0011 = 1100

0111 + 0011 = 1010

Now, how do we implement this addition algorithm in the computer since we only have
AND, OR, NOT, and XOR operations to apply? We will break our addition algorithm into
two computations, computing sum and computing carry. We start with carry because it
is a little easier to understand. Recall from above that the carry out is a 1 if either two or
all three of the digits are 1. Let us call the three values X, Y, and C (for carry in). There are
four possible combinations whereby there are two or three 1s. These are X = 1 and Y = 1,
X = 1 and C = 1, Y = 1 and C = 1, or X = 1, Y = 1 and C = 1. In fact, we do not care about
the fourth possibility because the three other comparisons would all be true. Therefore, we
can determine if the carry out should be a 1 by using the following Boolean logic: (X AND
Y) OR (X AND C) OR (Y AND C).

To compute the sum, we want to know if there is either a single 1 out of the three bits (X,
Y, C), or three 1s out of the three bits. We can determine this by cleverly chaining together
two XORs:

(X XOR Y) XOR C

Let us redo our example from Figure 3.6 using our Boolean operations. The two numbers
are 0111 + 0110. Starting with the rightmost column, we have X = 1, Y = 0, C = 0. The sum is
(X XOR Y) XOR C = (1 XOR 0) XOR 0 = 1 XOR 0 = 1. So we have a sum of 1. The carry is (X
AND Y) OR (X AND C) OR (Y AND C) = (1 AND 0) OR (1 AND 0) OR (0 AND 0) = 0 OR
0 OR 0 = 0. So out of the rightmost column, we have a sum of 1 and a carry of 0.

In the second-to-right column, we have X = 1, Y = 1, C = 0. Our sum is (1 XOR 1) XOR
0 = 0 XOR 0 = 0. Our carry is (1 AND 1) OR (1 AND 0) OR (1 AND 0) = 1 OR 0 OR 0 = 1.
So we have a sum of 0 and a carry of 1.

binary Numbering System ◾ 79

In the third-to-right column, we have X = 1, Y = 1, C = 1. Our sum is (1 XOR 1) XOR
1 = 0 XOR 1 = 1. Our carry is (1 AND 1) OR (1 AND 1) OR (1 AND 1) = 1 OR 1 OR 1 = 1.
So we have a sum of 1 and a carry of 1. In our leftmost column, we have X = 0, Y = 0, C = 1.
Our sum is (0 XOR 0) XOR 1 = 0 XOR 1 = 1, and our carry is (0 AND 0) OR (0 AND 1) OR
(0 AND 1) = 0 OR 0 OR 0 = 0. So our leftmost column has a sum of 1 and carry of 0.

Given two binary numbers, we can perform addition using AND, OR, and XOR. What
about subtraction? Let us assume we have two numbers, X and Y, and we want to compute
X – Y. You might recall from algebra that X – Y = X + (–Y). Assuming X and Y are two’s
complement numbers, we have to modify Y to be –Y. How do we convert a positive number
to negative, or negative number to positive, in two’s complement? We flip all of the bits and
add 1. How do we flip all of the bits of a number? We use the NOT operation. So in fact,
X – Y = X + ((NOT Y) + 1). Thus, subtraction can use the same operations as above for sum
and carry, but we add to it a NOT operation first on Y, and then add 1 to NOT Y. We add 1
by again using the sum and carry operations. See Figure 3.7.

Multiplication is a little more complicated, but a multiplication is just a series of addi-
tions (x * y requires adding x together y times). Division is a series of subtractions (x/y
requires subtracting y from x until we reach 0 or a negative). Therefore, we can apply the
addition and subtraction algorithms described above repeatedly to perform multiplication
and division. They use a combination of AND, OR, XOR, and NOT.

How about comparison? Actually, this is done very simply. To compare two values X
and Y, we do X – Y and see if the result is positive (in which case X > Y), negative (in which
case X < Y), or zero (in which case X = Y). To test for negative, look at the leftmost bit of the
difference (X – Y); if it is a 1, then the difference is negative (recall in two’s complement, the
leftmost bit is the sign), which means that X < Y. To test for zero, OR all of the bits together
and see if the result is 0, which means that X – Y = 0 or X = Y. For instance, if we have
00000001, the OR of these bits is 1, so the value is not zero. Positive is actually the most dif-
ficult to determine as we have to make sure that the result is not zero and that the leftmost
bit is 0. However, we can also determine if a number is positive if it is neither negative nor
zero! If the difference is positive, then X – Y > 0 or X > Y.

How do we compare non-numbers? Typically, aside from numbers, the only other things
we compare are characters and strings of characters. To see which is greater, “Frank” and
“Fred”, we compare character by character until we either reach the end of the string (in
which case the strings are equal) or we have a mismatch. Here, we find a mismatch at the

First value

Second value

Difference

Adder

AdderNOT each bit

00000001

FIgure 3.7 Subtracting two numbers performed by two additions and NOT.

80 ◾ Information Technology

third character ‘a’ versus ‘e’. How do we compute ‘a’ – ‘e’? Recall that characters are stored
in memory using a representation called ASCII. In ASCII, ‘a’ is 96 and ‘e’ is 100. Therefore
to compare “Frank” to “Fred”, we do ‘F’ – ‘F’, which is 0, so we do ‘r’ – ‘r’, which is 0, so we
do ‘a’ – ‘e’, which is –4. Since ‘a’ < ‘e’, “Frank” < “Fred”.

Another type of Boolean operation that we will need our computers to perform is known
as masks. A mask compares two binary values together using one of AND, OR, or XOR.
One use of the AND mask is covered in Examples of Using Binary Numbers.

exAmpLeS oF uSINg bINAry NumberS
Here, we examine three very different ways that binary numbers are used in computers.
In the first, we look at binary numbers as used in network addressing and netmasks. We
then look at some common video file representation formats. Finally, we look at the use of
binary numbers to perform error detection and correction.

Network Addresses and Netmasks

Computer networks provide a good example of how the binary concepts you have learned so
far can be applied. Every computer in a network must have a unique network address. IPv4
(Internet Protocol version 4) addressing uses a dotted decimal format for these addresses.

A MessAge froM the stArs?

physicist Frank drake founded the Search for extraterrestrial Intelligence (SeTI). This effort,
started around 1961, was to use radio telescopes (and other forms of observation) to listen for
messages from the stars. What form might a message from aliens take? Although we have no
idea, it has been proposed that any message would be encoded in some binary representa-
tion. Why? because information is easily transmitted in binary, just send a series of on/off
pulses. but what might such a message look like? The aliens should pick a representation that
could be easily interpreted. For instance, we would not send out a message in AScII because
AScII is strictly a human invention and would be meaningless to aliens. To demonstrate how
difficult deciphering a message might be, drake provided the following to his colleagues. can
you figure out what its meaning is? Neither could they!

11110000101001000011001000000010000010100
10000011001011001111000001100001101000000
00100000100001000010001010100001000000000
00000000001000100000000001011000000000000
00000001000111011010110101000000000000000
00001001000011101010101000000000101010101
00000000011101010101110101100000001000000
00000000000100000000000001000100111111000
00111010000010110000011100000001000000000
10000000010000000111110000001011000101110
10000000110010111110101111100010011111001
00000000000111110000001011000111111100000
10000011000001100001000011000000011000101
001000111100101111

binary Numbering System ◾ 81

The IPv4 address consists of four numbers, each called an octet. Each number consists of
an unsigned 8-bit binary number. Recall that in 8 bits, you can store any decimal number
from 0 to 255. So an IP address then is four numbers from 0 to 255, each number separated
by a dot (period). For example, your computer’s IP address might be 10.251.136.253. A net-
work address is simply represented as a single 32-bit binary number. We break it down into
4 octets to make it simpler to read.

IP addresses are grouped so that those computers in one network share some of the
same octets. This is similar to how street addresses are grouped into zip codes. Computers
within a single network can communicate with each other without the need of a router.
Routers are used to facilitate communication between networks. This is similar to how
post offices are used to facilitate mail delivery between different zip codes. You can tell
which street addresses belong to a given post office based on the zip code of that address.
Computers have a similar concept. Hidden within your IP address is sort of a zip code that
is the address of the network. We refer to this as the network address.

In order to decipher what network address an IP address belongs to, computers use
a netmask. Let us look at an example where your IP address is 10.251.136.253, and your
netmask is 255.255.255.0. The binary representation (with dots to ease reading) of these
numbers is:

IP Address: 00001010.11111011.10001000.11111101
Netmask: 11111111.11111111.11111111.00000000

To compute the network address, a binary AND operation is performed between these
two 32-bit binary numbers resulting in a network address of:

Network Address: 00001010.11111011.10001000.00000000 (10.251.136.0)

Recall that a binary AND is 1 only if both binary bits are a 1. This netmask has the
result of returning the first three octets in their entirety because they are being ANDed
with 11111111, with the final octet being masked, or zeroed out, because that octet is being
ANDed with 00000000.

In the example above, we use a netmask of 255.255.255.0. This netmask is selected
because all computers on this network share the first three octets. That is, the network
address is the first three octets of the four octets. Each device’s address on the network
is the final octet, thus giving every device a unique address. Now, with a netmask of
255.255.255.0, there are 256 (28) possible addresses in that network. So, this organization
would be able to provide 256 unique IP addresses. In dotted decimal format, the network
address returned from this operation is 10.251.136.0. This provides network addresses in
the range from 10.251.136.0 through 10.251.136.255, including our initial device’s address
of 10.251.136.253.

Two computers that share the same network address can communicate with each other
without the need of a router. Two computers with different network addresses will know

82 ◾ Information Technology

that they need to contact their friendly neighborhood router (often referred to as the default
route) in order to communicate between those two devices.

This concept is easy to understand when your netmask aligns evenly with the octet
boundaries (i.e., the dots) as it did in our example above. However, let us look at another
example where this is not the case. We will use the same IP address, 10.251.136.253, but with
a netmask of 255.255.240.0. To compute our network address, we perform a binary AND of
these two numbers. Figure 3.8 demonstrates the application of the netmask 255.255.240.0,
where our network address turns out to be 10.251.128.0 rather than 10.251.136.0.

Netmasks are determined by the number of bits in the address that make up the net-
work portion of the address. Some network addresses only comprise the first octet. For
instance, one network may be 95.0.0.0 (or 01011111.00000000.00000000.00000000). This
network would use a netmask of 255.0.0.0.

Obviously, understanding binary numbers and their operations is very important
to those studying networking. Networking professionals must be fluent in understand-
ing Boolean operations of AND, OR, NOT, and XOR. We cover networks in detail in
Chapter 12.

Image Files

Earlier in this chapter, we saw that numbers (positive, negative, integer, fractional) can all
be stored in binary either directly or through a representation such as two’s complement
or floating point. We also saw that characters are represented in binary using a code called
ASCII. How are images stored in a computer? The most straightforward format is known
as a bitmap. We will first consider a black and white image.

Any image is a collection of points of light. Each individual point is known as a pixel
(short for picture element). For a black and white image, a pixel will take on one of two
colors, black or white. We can represent these two colors using 1s and 0s (commonly, white
is 1 and black is 0). To store a black and white image is merely a matter of placing into the
file each pixel, row after row. The image in Figure 3.9 is a simple bitmap. The figure contains
both the image and the storage in binary (to the right of the image).

For a black and white image of X × Y pixels (X rows, Y columns), the storage required is
X * Y bits. A 1000 × 1000 pixel image requires 1,000,000 bits. This would be 125,000 bytes,
or roughly 125 KB.

A variation of a black and white image is a gray scale image. Here, different shades of
gray are added to the strictly black and white image. To represent an image, similar to the
black and white image, each pixel is stored as one value, but now the value is in a range
from least intensity (black) to most intensity (white). Any value in between is a shade of

IP address: 00001010 . 11111011 . 10001000 . 11111101 (10.251.136.253)
Netmask:

Network
address:

11111111 . 11111111 . 11110000 . 00000000 (255.255.240.0)

00001010 . 11111011 . 10000000 . 00000000 (10.251.128.0)

FIgure 3.8 Applying a netmask.

binary Numbering System ◾ 83

grey. Most commonly, the level of intensity will be an integer number from 0 to 255, so
that each pixel can be stored in 1 byte. A 1000 × 1000 pixel image would require 1,000,000
bytes (roughly 1 MB). This is 8 times the size of the black and white image, which makes
sense because we increased the storage requirement from 1 bit per pixel to 1 byte per pixel.

Colors are represented in the computer by the amount of red, green, and blue that make
up that pixel’s light. We refer to this strategy as RGB. For a color image, we would store each
pixel as a trio of numbers, the amount of red, the amount of green, and the amount of blue.
As with gray scale images, we will store each of these intensities as an integer in 1 byte,
giving us a range of 0–255. The color represented by (0, 0, 0)—that is, no red, no green, no
blue—is black. The color represented by (255, 255, 255) is white. The color represented by
(255, 0, 255) is purple (full red, no green, full blue). In binary, purple would be indicated as
the three numbers (11111111, 00000000, 11111111). For convenience, we often denote RGB
values in hexadecimal instead. So purple is FF00FF. This notation is used in designing web
pages. Yellow, for instance, is all green and all blue with no red, or (0, 255, 255), or 00FFFF.
The value 884400 would be (128, 64, 00), that is, it would be half of red and one fourth of
green, a brownish-orange color.

For RGB, a 1000 × 1000 pixel image would require 3,000,000 bytes or roughly 3 MB.
Note that using RGB as a representation, every pixel in an image can be one of more than
16 million colors (256 * 256 * 256).

As you can see, going from black and white to color greatly increases the file size. Are
there any ways to reduce file sizes of images? Yes, by file compression. The two most com-
mon forms of compression are GIF and JPG. GIF stands for Graphics Interchange Format.
The idea is that humans generally cannot differentiate between the millions of colors avail-
able in any kind of precise way. Why use so much storage space when one shade of red
might look like another? In GIF, a color palette is provided that consists of 256 of the most
popular colors. This permits each pixel to reference a color in the palette using only 1 byte
instead of the 3 bytes (required for RGB); therefore, the size of the color image is reduced
by a factor of 3. The 1000 × 1000 pixel color image now requires only 1 MB of storage.
Unfortunately, if the original image uses colors that are not a part of the standard palette,
then the image will look different, and in some cases you will get a very improper replace-
ment color, for instance, blue in place of a pale yellow.

The JPG format is perhaps more common than GIF. JPG stands for Joint Photographic
Experts Group (the original abbreviation for a JPG file was .jpeg). In GIF, if the colors are

000000000000000000
000011111111110000
001100000000001100
001100011100001100
001100001000001100
001101001001001100
010001001001000010
010001001001000010
010001001001000010
010110110110110010

FIgure 3.9 Black and white bitmap and its corresponding binary file.

84 ◾ Information Technology

available on the palette, the resulting GIF file looks identical to the BMP file and is there-
fore known as lossless compression. But JPG uses lossy compression. The difference is that
after compressing the image, some quality is lost. You sacrifice image quality for storage
size. The JPG compression format works by combining some of the pixels together into
blockier groups of pixels. In effect, the image loses some resolution and becomes blurrier.
In addition, if the image is a color image, it is translated from RGB to an alternative color
format known as YUV, where each pixel is represented using brightness (Y) and lumines-
cence (U and V). This format requires either two times or four times less storage space than
RGB. Additionally, the lossy compression in the JPG format can reduce the image size even
more so.

The newer PNG (Portable Network Graphics) enhances the GIF format. Like GIF, it is a
lossless form of compression that uses a bitmap. It can support a 24-bit RGB palette, gray
scale, and bitmaps without palettes. And like JPG, it compresses images to reduce space,
but using a lossless algorithm so that the compressed image is of equal quality. Unlike JPG,
the PNG compression may or may not succeed in truly reducing file size.

error detection and correction

One significant challenge when dealing with computer-stored information is handling
errors that arise during transmission of data from one location to another. It is unlikely
but possible for errors to occur when data are moved from one component to another in
the computer, but it is far more likely and even expected that errors can arise during trans-
mission. Therefore, some form of error detection and correction is desired.

The simplest form of error detection is through the use of parity. In general, parity
means equality. But when discussing a computer, parity refers to the evenness (or oddness)
of a number. Specifically, we will count the number of 1 bits in a sequence of data and see
if that count is even or odd. We can then use this to detect simple errors in transmission.

We will introduce a parity bit to every byte (8 bits) of storage. The parity bit will be 1 if
the number of 1 bits in the byte is odd, and the parity bit will be 0 if the number of 1 bits
in the byte is even. That is, the 8 bits plus the parity bit should always have an even number
of 1 bits. This strategy is known as even parity (there is a variation called odd parity where
the 8 bits plus parity bit must always have an odd number of 1 bits).

We will use even parity as follows. Given a byte, before this datum is moved, we will
generate a parity bit. Now we have 9 bits. We transmit/move the 9 bits. The recipient
receives 9 bits. If the 9 bits has even parity, then no error occurred. If the 9 bits has odd
parity, an error occurred, the datum is discarded, and the recipient requests that the
datum be resent.

How can we determine even or odd parity? It is very easy just using the XOR operation
(refer back to Figure 3.5). The XOR operation only operates on 2 bits at a time, but we can
chain together the XOR operations. So, given 8 bits, we XOR the first two bits and then
XOR the result with the third bit and then XOR the result with the fourth bit, and so forth.
Let us look at some examples of computing and using the parity bit. We want to move a
datum 10010011 to another location in the computer or over a network. The first step is to
compute the parity bit:

binary Numbering System ◾ 85

(((((((1 XOR 0) XOR 0) XOR 1) XOR 0) XOR 0) XOR 1) XOR 1) =

 ((((((1 XOR 0) XOR 1) XOR 0) XOR 0) XOR 1) XOR 1) =

 ((((((1 XOR 1) XOR 0) XOR 0) XOR 1) XOR 1) =

 ((((0 XOR 0) XOR 0) XOR 1) XOR 1) =

 (((0 XOR 0) XOR 1) XOR 1) =

 ((0 XOR 1) XOR 1) =

 (1 XOR 1) = 0

Therefore, 10010011 has a parity bit of 0. This makes sense because the total number of
1 bits should be even. 10010011 has four 1 bits, and so to keep the number of 1 bits even, we
add a 0. Now, the 9 bits consist of four 1s and five 0s.*

We transmit these 9 bits and the recipient receives 10010011 & 0. The recipient performs
a similar operation, XORing all 9 bits together, and winds up with 0. Therefore, it is correct,
that is, no error arose.

Now consider if, upon receipt, the 9 bits were 10010011 & 1. In this case, the XOR
computes:

((((((((1 XOR 0) XOR 0) XOR 1) XOR 0) XOR 0) XOR 1) XOR 1) XOR 1) = 1

So an error arose. Where did the error arise? By using a single parity bit, we do not
know, but because there is an error, the recipient discards the data and asks for it to be re-
sent. Notice in this case that the error arose in the parity bit itself. Another example might
be 10010010 & 0, where the parity bit has no error but the byte has an error (the last bit
should be 1). The recipient computes the XOR of these 9 bits and gets

((((((((1 XOR 0) XOR 0) XOR 1) XOR 0) XOR 0) XOR 1) XOR 0) XOR 0) = 1

Notice that the parity bit not only does not help us identify the error, but would also fail
us if two errors arose. Imagine that the recipient gets 10010000 & 0. In this case, the last 2
bits are incorrect. If we XOR these 9 bits, we get 0, implying that no error occurred. Thus,
the parity bit can detect 1 error but not 2, and cannot correct the error. If we want to cor-
rect the error, we would need more than 1 parity bit.

Also, the parity bit does not necessarily have to be associated with a byte. Recall from
earlier in this chapter that ASCII values use 7 bits of a byte. The eighth bit can be used to
store parity information. For instance, the letter ‘a’ is represented as x1100001. The initial x
is unused, so we would normally place a 0 there. However, rather than waste the bit, we can

* Computing parity can be done much more simply than applying the XOR operation; just add up the number of 1 bits and
make sure that the bits in the datum plus the parity bit is always an even number.

86 ◾ Information Technology

put a parity bit there. So, in fact, ‘a’ will be stored as 11100001 if we wish to include a parity
bit. This saves us from having to add yet another bit.

Another use of parity comes with RAID technology. RAID is a newer form of disk stor-
age device where there are multiple disk drives in one cabinet. The idea is that extra disk
drives can provide both redundant storage of data and the ability to access multiple drives
simultaneously to speed up disk access. RAID is discussed in more detail in Chapter 15
(Information Assurance and Security). Here, we briefly look at how parity can be used to
provide error correction.

Imagine that we have five disk drive units. We will store 4 bytes of data on four different
drives. The fifth drive will store parity information of the 4 bytes. For each 4-byte grouping
that is distributed across the disks, we will also compute parity information and store it on
the fifth drive. Consider one 4-byte group of data as follows:

11001111 01010101 11011011 00000011

We will compute bit-wise XOR across each of the 4 bytes. This means that we will take
the first bits (leftmost bits) of the 4 bytes and compute XOR of those 4 bits. This will be the
parity bit for the first bit of the four bytes. We will do this for each bit of the 4 bytes.

11001111 //first byte, stored on the first disk
XOR 01010101 //second byte, stored on the second disk
XOR 11011011 //third byte, stored on the third disk
XOR 00000011 //fourth byte, stored on the fourth disk

To obtain the parity information then, we compute each XOR going down. The first
 parity bit is (((1 XOR 0) XOR 1) XOR 0) = 0. The second parity bit is computed as (((1 XOR
1) XOR 1) XOR 0) = 1. The third parity bit is computed as (((0 XOR 0) XOR 0) XOR 0) = 0.
The fourth parity bit is computed as (((0 XOR 1) XOR 1) XOR 0) = 0. The fifth parity bit is
computed as (((1 XOR 0) XOR 1) XOR 0) = 0. The sixth parity bit is computed as (((1 XOR
0) XOR 0) XOR 1) = 0. The seventh parity bit is computed as (((1 XOR 0) XOR 1) XOR 1) =
1. The eight parity bit is computed as (((1 XOR 1) XOR 1) XOR 1) = 0. So, our parity byte is
01000010. This byte is stored on the fifth disk.

Now, let us assume over time that the second disk drive fails—perhaps there is a bad
sector, or perhaps the entire disk surface is damaged. Whatever the case, we can restore all
of the data by using the three other data drives and the parity drive. For our 4 bytes above,
we would have the following data available:

11001111 //first byte, stored on the first disk
xxxxxxxx //second byte data is damaged
11011011 //third byte, stored on the third disk
00000011 //fourth byte, stored on the fourth disk
01000010 //parity byte, stored on the fifth disk

binary Numbering System ◾ 87

We XOR the four corresponding bits of the three bytes plus parity byte to obtain the
missing data. For instance, using the first bits of each byte, we have (((1 XOR 1) XOR 0)
XOR 0) = 0. So the first bit of our missing datum is 0. The second bit would be (((1 XOR 1)
XOR 0) XOR 1) = 1. See if you can work through the remainder of this example to obtain
the entire missing datum.

Using a single parity bit per byte is sometimes referred to as a horizontal redundancy
check because the parity bit is computed across a block of data. Another form of horizontal
redundancy check is a checksum (briefly mentioned in Chapter 12). The parity computa-
tion used for RAID is sometimes referred to as a vertical redundancy check because the
parity computation is performed across a number of bytes, bit by bit.

FurTher reAdINg
A study of binary representations can be found in nearly every computer organization book
(See the section Computer Hardware and Computer Assembly (Installation) in Chapter 2).
The Kindle text, Binary Made Simple (R. Barton) available from Amazon Digital Services
offers a useful look at how to perform conversions between binary, decimal, and hexa-
decimal. More thorough books on numbering systems provide background on theory and
computation, such as the following:

•	 Conway, J. The Book of Numbers, New York: Springer, 1995.

•	 Guilberg, J. and Hilton, P. Mathematics: From the Birth of Numbers, New York:
Norton, 1997.

•	 Ifrah, G. The Universal History of Numbers: From Prehistory to the Invention of the
Computer. New York: Wiley, 1999.

•	 Niven, I., Zuckerman, H., and Montgomery, H. An Introduction to the Theory of
Numbers, New York: Wiley, 1991.

Boolean (binary) operations and logic are also covered in computer organization texts.
You can also find whole texts on the topic. A few choice texts are listed here.

•	 Brown, F. Boolean Reasoning: The Logic of Boolean Equations. New York: Dover, 2012.

•	 Gregg, J. Ones and Zeros: Understanding Boolean Algebra, Digital Circuits, and the
Logic of Sets. Piscataway, NJ: Wiley-IEEE Press, 1998.

•	 Whitesitt, J. Boolean Algebra and Its Applications. New York: Dover, 2010.

As Chapter 12 covers computer networks in detail, see that chapter for further readings
for information on such things as IP addresses and netmasks.

A comprehensive reference on the major forms of computer graphics files is available:

•	 Miano, J., Compressed Image File Formats: JPEG, PNG, GIF, XBM, BMP. Reading,
MA: Addison Wesley, 1999.

88 ◾ Information Technology

These formats are all stored as binary files, which we discuss in Chapter 5.

revIeW TermS
Terminology introduced in this chapter:

ASCII Mantissa

Base Netmask

Binary Numbering systems

Bit Octal

Bitmap Octet

Byte Parity

Compression Parity bit

Decimal Pixel

EBCDIC PNG

Floating point RAID

GIF Two’s complement

Hexadecimal Unicode

JPG Word

Lossy compression

SamPlE PROBlEmS

 1. Convert 10111100 from binary to decimal.

 2. Convert 10111100 from two’s complement binary to decimal.

 3. Convert 10100011 in two’s complement to its negation (i.e., change its sign).

 4. Repeat #3 for the two’s complement binary value 00010010.

 5. Convert 43 from decimal to 8-bit binary.

 6. Convert –43 from decimal to two’s complement 8-bit binary.

 7. Convert F3EA116 to binary.

 8. Convert 317528 to binary.

 9. Convert 876 from decimal to octal.

binary Numbering System ◾ 89

 10. Convert 6732 from decimal to hexadecimal.

 11. Convert –45.625 from decimal to the 16-bit floating point representation of the
chapter.

 12. Convert 0111001100110000 from the 16-bit floating point representation of the chap-
ter into decimal.

 13. What is 10011110 AND 00001111?

 14. What is 10011110 OR 00001111?

 15. What is 10011110 XOR 00001111?

 16. What is NOT 10011110?

 17. Perform the 8-bit addition: 00110011 + 01010101

 18. Perform the 8-bit addition: 01111011 + 00111110

 19. Perform the 8-bit subtraction: 01010101 – 00001111 (hint: convert the second number
to its two’s complement opposite and then perform addition, the result will produce
a carry out of the leftmost column, ignore it)

 20. How many bytes would it take to store the following text using ASCII?

 Holy cow! The brown fowl jumped over the moon?

 21. Repeat #20 in Unicode.

 22. What is the parity bit of 11110010?

 23. Repeat #22 for 11110011.

 24. Repeat #22 for 00000000.

 25. Given the byte 10011101 and the parity bit 1, assuming even parity, is there an error?

 26. Repeat 25 for the byte 11110001 and the parity bit 0.

 27. Compute the value ((((1 XOR 0) XOR 1) XOR 1).

 28. Given the four bytes 00000000, 00000001, 11110000, and 10101101, compute the par-
ity byte.

REViEw QUEStiONS

 1. In your own words, what does NOT do?

 2. In your own words, explain when the AND operation will be true.

 3. In your own words, explain when the OR operation will be false.

90 ◾ Information Technology

 4. In your own words, explain when the XOR operation will be false.

 5. How does XOR differ from OR?

 6. Why is binary of importance to our society? Why is it important for you to under-
stand binary in information technology?

 7. What is a mantissa? What is a base?

 8. What is lossy compression?

 9. Explain why a 1024 × 1024 pixel color bitmap requires 3 MB of storage space.

 10. Explain how a jpg image is able to reduce the storage space required of the same bmp file.

 11. Why do you suppose we do not use EBCDIC as our preferred form of character
representation?

 12. What is an octet?

 13. What is the difference between even parity and odd parity?

DiScUSSiON QUEStiONS

 1. Is it important for an IT person to understand the binary numbering system? Aside
from the examples covered in this chapter (ASCII/Unicode, bitmaps, netmasks),
attempt to identify five other reasons why knowledge of binary may come in handy
in IT.

 2. Where might you find hexadecimal notation in use? Provide some examples.

 3. Provide several examples of how or why you might need to apply Boolean operators
(AND, OR, NOT, XOR).

 4. Does the fact that computers use binary to store information make it more challeng-
ing to understand how computers work? If so, in what way(s)?

 5. Compression has become an increasingly important part of computing because of
multimedia files—moving such files across the Internet (e.g., downloading, stream-
ing) and storing files on your computer. Examine the various forms of audio and
video compression. What are the issues that might help you choose a form of audio
compression to stream a song? To permanently store a song? What are the issues that
might help you choose a form of video compression to stream a video? To perma-
nently store a video?

 6. Examine Frank Drake’s “message from the stars” in the sidebar of this chapter.
Attempt to locate meaningful units of information. For instance, is there a binary
code that is used for “start” and “stop” tags to indicate word, phrase, or concept
boundaries? Can you identify any patterns in the bits?

binary Numbering System ◾ 91

 7. Research typical error rates in telecommunications (i.e., how many errors typically
arise when transmitting say 1 million bits). Given this error rate, how likely is it to
find two errors in any single byte transmission?

 8. Two other forms of error detection and correction are checksums and Hamming
distance codes. Briefly research these and describe them. How do they differ from the
use of the parity bit? Which would of the three would be the best way to detect errors
in telecommunications?

 9. Devise your own message from the stars. What would you want to say to another spe-
cies that indicates that you are intelligent and wish to communicate with them?

This page intentionally left blankThis page intentionally left blank

93

C h a p t e r 4

Introduction to Operating
System Concepts

In Chapter 2, we saw the hardware of the computer. In order to facilitate communication
between the user and the hardware, computer systems use an operating system. This chap-
ter introduces numerous operating system concepts, many of which are referenced in later
chapters of this book. Specifically, the roles of process management, resource management,
user interface, protection, and security are introduced here so that later examinations can
concentrate on how to utilize them in Windows and Linux operating systems. Operating
system concepts of interrupts, the context switch, the booting process, and the administra-
tor account are also introduced. The chapter concludes with the steps required for operat-
ing system installation for Windows 7 and Linux Red Hat.

The learning objectives of this chapter are to

•	 Describe the roles of the operating system.

•	 Compare the graphical user interface and the command line interface.

•	 Differentiate between the forms of process management.

•	 Discuss the interrupt and the context switch.

•	 Describe virtual memory.

•	 Discuss the issues involved in resource management: synchronization and deadlock.

•	 Describe the boot process and system initialization.

•	 Provide step-by-step instructions on Windows 7 and Linux Red Hat installation.

94 ◾ Information Technology

WhaT Is an OperaTIng sysTem?
At its most simple description, an operating system (OS) is a program. Its primary task is
to allow a computer user to easily access the hardware and software of a computer system.
Beyond this, we might say that an OS is required to maintain the computer’s environment.

An OS is about control and convenience. The OS supports control in that it allows the
user to control the actions of the software, and through the software, to control (or access)
hardware. The OS supports convenience in that it provides access in an easy-to-use man-
ner. Early OSs were not easy to use but today’s OSs use a graphical user interface (GUI),
and commands can be issued by dragging, pointing, clicking, and double clicking with
the mouse. In some OSs such as Linux and Unix, there are two ways to issue commands:
through the GUI and by typing in commands at a command line prompt. In actuality,
both Windows and Mac OS also have command line prompts available, but most users
never bother with them. Linux and Unix users, however, will often prefer the command
line over the GUI.

sOme UsefUl Terms
In earlier chapters, we already introduced the components of any computer system. Let
us revisit those definitions, with new details added as needed. We also introduce some OS
terms.

hardware

The physical components of the computer. We can break these components into two cat-
egories: internal components and peripheral devices. The internal components are pre-
dominantly situated on the motherboard, a piece of plastic or fiberglass that connects the
devices together. On the motherboard are a number of sockets for chips and expansion
cards. One chip is the CPU, other chips make up memory. The CPU is the processor; it
is the component in the computer that executes a program. The CPU performs what is
known as the fetch–execute cycle, fetching each program instruction, one at a time from
memory, and executing it in the CPU. There are several forms of memory: cache (SRAM),
DRAM, and ROM. Cache is fast memory, DRAM is slow memory, but cache is usually
far more expensive than DRAM so our computers have a little cache and a lot of DRAM.
ROM is read-only memory and is only used to store a few important programs that never
change (like the boot program). Connecting the devices together is the bus. The bus allows
information to move from one component to another. The expansion slots allow us to plug
in expansion cards, which either are peripheral devices themselves (e.g., wireless MODEM
card) or connect to peripheral devices through ports at the back of the computer. Some of
the more important peripheral devices are the hard disk drive, the keyboard, the mouse,
and the monitor. It is likely that you will also have an optical disk drive, a wireless MODEM
(or possibly a network card), a sound card, and external speakers, and possibly a printer.

software

The programs that the computer runs, referred to as software to differentiate them from the
physical components of the computer (hardware). Software exists only as electrical current

Introduction to Operating system Concepts ◾ 95

flowing through the computer (or as magnetic charges stored on disk). Software is typically
classified as either applications software (programs that we run to accomplish some task)
or systems software (programs that the computer runs to maintain its environment). We
will primarily explore systems software in this text. In both Linux and Windows, the OS
is composed of many small programs. For instance, in Linux, there are programs called ls,
rm, cd, and so forth, which are executed when you issue the commands at the command
line. These programs are also called by some of the GUI tools such as the file manager.
If you look at the Linux directories /bin, /usr/bin, /sbin, and /usr/sbin, you will find a lot
of the OS programs. Many users will rarely interact directly with the OS by calling these
programs. If you look at directories such as /usr/local/bin, you will find some of the appli-
cations software. Applications software includes word processors, spreadsheets, internet
browsers, and computer games. In Windows, you find the application software under the
Program Files directory and the OS under the Windows directory.

All software is written in a computer programming language such as Java or C++. The
program written by a human is called the source program or source code. Java and C++ look
something like English combined with math symbols. The computer does not understand
source code. Therefore, a programmer must run a translation program called a compiler.
The compiler takes the source code and translates it into machine language. The machine
language version is an executable program. There is another class of language translators
known as an interpreter. The interpreter is a little different in that it combines the transla-
tion of the code with the execution of the code, so that running an interpreted program
takes more time. As this is far less efficient, we tend to use the interpreted approach on
smaller programs, such as shell scripts, web browser scripts, and webserver scripts. As an IT
student, you will primarily write code that will be interpreted. Scripting languages include
the Bash shell scripting language, PHP, Perl, JavaScript, Python, and Ruby.

Computer system

A collection of computer hardware, software, user(s) and network. Our OS is in reality a
collection of software components. We might divide those components into four catego-
ries, described below.

Kernel

The core of the OS; we differentiate this portion from other parts that are added on by
users: shells, device drivers, utilities. The kernel will include the programs that perform the
primary OS tasks: process management, resource management, memory management, file
management, protection, and security (these are explored in the next section).

Device Drivers

Programs that are specific interfaces between the OS running your computer and a piece
of hardware. You install a device driver for each new piece of hardware that you add to
your computer system. The drivers are usually packaged with the hardware or available for
download over the Internet. Many common drivers are already part of the OS, only requir-
ing installation. Rarer drivers may require loading off of CD or over the Internet.

96 ◾ Information Technology

shell

An interface for the user, often personalized for that given user. The shell provides access to
the kernel. For instance, a GUI shell will translate mouse motions into calls to kernel routines
(e.g., open a file, start a program, move a file). Linux and Unix have command-line shells as well
that may include line editing commands (such as using control+e to move to the end of the line,
or control+b to back up one position). Popular GUI shells in Linux/Unix include CDE, Gnome,
and KDE, and popular text-based shells in Linux/Unix include bash (Bourne-again shell), ksh
(Korn shell), and C shell (csh). The text-based shells include the command-line interpreter, a
history, environment variables, and aliases. We cover the Bash shell in detail in Chapter 9.

Utility programs

Software that helps manage and fine-tune the hardware, OS, and applications software. Utilities
greatly range in function and can include file utilities (such as Window’s Windows Explorer
program), antiviral software, file compression/uncompression, and disk defragmentation.

Os TasKs
The OS is basically a computer system manager. It is in charge of the user interface, process
and resource management, memory management, file management, protection, and security.

Virtual Machines

a software emulator is a program that emulates another Os, that is, it allows your computer to
act like it is a different computer. This, in turn, allows a user to run software that is not native
to or compiled for his/her computer, but for another platform. a macintosh user, for instance,
might use a Windows emulator to run Windows software on a macintosh.

Today, we tend to use virtual machines (Vms) rather than stand-alone emulators. a Vm is
software that pretends to be hardware. By installing a different Os within the Vm, a user then
has the ability to run software for that different Oss platform in their computer that would not
otherwise be able to run that software.

however, the use of Vms gives considerably more flexibility than merely providing a plat-
form for software emulation. Consider these uses of a Vm.

•	 have an environment that is secure in that downloaded software cannot influence or
impact your physical computer

•	 have an environment to explore different platforms in case you are interested in pur-
chasing different Oss or different types of computer hardware

•	 have an environment where you can issue administrator commands and yet have no
worry that you may harm a physical computer—if you make a mistake, delete the Vm
and create a new one!

•	 have an environment where multiple users could access it to support collaboration
•	 have an environment that could be accessed remotely

There are different types of Vms. The Java Virtual machine (JVm) exists in web browsers to
execute Java code. Vm software, such as VirtualBox (from sun) and vsphere (from VmWare),
provide users the ability to extend their computer hardware to support multiple Oss in a safe
environment.

Introduction to Operating system Concepts ◾ 97

User Interface

The GUI allows a user to control the computer by using the mouse and pointing and click-
ing at objects on the screen (icons, menus, buttons, etc.). Each OS offers a different “feel”.
For instance, Mac OS has a standard set of menus always listed along the top of the desktop
and each application software adds to the menu selections. In Windows 7, there is no desk-
top level menu selection, but instead each software title has its own set of menus. Linux
GUIs include Gnome and KDE. Each of these OSs provides desktop icons for shortcuts
and each window has minimize, maximize, and close buttons. Additionally, each of these
interfaces is based on the idea of “point and click”. The mouse is used to position the cur-
sor, and the mouse buttons are used to specify operations through single clicking, double
clicking, and dragging. Cell phones and tablets, based on touch screens, have a gesture-
based interface where movements include such operations as swipe, tap, pinch, and reverse
pinch. Windows 8 is being marketed as following the touch screen approach rather than
the point-and-click.

The GUI is a much simpler way to control the computer than by issuing commands via
the command line. The command line in most OSs* runs in a shell. A shell is merely a part of
the OS that permits users to enter information through which the user can command the OS
kernel. The shell contains a text interpreter—it interprets entered text to pass along proper
commands to the OS kernel. As an example, a Linux user may type in a command like:

find ~ -name ‘core*’ -exec rm {} \;

This instruction executes the Linux find command to locate, in this user’s home direc-
tory, anything with a name that starts with core, and then executes the rm command on
any such files found. In other words, this command finds and deletes all files starting with
the letters “core” found in the user’s home directory. Specifically, the instruction works as
follows:

•	 The command is find which receives several parameters to specify how find should
operate.

•	 ~/ specifies where find should look (the user’s home directory).

•	 -name ‘core*’ are a pair, indicating that the name of the file sought will contain the
letters “core” followed by anything (the * is a wildcard character).

•	 -exec indicates that any file found should have the instruction that follows executed
on it.

•	 rm is the deletion operation, {} indicates the found file.

•	 \; ends the instruction.

* What is the plural of OS? There are several options, I chose OSs out of convenience, but some people dislike that because
OSS stands for Open Source Software. Other people advocate OSes, OS’s, and operating systems. For a discussion, see
http://weblogs.mozillazine.org/gerv/archives/007925.html.

98 ◾ Information Technology

Many OS command line interpreters (such as DOS, which is available in the Windows
OS) are far more simplistic. Linux is favored by some computer users because of the abil-
ity to express very complex instructions. You will study the Bash interpreter in Chapter 9,
where you will learn more about how the command line interpreter works.

process management

The main task of any computer is to run programs. A program being executed by the
computer is called a process. The reason to differentiate between program and process is
that a program is a static entity, whereas a process is an active entity. The process has a sta-
tus. Its status might include “running” (process is currently being executed by the CPU),
“waiting” (process is waiting for input or output, or waiting to be loaded into memory), or
“ready” (process is loaded into memory but not currently being executed by the CPU). The
process also has specific data stored in memory, cache, and registers. These data change
over time and from execution to execution. Thus, the process is dynamic.

A computer might run a single process at a time, or multiple processes in some form of
overlapped (concurrent) fashion. The OS is in charge of starting a process, watching as it
executes, handling interrupting situations (explained below) and input/output (I/O) opera-
tions, handling multiple process interaction, and terminating processes.

An interrupt is a situation where the CPU is interrupted from its fetch–execute cycle.
As discussed in Chapter 2, the CPU continuously fetches, decodes, and executes instruc-
tions from memory. Left to itself, the CPU would do this indefinitely. However, there are
times when the CPU’s attention needs to be shifted from the current process to another
process (including the OS) or to address a piece of hardware. Therefore, at the end of each
fetch–execute cycle, the CPU examines the interrupt flag (part of the status flags register)
to see if anyone has raised an interrupt. An interrupt signal can come from hardware or
from software.

If an interrupt arises, the CPU handles the interrupt as follows. First, it saves what it was
doing. This requires taking the values of the various registers and saving them to memory.
Second, the CPU identifies the type of interrupt raised. This requires the CPU to determine
which device raised the interrupt, or if the interrupt was caused by software. Third, the
CPU switches to execution of the OS. Specifically, the CPU begins executing an interrupt
handler. The OS will have an interrupt handler (a set of code) for each type of interrupt. See
Table 4.1 for a list of types of interrupts. The CPU then resumes the fetch–execute cycle,
but now is executing the OS interrupt handler. Upon completion of executing the inter-
rupt handler, which will have taken care of the interrupting situation, the CPU restores the
register values saved to memory. This “refreshes” the interrupted process. The CPU then
resumes the fetch–execute cycle, but now it is continuing with the process it has previ-
ously been executing, as if it had never stopped. The interruption may have taken just a few
machine cycles or seconds to minutes if the interruption involves the user. For instance, if
the interruption was caused by a “disk not in drive”, then the user has to physically insert
a disk. The interruption would only be resolved once the user has acted.

OSs will implement process management in different ways. The simplest approach is to
use single tasking where a process starts, executes, and terminates with no other processes

Introduction to Operating system Concepts ◾ 99

running. This is not a very satisfactory use of computer resources however, nor do users
typically want to be limited to running one program at a time. Various forms of concurrent
processing exist. Concurrency means that processes are executed in some overlapped fash-
ion. These include multiprogramming, multitasking (or time sharing as it was originally
called), multithreading, and multiprocessing. What each of these have in common is that
the OS permits multiple processes to be in some state of execution. With the exception of
multiprocessing (which uses multiple CPUs), there is only one CPU so that only one pro-
cess can be executing at any moment in time. The others wait. How long they wait, why
they are waiting, and where they wait differs to some extent based on the type of process
management.

We will explore various forms of process management in the next section. However,
before proceeding, we must first introduce multitasking as it is referenced later in this sec-
tion. In multitasking, there are two or more processes running. The CPU only executes
one process at any one time, but switches off between all of the running processes quickly.
So, for instance, the CPU might execute a few thousand machine cycles each on process
0, and then process 1, and then process 2, and then return to process 0. A timer is used to
time how long each process is executed. When the timer elapses, it interrupts the CPU and
the OS then is invoked to force a switch between processes. The timer is reset and the CPU
continues with the next process.

scheduling

If we want the computer to do anything other than single processing—that is, running one
program until it completes and then moving on to the next user task, the OS will have to
perform scheduling. There are several types of scheduling. For instance, in multitasking,
when the timer elapses, the CPU switches from the current process to another. Which
one? Typically, the OS uses a round-robin scheduler. If there are several processes run-
ning, they will be placed into a queue. The processes then are given attention by the CPU
in the order that they reside in the queue. When the processor has executed some number

TaBle 4.1 Types of Interrupts

Device Reason(s) for Interrupt
Disk drive File not found

Disk not in drive
Disk not formatted

Keyboard User enters keystroke
User presses ctrl+alt+del

Mouse Mouse moved
Mouse button pressed or depressed

Network/MODEM Message arrives
Printer Paper jam

Printer out of paper
Printout complete

Program Run time error (e.g., divide by 0, bad user input)
Requires communication with another program

Timer Timer elapses

100 ◾ Information Technology

of instructions on the last process in the queue, it resumes with the first process in the
queue. That is, the queue is a “wrap-around” queue, thus the term round-robin. The OS
is also in charge of deciding which processes should be loaded into memory at any time.
Only processes present in memory will be placed in the queue. Commonly today, all pro-
cesses are loaded upon demand, but low priority processes may be removed from the ready
queue and memory and reside in a waiting queue. Finally, the user can also specify that
a process should be run. This can be done by selecting, for instance, the process from the
tab at the bottom of the desktop. This forces a process to move from the background to the
foreground. We will consider scheduling in more detail in the next section, as well as in
Chapter 11.

memory management

Because main memory is smaller in size than the size of the software we typically want to
run, the OS is in charge of moving chunks of programs and data into and out of memory
as needed. Every program (along with its data) is divided into fixed-sized blocks called
pages. Before a program can be executed, the OS copies the program’s “image” into swap
space and loads some of its pages into memory. The “image” is the executable program
code along with the memory space that makes up the data that the program will access.
Swap space is a reserved area of the hard disk. Now, as the process runs, only the needed
pages are loaded into memory. This keeps each program’s memory utilization down so that
memory can retain more programs. If each program were to be loaded into memory in its
entirety, memory would fill quickly and limit the number of programs that could fit.

The use of swap space to back up memory gives the user an illusion that there is more
main memory than there actually is. This is called virtual memory. Figure 4.1 demon-
strates virtual memory with two processes (A and B), each of which currently have pages
loaded into main memory and the remainder of the processes are stored in swap space. The

Pages currently in memory

Process B

Pages previously in memory
(swapped out)

Pages not (yet) in memory

DRAM

Swap space

Process A

fIgUre 4.1 Virtual memory.

Introduction to Operating system Concepts ◾ 101

unmapped pages refer to pages that have not yet been loaded into memory. Swapped out
pages are pages that had at one time been in memory but were removed in order to accom-
modate newer pages.

When the CPU generates a memory address (for instance, to fetch an instruction or a
datum), that address must be translated from its logical (or virtual) address into a physi-
cal address. In order to perform that translation, the OS maintains a page table for every
process. This table denotes for every page of the process, if it is currently in memory and if
so, where. Figure 4.2 shows what the page tables would look like for the two processes in
Figure 4.1. Process A has three pages currently loaded into memory at locations 0, 1, and
3 (these locations are referred to as frames) and process B has one page currently loaded
into memory at location 2. The valid column is a bit that indicates if the page is currently
in memory (valid bit set to 1) or not.

If a referenced page is not currently in memory, a page fault is generated that causes an
interrupt. The OS gets involved at this point to perform swapping. First, the OS locates an
available frame to use in memory. If there are no available frames, then the OS must select
a page to discard. If the page has been modified, then it must first be saved back to swap
space. Once a frame is available, the OS then loads the new page from swap space into that
frame in memory. The OS modifies the page table to indicate the location of the new page
(and if a page has been removed from memory). Finally, the OS allows the CPU to resume
the current process.

As swap space is stored on hard disk, any paging (swapping) involves hard disk access.
Because the hard disk response time is so much slower than memory response time, any
swapping will slow down the execution of a program. Therefore, swapping is to be avoided
as much as possible. If the discarded page had to be written back to swap space first, this
increases the swap time even more.

Process A page table

Page Frame Valid

0 1 T
1 – F
2 – F
3 3 T
4 0 T

Process B page table

Page Frame Valid

0 – F
1 2 T
2 – F
3 – F
4 – F
5 – F
6 – F

fIgUre 4.2 Example page tables for processes in Figure 4.1.

102 ◾ Information Technology

Another factor requiring memory management is that processes generate addresses for
data accesses (loads and stores). What is to prevent a process from generating an address of
a section of memory that does not contain data of that process? A situation where a process
generates an address of another process’ memory space is called a memory violation. This
can happen through the use of pointers, for instance, in programming languages such
as C and C++. A memory violation should result in termination of the process, although
in C++, a programmer could also handle this situation through an exception handler,
which is an interrupt handler written by the programmer and included with the current
program.

resource management

Aside from memory and the CPU, there are many other resources available including the
file system, access to the network, and the use of other devices. The OS maintains a table of
all active processes and the resources that each process is currently using or wants to use.
Most resources can only be accessed in a mutually exclusive way. That is, once a process
starts using a resource, no other process can use the resource until the first process frees it
up. Once freed, the OS can decide which process next gets to access the resource.

There are many reasons for mutual exclusion, but consider this situation. A file stores
your checking account balance. Let us assume it is currently $1000. Now, imagine that
you and your significant other enter the bank, stand in line, and each of you is helped
by different tellers at the same time. You both ask to deduct the $1000. At the same time,
both tellers access the data and both find there is $1000 available. Sad that you are closing
out the account, they both enter the transaction, again at the same time. Both of the tell-
ers’ computers access the same shared disk file, the one storing your account information.
Simultaneously, both programs read the value ($1000), determine that it is greater than or
equal to the amount you are withdrawing, and reset the value to $0. You and your signifi-
cant other each walk out with $1000, and the balance has been reduced to $0. Although
there was only $1000 to begin with, you now have $2000! This is good news for you, but
very bad news for the bank. To prevent such a situation from happening, we enforce mutu-
ally exclusive access to any shared resource.

Access to any shared datum must be synchronized whether the datum is shared via a
computer network or is shared between two processes running concurrently on the same
computer. If one process starts to access the datum, no other process should be allowed to
access it until the first process completes its access and frees up the resource. The OS must
handle interprocess synchronization to ensure mutually exclusive access to resources.
Returning to our bank teller example, synchronization to the shared checking account
datum would work like this. The OS would receive two requests for access to the shared
file. The OS would select one of the two processes to grant access to. The other would be
forced to wait. Thus, while one teller is allowed to perform the database operation to deduct
$1000, the other would have to wait. Once the first teller is done, the resource becomes
freed, and the second teller can now access the file. Unfortunately, the second teller would
find the balance is $0 rather than $1000 and not hand out any money. Therefore, you and
your significant other will only walk away with $1000.

Introduction to Operating system Concepts ◾ 103

Aside from keeping track of the open resources, the OS also handles deadlock. A simple
version of deadlock is illustrated in Figure 4.3. The OS is multitasking between processes
P0 and P1, and there are (at least) two available resources, R0 and R1.

P0 runs for a while, then requests access to R0.

The OS determines that no other process is using R0, so grants the request.

P0 continues until the timer elapses and the OS switches to P1.

P1 runs for a while, then requests access to R1.

The OS determines that no other process is using R1, so grants the request.

P1 continues until the timer elapses and the OS switches to P0.

P0 continues to use R0 but now also requests R1.

The OS determines that R1 is currently in use by P1 and moves P0 to a waiting queue,
and switches to P1.

P1 continues to use R1 but now also requests R0.

The OS determines that R0 is currently in use by P0 and moves P1 to a waiting queue.

The OS is ready to execute a process but both running processes, P0 and P1, are in
waiting queues. Furthermore, neither P0 nor P1 can start running again until the
resource it is waiting for (R1 and R0, respectively) becomes available. But since each
process is holding onto the resource that the other needs, and each is waiting, there
will never be a time when the resource becomes available to allow either process to
start up again, thus deadlock.

To deal with deadlock, some OSs check to see if a deadlock might arise before granting
any request. This tends to be overcautious and not used by most OSs. Other OSs spend
some time every once in a while to see if a deadlock has arisen. If so, one or more of the
deadlocked processes are arbitrarily killed off, freeing up their resources and allowing the
other process(es) to continue. The killed-off processes are restarted at some random time

Solid lines indicate granted resources
Dotted lines indicate requested resources

P0 P1

R0 R1

fIgUre 4.3 A deadlock situation.

104 ◾ Information Technology

in the future. Yet other OSs do not deal with deadlock at all. It is up to the user to decide if
a deadlock has arisen and take proper action!

file system management

The primary task of early OSs was to offer users the ability to access and manipulate the
file system (the name MS-DOS stands for Microsoft Disk Operating System, and the com-
mands almost entirely dealt with the disk file system). Typical commands in file manage-
ment are to open a file, move a file, rename a file, delete a file, print a file, and create, move,
rename, and delete directories (folders). Today, these capabilities are found in file man-
ager programs such as Windows Explorer. Although these commands can be performed
through dragging, clicking, etc., they are also available from the command line. In Unix/
Linux, file system commands include cd, ls, mv, cp, rm, mkdir, rmdir, and lp. In DOS, file
system commands include cd, dir, move, copy, del, mkdir, rmdir, and print. There are a
wide variety of additional Unix/Linux commands that allow a system administrator to
manipulate the file system as a whole by mounting new devices or relocating where those
devices will be accessed from in the file space, as well as checking out the integrity of files
(for instance, after a file is left open and the system is rebooted).

Behind the scenes, the OS manages file access. When a user submits a command such
as to move a file or open a file, whether directly from the command line or from some
software, the user is in actuality submitting a request. The OS now takes over. First, the
OS must ensure that the user has access rights for the requested file. Second, the OS must
locate the file. Although users will specify file locations, those locations are the file’s logi-
cal location in the file system. Such a specification will include the disk partition and
the directory of the file (e.g., C:\Users\Foxr\My Documents\CIT 130). However, as will be
discussed in Chapter 5, files are broken up into smaller units. The OS must identify the
portion of the file desired, and its physical location. The OS must map the logical location
into a physical location, which is made up of the disk surface and location on the sur-
face. Finally, the OS must initiate the communication with the disk drive to perform the
requested operation.

protection and security

Most computers these days are a part of a larger network of computers where there may be
shared files, access to the network, or some other shared resource. Additionally, multiple
users may share the same computer. The files stored both locally and over the network
must be protected so that a user does not accidentally (or maliciously) overwrite, alter,
or inappropriately use another user’s files. Protection ensures that a user is not abusing
the system—not using someone else’s files, not misusing system resources, etc. Security
extends protection across a network.

A common mechanism for protection and security is to provide user accounts. Each
user will have a user name and authentication mechanism (most commonly, a password).
Once the OS has established who the user is, the user is then able to access resources and
files that the user has the right to access. These will include shared files (files that other users
have indicated are accessible) and their own files. Unix and Linux use a fairly simplistic

Introduction to Operating system Concepts ◾ 105

approach by placing every user into a group. Files can be read, written, and executed, and
a file’s accessibility can be controlled to provide different rights to the file’s owner, the file’s
group, and the rest of the world. For instance, you might create a file that is readable/writ-
able/executable by yourself, readable/executable by anyone in your group, and executable
by the world. We discuss user accounts, groups, and access control methods in Chapter 6.

fOrms Of prOCess managemenT
The various ways in which OSs will execute programs are

•	 Single tasking

•	 Batch

•	 Multiprogramming

•	 Multitasking

•	 Multithreaded

•	 Multiprocessing

A single tasking system, the oldest and simplest, merely executes one program until it
concludes and then switches back to the OS to wait for the user to request another program
to execute. MS-DOS was such an OS. All programs were executed in the order that they
were requested. If the running process required attention, such as a lengthy input or output
operation, the CPU would idle until the user or I/O device responded. This is very inef-
ficient. It can also be frustrating for users who want to do more than one thing at a time.
Aside from early PCs, the earliest mainframe computers were also single tasking.

A batch processing system is similar to a single tasking system except that there is a
queue (waiting line) for processes. The main distinction here is that a batch processing sys-
tem has more than a single user. Therefore, users may submit their programs for execution
at any time. Upon submitting a program request, the process is added to a queue. When the
processor finishes with one process, the OS is invoked to decide which of the waiting pro-
cesses to bring to the CPU next. Some form of scheduling is needed to decide which process
gets selected next. Scheduling algorithms include a priority scheme, shortest job first, and
first come first serve. For the priority scheme, processes are each given a priority depending
on the user’s status (e.g., administration, faculty, graduate student, undergraduate student).
Based on the scheduling algorithm, the load on the machine, and where your process is
placed in the queue, you could find yourself waiting minutes, hours, or even days before
your program executes! In shortest job first, the OS attempts to estimate the amount of
CPU time each process will require and selects the process that will take the least amount
of time. Statistically, this keeps the average waiting time to a minimum although it might
seem unfair to users who have time-consuming processes. First come first serve is the tradi-
tional scheme for any queue, whether in the computer or as found in a bank. This scheme,
also known as FIFO (first-in, first-out), is fair but not necessarily efficient.

106 ◾ Information Technology

Another distinction between a single tasking system and a batch processing system
is that the batch processing system has no interactivity with the user. In single tasking,
if I/O is required, the process pauses while the computer waits for the input or output
to complete. But in batch processing, all input must be submitted at the time that the
user submits the process. Since batch processing was most commonly used in the first
three computer generations, input typically was entered by punch cards or stored on mag-
netic tape. Similarly, all output would be handled “offline”, being sent to magnetic tape
or printer. Obviously, without interactivity, many types of processes would function very
differently than we are used to. For instance, a computer game would require that all user
moves be specified before the game started, and a word processor would require that all
edit and formatting changes to be specified before the word processor started. Therefore,
batch processing has limitations. Instead, batch processing was commonly used for such
tasks as computing payroll or taxes, or doing mathematical computations.

Notice that in batch processing, like in single tasking, only one process executes at a
time, including the OS. The OS would not be invoked when a new process was requested
by a user. What then would happen when a user submits a new process request? A separate
batch queuing system was in charge of receiving new user submissions and adding them
to the appropriate queue.

Although batch processing was common on computers in the first through third gen-
eration, running on mainframe and minicomputers, you can still find some batch process-
ing today. For instance, in Unix and Linux, there are scheduling commands such as cron
and at, and in Windows, the job scheduler program is available. Programs scheduled will
run uninterrupted in that they run without user intervention, although they may run in
some multitasking mode.

In a batch processing system, the input is made available when the process begins
execution through some source such as punch cards or a file on magnetic tape or disk.
A single tasking system, on the other hand, might obtain input directly from the user
through keyboard or some other device. Introducing the user (human) into the process
greatly slows down processing. Why? Because a human is so much slower at entering
information than a disk drive, tape drive, or punch card reader (even though the punch
card reader is very slow). Similarly, waiting on output could slow down processing even
if output is handled offline. The speed of the magnetic tape, disk, or printer is far slower
than that of the CPU. A single tasking system then has a significant inefficiency—input
and output slows down processing. This is also true of batch processing even though
batch processing is not as significantly impacted because there is no human in the pro-
cessing loop.

A multiprogramming system is similar to a batch system except that, if the current pro-
cess requires I/O, then that process is moved to another queue (an I/O waiting queue), and
the OS selects another process to execute. When the original process finishes with its I/O,
it is resumed and the replacement process is moved back into a queue. In this way, lengthy
I/O does not cause the CPU to remain idle, and so the system is far more efficient. The idea
of surrendering the CPU to perform I/O is referred to as cooperative multitasking. We will
revisit this idea below.

Introduction to Operating system Concepts ◾ 107

There are several different uses for queues in multiprogramming, so we need to draw a
distinction between them. There is the ready queue (the queue of processes waiting for the
CPU), I/O queues (one for each I/O device), and the waiting queue (the queue of processes
that have been requested to be run, but have not yet been moved into the ready queue). The
reason that there is a waiting queue is that those processes in the ready queue are already
loaded into memory. Because memory is limited in size, there may be processes requested
by users that cannot fit, and so they sit in the waiting queue until there is room in the ready
queue. There will be room in the ready queue if a process ends and exits that queue, or if
many processes have been moved from the ready queue to I/O queues.

The multiprogramming system requires an additional mechanism known as a con-
text switch. A context switch is merely the CPU switching from one process to another.
We examined this briefly earlier. Let us take a closer look. In order to switch processes,
the CPU must first save the current process’ status and retrieve the next process’ status.
Figure 4.4 provides a snapshot of a computer to illustrate the context switch. At this point,
process P3 is being executed by the CPU. The PC register stores the address in memory of
the next instruction of P3, the IR stores the current instruction of P3, the SP stores the top
of P3’s run-time stack in memory, the flags store the status of the last instruction executed,
and the data registers store relevant data for P3. The context switch requires that these
values be stored to memory. Then, P3 is moved to the appropriate I/O queue in memory,
moving process P7 up to the front of the ready queue. Finally, the CPU must restore P7’s
status, going to memory and retrieving the stored register values for P7. Now, the PC will
store the address in memory of P7’s next instruction, the IR will store P7’s current instruc-
tion, the SP will store the top of P7’s run-time stack, the flags will store the status of P7’s
last executed instruction, and the data registers will store the data last used by P7. The CPU
resumes its fetch–execute cycle, but now on P7 rather than P3. This continues until either
P3 is ready to resume or P7 requires I/O or terminates. In the former case, a context switch
occurs in which P3 is restored and P7 moved back in the queue, and in the latter cases, the
CPU switches from P7 to P0.

As the context switch requires saving and restoring the context of two processes,
it is not instantaneous, but rather is somewhat time consuming. The CPU idles during

CPU

Data
registers

PC

IR

SP

Flags

Ready queue

P3 P7 P0 P9 P1

Bus
Memory

P3’s code

P7’s code

Process status info

fIgUre 4.4 A context switch requires changing register values.

108 ◾ Information Technology

the switch. Most computers store process status in main memory. Therefore, the context
switch requires several, perhaps a dozen to two dozen, memory operations. These are slow
compared to CPU speed. If the context switch can store and restore from cache, so much
the better. However, some high-performance computers use extra sets of registers for the
context switch. This provides the fastest response and thus keeps the CPU idle during the
least amount of time. However, in spite of the CPU idle time caused by the context switch,
using the context switch in multiprogramming is still far more efficient than letting the
CPU idle during an input or output operation.

Multitasking takes the idea of multiprogramming one step further. In multiprogram-
ming, a process is only suspended (forced to wait) when it needs I/O, thus causing the CPU
to switch to another process. But in multitasking, a timer is used to count the number of
clock cycles that have elapsed since the last context switch started this process. The timer is
set to some initial value (say 10,000). With each new clock cycle, the timer is decremented.
Once it reaches 0, the timer interrupts the CPU to force it to switch to another process.
Figure 4.5, which is a variation of Figure 4.4, demonstrates the context switch as being
forced by the timer. The suspending process gets moved to the end of the ready queue and
must wait its turn. This may sound like a tremendous penalty for a process, but in fact
since modern processors are so fast, a suspended process only waits a few milliseconds at
most before it is moved back to the CPU. In multitasking systems, humans will not even
notice that a process has been suspended and then resumed because human response time
is greater than the millisecond range. Therefore, although the computer appears to be exe-
cuting several programs simultaneously with multitasking, the truth is that the computer
is executed the processes in a concurrent, or overlapping, fashion.

In multitasking, we see two mechanisms by which the CPU will move from one pro-
cess to another: because the current process is requesting some form of I/O or because
the timer has elapsed on this process. Multitasking is more properly considered to be
cooperative multitasking when the process voluntarily gives up the CPU. This happens in

CPU

Ready queue

P3 P7 P0 P9 P1

Data
registers

PC

IR

SP

Flags

Bus
Memory

P3’s code

P7’s code

Process status info

Interrupt signal to CPU
when timer reaches 0

Timer
0

fIgUre 4.5 A context switch in multitasking.

Introduction to Operating system Concepts ◾ 109

multiprogramming when the process requires I/O. In the case of the timer causing a con-
text switch, this form of multitasking is called competitive multitasking, or preemptive mul-
titasking. In this case, the process is forced to give up the CPU.

There are other reasons why a process might move itself to another queue or back to the
end of the ready queue. One such reason is forced upon a process by the user who moves
the process from the foreground to the background. We use the term foreground to denote
processes that are either immediately available for user input or currently part of the ready
queue. Background processes “sit in the background”. This means that the user is not inter-
acting with them, or is currently waiting until they have another chance at gaining access
to the processor. In Windows, for instance, the foreground process is the one whose tab
has been selected, the one “on top” of the other windows as they appear in the desktop. In
Linux, the same is true of GUI processes. From the command line, a process is in the fore-
ground unless it has been executed using the & command. This is covered in more detail
in Process Execution in Chapter 11.

Another reason that a process may voluntarily surrender the CPU has to do with wait-
ing for a rendezvous. A rendezvous occurs when one process is waiting on some informa-
tion (output, shared datum) from another process. Yet another reason for a process to
surrender the CPU is that the process has a low priority and other, higher priority pro-
cesses are waiting.

The original idea behind multitasking was called time sharing. In time sharing, the pro-
cess would give up the CPU on its own. It was only later, when OSs began implementing
competitive multitasking, that the term time sharing was dropped. Time sharing was first
implemented on mainframes in 1957 but was not regularly used until the third generation.
By the fourth generation, it was commonplace in mainframes but not in personal comput-
ers until the 1980s. In fact, PC Windows OSs before Windows 95 and Mac OS before OS X
performed cooperative, but not competitive, multitasking.

Multitasking uses a round-robin scheduling routine. This means that all processes in the
ready queue are given their own time with the CPU. The CPU moves on from one process
to the next as time elapses. The timer is then reset. Although this is a very fair approach,
a user may want one specific process to have more CPU attention than others. To accom-
plish this, the user can specify a priority for any or every process. Typically, all processes
start with the same priority. We will examine setting and changing process priorities in
Chapter 11.

Today, processes can contain multiple running parts, called threads. A thread shares the
same resources as another thread. The shared resources are typical shared program code
stored in memory, although they can also share data, register values, and status. What dif-
ferentiates one thread from another is that they will also have their own data. For instance,
you might run a Firefox web browser with several open tabs or windows. You are running
a single process (Firefox) where each tab or window is its own thread. The only difference
between each tab or window is its data. As the threads are of the same program, the OS
is running one process but multiple threads. A multitasking system that can switch off
between processes and between threads of the same process is known as a multithreaded
OS. See Figure 4.6, which illustrates a process of four threads. Each thread makes its own

110 ◾ Information Technology

way through the code, and although the four threads share some data, they each have their
own separate data as well.

Threads serve another purpose in programming. With threads in a process, the threads can
control their and other threads’ availabilities. Consider a process that contains two threads.
One thread produces values for a memory buffer. The other consumes values from the buffer.
In multithreading, the processor switches off between threads. However, the consumer thread
cannot proceed if the buffer is currently empty. This is because there is nothing to consume.
Therefore, the consumer thread can force itself to wait until the producer thread signifies that
a new datum has become available. On the other hand, the producer thread may force itself
to wait if the buffer is full, until the consumer signals that it has consumed something. The
two threads can “meet up” at a rendezvous. By forcing themselves to wait, the threads in this
example use cooperative multitasking (multithreading) in that they voluntarily give up the
processor, as opposed to being forced to surrender the processor when the timer elapses.

Going one step further than the rendezvous, it is important that two threads or pro-
cesses do not try to access a shared datum at the same time. Consider what might happen if
thread 1 is attempting to access the shared buffer and the thread is interrupted by a context
switch. It has already copied the next buffer item, but has not had a chance to reset the buf-
fer to indicate that the particular item is now “consumed”. Now, thread 2 is resumed and it
attempts to place a datum in the buffer only to find that the buffer is full. It is not actually
full because one item has been consumed. Therefore, access to the buffer by thread 2 causes
the thread to wait when it should not. Another situation is when the two threads share the
same datum. Recall our banking example from earlier in the chapter motivating the use of
mutual exclusive access. For threads, again, access to the shared datum must be mutually
exclusive. Now, we consider the same example using threads. Thread 1 reads the checking
account balance of $1000. Thread 1 is ready to deduct $1000 from it, but is interrupted by
the timer. Thread 2 reads the checking account balance, $1000, deducts $1000 from it and
stores the new value back, $0. Switching back to thread 1, it has an out-of-date value, $1000.

Shared data

�read 1 �read 2 �read 3 �read 4
Data Data Data Data

Four threads’
trajectories through
a process’ code

Process code (shared
among threads)

fIgUre 4.6 Threads of a process.

Introduction to Operating system Concepts ◾ 111

It deducts $1000, stores $0 back. The result is that the value is set to $0, but two different
threads deducted $1000. This would corrupt the data.

To ensure proper access to any shared data, the OS must maintain proper synchronization.
Synchronization requires that the process or thread is not interrupted while accessing a datum,
or that the datum is not accessible once one process or thread has begun accessing it until it has
been freed. Multiprogramming, multitasking, and multithreading require synchronization.

The advantage of the multithreaded OS over the multitasking OS is that context switch-
ing between threads is faster and more efficient than switching between processes. The rea-
son for this is that the context switch requires fewer operations to store the current thread
and restore the next thread than it does to store and restore processes. Imagine, referring
back to Figure 4.5, that process P7’s code has been moved out of memory and back to
virtual memory (swap space). A context switch between P3 and P7 would be somewhat
disastrous as the OS would not only have to store P3’s status and restore P7’s status, but
also would have to load some pages of P7 from disk to memory. This will not happen when
switching between threads. Assume that P3 and P7 are threads of the same process. The
context switch between them requires far less effort and therefore is much quicker.

Most computers, up until recently, were known as single-processor systems. That is, they
had only a single CPU. With one CPU, only one process or thread could be actively executing
at any time. In multiprogramming, multitasking, and multithreading, several processes (or
threads) could be active, but the CPU would only be executing one at any given time. Thus,
concurrent execution was possible using any of these modes of process execution, but not true
parallel processing. In multiprocessing, a computer has more than one CPU. If a computer,
for instance, had two processors, it could execute two processes or threads simultaneously,
one per processor. Today, most computers are being produced with multiple processors.

The more traditional form of multiprocessor system was one that contained more than
one CPU chip. Such computers were expensive and few personal computers were multipro-
cessor systems. However, with the continued miniaturization seen over the past decade,
enough space has been made available in a single CPU to accommodate multiple cores.
Thus, modern processors are referred to as dual or quad core processors. Each core is, in
effect, a processor; it has its own ALU (arithmetic/logic unit), control unit, registers, and
cache. The only thing it shares with the other processors on the chip are the pins that attach
the entire set of cores to the computer’s system bus.

Parallel processing presents an opportunity and a challenge. The opportunity is to
execute multiple processes simultaneously. For instance, one core might execute a web
browser process while another might execute an entertainment program such as a video
or mp3 player. The challenge, however, is to ensure that each core is being used as much as
possible. If the user is only running one process, could that process somehow be distrib-
uted to the multiple cores such that each core executes a separate portion of the process?
This requires a different mindset when writing program code. A programmer may try to
separate the logic of the program from the computer graphics routines. In this way, one
core might execute the logic and the other core the computer graphics routines. The idea
of distributing the processing over multiple processors is known as parallel programming,
and it remains one of the greater challenges open to programmers today.

112 ◾ Information Technology

We wrap up this section by comparing some of the approaches to process management
described in this section. Imagine that you want to run three programs called p1, p2, p3.
We will see how they run on a single tasking system, batch system, multiprogramming
system, and multitasking system.

In single tasking, p1 is executed until it completes, and then p2 is run, and then p3 is
run. This is not very satisfying for the user because you are unable to do multiple things at
a time (for instance, you might be editing a paper, searching the Internet for some refer-
ences, and answering email—you do not do them simultaneously, as you do not have them
all running at the same time). You cannot copy and paste from one program to another
either, because one program completes before the next starts.

In batch processing, the execution of the three processes is almost identical to single
tasking. There are two changes. First, since batch processing foregoes any interaction with
the user, all input must be supplied with the program and any output is performed only
after execution concludes. Second, a separate processing system might be used to schedule
the three processes as they are added to a waiting queue. Scheduling might be first come
first serve, priority, shortest job first, or some other form.

In multiprogramming, the computer would run p1 until either p1 terminated or p1
needed to perform I/O. At this point, the OS would move p1 to a waiting queue and start
p2. Now p2 will run until either p2 needs I/O, p2 terminates, or p1 is ready to resume. If
p2 needs I/O or terminates, then the OS would start p3. If p1 becomes ready, p1 is resumed
and p2 is forced to wait. Whereas in multiprogramming, input and output can be done on
demand, as opposed to batch, multiprogramming may not give the user the appearance of
interaction with the computer as processes are forced to wait their turn with the CPU and
I/O devices.

In multitasking, we truly get an overlapped execution so that the user cannot tell that
the CPU is switching between processes. For multitasking, the process works like this:

•	 Load p1, p2, p3 into memory (or as much of each process as needed)

•	 Repeat

•	 Start (or resume) p1 and set the timer to a system preset amount (say 10,000 cycles)

•	 Decrement the timer after each machine cycle

•	 When the timer reaches 0, invoke the OS

•	 The OS performs a context switch between p1 and p2

 − The context switch requires saving p1’s status and register values and restor-
ing p2’s status and register values, possibly also updating memory as needed

•	 Repeat with p2

•	 Repeat with p3

•	 Until all processes terminate

Introduction to Operating system Concepts ◾ 113

If any of p1, p2, and p3 were threads of the same process, then multithreading would be
nearly identical to multitasking except that the context switch would be less time consuming.

BOOTIng anD sysTem InITIalIzaTIOn
Main memory is volatile, that is, it requires a constant power supply to retain its contents.
Shut off the power and main memory becomes empty (all of its contents become 0s). After
shutting the computer down, memory is empty. The next time you turn on the computer,
memory remains empty. This is important because, in order to use the computer, you need
to have the OS loaded into memory and running. The OS is the program that will allow us
to load and run other programs. This presents a paradoxical situation: how can we get the
OS loaded and running when it is the OS that takes care of loading and running programs
for us and the OS is not in memory when we first turn the computer on? We need a special,
one-time process, called booting.*

The boot process operates as follows:

 1. The CPU initializes itself (initializes its registers) and sends out control signals to
various components in the computer system.

 2. The basic I/O system (BIOS) performs a power-on self-test (POST) where it checks
memory and tests devices for responses. It may also perform such tasks as to set
the system clock, enable or disable various hardware components, and communicate
with disk controllers.

 3. The hard disk controllers (SCSI first, then IDE) are signaled to initialize themselves,
other devices are tested, network card, USB, etc.

 4. BIOS determines where the OS is stored. This is usually done by testing each of these
devices in a preset order looking for the OS until it is found: floppy disk, CD-ROM,
first disk drive, second disk drive, or network.

 5. If your computer has multiple OSs, then a boot loader program is run to determine
which OS to load and run. Two programs used to dual boot in Windows and Linux
are GRUB (Grand Unified Boot loader) and LILO (Linux Loader).

 6. The OS kernel is loaded from disk into memory. The kernel represents the portions of
the OS that must be in memory to use the computer, or the core components of the
OS.

 7. At this point, control moves from the boot program to the OS kernel, which then
runs initialization scripts to finish the boot process. Initialization scripts are exactly
what they sound like, shell scripts that, when run, initialize various aspects of the
OS.

* The term booting comes from the word bootstrapping, which describes how one can pull himself up by his own boot-
straps, like a fireman when he gets up in the middle of the night in response to a fire alarm. The term itself is attributed
to the tales of Baron Munchhausen.

114 ◾ Information Technology

 (a) Linux begins by running the program init. Its primary job is to start the OS in a
particular run-level, such as text-only, text-with-network, graphics, or graphics-
with-network. Once the level has been selected, the program runs other scripts
such as the rc.sysinit script. This script, based on the run level, starts up various
services. For instance, if the system starts in a level with network availability, then
the network services must be started.

 (b) In Windows, one of the decisions is whether to start the OS in safe mode or
full user mode. Safe mode is a diagnostic mode primarily used so that a system
administrator can remove malicious software without that software making cop-
ies of itself or moving itself. Another task of initialization is to determine if a
secure login is necessary and if so, bring up a log in window. One of the last steps
of initialization is to start up a user-specific shell based on who logged in.

The boot process is a program. However, it cannot reside in RAM since, when the com-
puter is turned on, RAM is empty. Since the boot process does not change, we will store it
in ROM, which is nonvolatile since its contents are permanently fixed into place. However,
since ROM tends to be expensive, and since portions of the boot process need to be flexible,
we can store portions of the boot program, such as the boot loader program and parts of
the BIOS, on hard disk.

aDmInIsTraTOr aCCOUnT
In order to perform system-oriented operations, most OSs have a set of privileged instruc-
tions. For instance, to create new user accounts, test for security holes, and manipulate
system files you must have administrator access. Most OSs have two types of accounts, user
accounts, and administrator accounts.* The administrator account is sometimes referred
to as root or superuser. The administrator account comes with an administrator password
that only a few should know to prevent the casual user from logging in as administrator
and doing something that should not be done.

In Windows, the account is called Administrator. To switch to Administrator, you must
log in as Administrator, entering the proper password. In Linux, the account is called
root. To change to the root, you use the su command (switch user). Typically, su is used
to change from one user account to another by saying su username. The OS then requires
the password for username. If you do su without the username, then you are requesting to
change to root. Because you can run su from the command line prompt, you do not have
to log out. In fact, you can open numerous windows, some of which are controlled as you,
the user, and some as root.

The administrator account is the owner for all of the system software and some of the
applications software. In Linux, an ls –l (long listing) of directories such as /sbin, /bin, /usr/
bin, and /usr/sbin will demonstrate that many of the programs and files are owned by root.
In many cases, root is the only user that can access them. In other cases, root is the only

* There are some operating systems that have more than two levels of accounts. In the MULTICS operating system for
instance, there are eight levels of access, with each higher level gaining more access rights.

Introduction to Operating system Concepts ◾ 115

user that can write to or execute them but others can view them. For instance, you must
be root to run useradd and userdel so that only the system administrator(s) can add and
delete user accounts. The root account in Linux is also peculiar in that root’s home direc-
tory is not in the same partition as the users’ home directories. User home directories are
typically under /home/username, whereas root is under /root.

As an IT person, you should always be aware of when you are logged in as an adminis-
trator and when you are not. In Linux, you can differentiate between the two by looking
at the prompt in the command line. The root prompt in Linux is typically # and the user
prompt is typically $ (unless you alter it). You can also find out who you are in Linux by
using the command whoami. You might wonder why it is important to remember who you
are, but you do not want to issue certain commands as root casually. For instance, if you
are a user and you want to delete all of the files in a directory, including any subdirectories,
you might switch to that directory and issue rm –rf *. This means “remove all files recur-
sively without asking permission”. By “recursively” deleting files, it also deletes all subdi-
rectories and their files and subdirectories. If you are in the wrong directory, the OS will
probably tell you that it is not able to comply because you do not own the files. But if you
are in the wrong directory AND you are root, then the OS performs the deletion and now
you have deleted the wrong files by mistake. You may think that you will have no trouble
remembering who you are, but in fact there will be situations where you will log into one
window as root and another as yourself in order to change OS settings (as root) and test
those changes out (as a normal user).

InsTallIng an Os
When you purchase most computers today, they have a preinstalled OS. Some users may
wish to install a different OS, or because of such situations as computer virus infections,
deleted files, or obsolete OSs, a user may wish to reinstall or upgrade an OS. In addi-
tion, adding an OS does not necessarily mean that the current OS must be replaced or
deleted.

A user may install several OSs, each in its own disk partition, and use some boot load-
ing program such as GRUB, LILO, and BOOTMGR. When the computer first boots, the
four hardware initialization steps (See the section Booting and System Initialization) are
performed. Step 5 is the execution of the bootloader program, which provides a prompt for
the user to select the OS to boot into. Once selected, the boot process loads the selected OS,
which is then initialized, and now the user is able to use the computer in the selected OS.
To change OSs, the user must shut down the current OS and reboot to reach the bootloader
program. Loading multiple OSs onto a computer can lead to difficulties especially when
upgrading one of the OSs or attempting to repartition the hard drive. Another way to have
access to multiple OSs is to use VMs. The VM is in essence a self-contained environment
into which you can install an OS. The VM itself is stored as data on the hard disk until it is
executed. Therefore, the VM only takes up disk space. If your computer has an older pro-
cessor, it is possible that executing a VM will greatly slow down your computer, but with
modern multicore processors available, VMs can run effectively and efficiently. This also
allows you to have two (or more) OSs open and running at the same time, just by moving

116 ◾ Information Technology

in and out of the VM’s window. With VM software, you can create multiple VMs and run
any or all of them at the same time.

The remainder of this section discusses how to install two OSs, Red Hat Linux (specifi-
cally, CentOS 5.5), and Windows 7. It is recommended that if you attempt either instal-
lation, that you do so from within a VM. There are commercial and free VM software
products available such as VMWare’s VMWare Client, VMWare Player, VMWare Server,
and vSphere, and Sun’s VirtualBox (or VBox).

Installing Windows

To install Windows 7, you start by inserting a Windows 7 CD into your optical drive and
then booting the computer. As your computer is set up to boot to an OS on hard disk,
unless your computer has no prior OS, you will have to interrupt the normal boot process.
This is done, when booting, by pressing the F12 function key.* It is best to press the key
over and over until you see your computer respond to it. This takes you to the boot options,
which is a list of different devices that can be booted from. Your choices are typically hard
disk, optical disk, network, USB device, and possibly floppy disk. Select the optical disk.
The optical disk will be accessed and the installation process begins.

In a few moments, you will be presented with the first of several Windows 7 installa-
tion dialogs. The typical installation requires only selecting the default (or recommended)
settings and clicking on Next with each window. Early on, you will be asked to select the
language to install (e.g., English), time and currency format, and input/keyboard type (e.g.,
US). Then, you will be prompted to click on the Install Now button (this will be your only
option to proceed). You will be asked to accept the licensing terms.

You are then given options for a custom installation or an upgrade. You would select
upgrade if you already had a version of Windows 7 installed and were looking to upgrade
the system. This might be the case, for instance, if your Windows 7 were partially damaged
or years out of date. The custom installation does not retain any previous files, settings, or
programs, whereas upgrade retains them all. The custom installation can also allow you
to change disks and partitioning of disks. You are then asked where windows should be
installed. If you have only a single hard disk drive, there is no choice to make.

From this point, the installer will run for a while without interruption or need for user
input (perhaps 10 to 20 minutes depending on the speed of your optical drive and proces-
sor). During this time, Windows will reboot several times. When prompted again, you
will be asked to create an initial account and name your computer. The default name for
the computer is merely the account name you entered followed by –PC. For instance, if
you specify the name Zappa, then the computer would default to Zappa-PC. You can, of
course, change the default name. The next window has you finish the account information
by providing an initial password for the account along with a “hint” in case you are prone
to forgetting the password. This initial account will allow the user to immediately begin
using the computer without requiring that an Administrator create an account.

* The actual function key may differ depending on your particular manufacturer. Instructions appear during system
booting to tell you which function key(s) to use.

Introduction to Operating system Concepts ◾ 117

Before proceeding, Windows now requests a product key. This is a code that is prob-
ably on the CD packaging. The key will be a combination of letters and numbers and
be 25 characters long. This ensures that your version of Windows is authorized and not
pirated.

The next step is for Windows to perform automated updates. Although this step is
optional, it is highly useful. It allows your installation to obtain the most recent patches of
the Windows 7 OS. Without this step, you would be limited to installing the version of the
OS as it existed when the CD was manufactured. If you choose to skip this step, Windows
would install the updates at a later time, for instance, the first time you attempt to shut
down your computer.

After updates are installed, you set the time zone and have the option of adjusting the
date and time. Finally, you are asked to specify the computer’s current location, which is in
essence selecting a network for your computer to attempt to connect to. Your options are
Home network, Work network, and Public network. This is an option that you can reset at
a later time. Once selected, your computer will try to connect to the network. Finally, your
desktop is prepared and the OS initializes into user mode. You are ready to go!

Although you are now ready to use your computer, Windows booted with settings that
were established by the Windows programmers. At this point, if you wish to make changes
to your desktop, you should do so through the Control Panel. You may, for instance, change
the style of windows, the desktop background, the color settings used, the resolution of the
screen, and the size of the desktop icons. You can also specify which programs should be
pinned to the taskbar that runs along the bottom of the desktop, and those that should
appear at the top of the programs menu. You should also ensure that your network firewall
is running.

Installing Windows 7 is easy and not very time consuming. From start to finish, the
entire installation should take less than an hour, perhaps as little as 30 minutes.

Installing linux

Similar to Windows 7, installing Red Hat Linux can be done through CD. Here, we assume
that you have a CentOS 5.5 installation CD. The installation is more involved than with
Windows and requires an understanding of concepts such as disk partitioning (disk parti-
tions are described in Chapter 5).

Upon booting from the installation CD, you will be presented with a screen that has
several installation options such as testing the media (not really necessary unless you have
created the install CD on your own) and setting the default language.

Now you reach the disk partitioning step. In a new install, it is likely that the hard disk
is not partitioned and you will have to specify the partitions. If you are installing Linux
on a machine with an existing OS, you will have to be careful to partition a free disk.
Note that this does not necessarily require two or more hard disk drives. The “free disk”
is a logical designation and may be a partition that is not part of the other OS. If parti-
tions already exist that you want to remove, you must select “Remove Linux partitions on
selected drives and create default layout” and select the “Review and modify partitioning
layout” checkbox.

118 ◾ Information Technology

Here, you must specify the partitions of your Linux disk. You will want to have different
partitions for each of the root partition, the swap space, and the user directories. You may
want a finer group of partitions by, for instance, having a partition for /var and for /usr;
otherwise, these directories will be placed under root. For each partition, you must select
the mount point (the directory) or the file system (for swap), the size of the partition, and
whether the partition should be fixed in size, or fill the remaining space available. As an
example, you might partition your Linux disk as follows:

•	 Mount Point: select /(root), size of 4000 (i.e., is 4 GB), fixed size

•	 Mount Point: select /var, size of 1000, fixed size

•	 File System Type: swap (do not select a Mount Point), size of 1000, fixed size

•	 Mount Point: select /home, fill to maximum allowable size

At this next screen, you will be asked for a boot loader. GRUB is the default and should
be selected and installed on the main hard disk, which is probably /dev/sda1. For network
devices, you need to specify how an IP address is to be generated. The most common tech-
nique is to have it assigned by a server through DHCP. The last question is to select your
time zone.

You are asked to specify the root password of the system. This password will be used by
the system administrator every time a system administration chore is required such as cre-
ating an account or installing software. You want to use a password that you will not forget.

At the next screen, you can specify what software should automatically be installed with
CentOS. Desktop—Gnome should already be selected. You may select other software at
this point, or Customize Later. The installation is ready to begin. This process usually takes
5 to 10 minutes. When done, you will be prompted to reboot the system. Once rebooted,
you finalize the installation process. This includes setting up the initial firewall settings
(the defaults will probably be sufficient) and whether you want to enforce SELinux (secu-
rity enhanced). Again, the default (enforcing) is best. You are able to set the date and time.
Finally, you are asked to create an initial user account, much like with Windows. This
account is required so that, as a user, you can log into the GUI. It is not recommended that
you ever log in to the GUI as root. Unlike Windows, you do not have to reboot at this point
to start using the system; instead, you are taken to a log in window and able to proceed
from there by logging in under the user account just created.

fUrTher reaDIng
As with computer organization, OS is a required topic in computer science. There are a
number of texts, primarily senior-level or graduate reading. Such texts often discuss OS
tasks such as process management, resource management, and memory management. In
addition, some highlight various OSs. The following texts target computer science stu-
dents, but the IT student could also benefit from any of these texts to better understand the
implementation issues involved in designing OSs.

Introduction to Operating system Concepts ◾ 119

•	 Elmasri, R., Carrick, A., and Levine, D. Operating Systems: A Spiral Approach. New
York: McGraw Hill, 2009.

•	 Garrido, J. and Schlesinger, R. Principles of Modern Operating Systems. Sudbury, MA:
Jones and Bartlett, 2007.

•	 Silberschatz, A., Galvin, P., and Gagne, G. Operating System Concepts. Hoboken, NJ:
Wiley & Sons, 2008.

•	 Stallings, W. Operating Systems: Internals and Design Principles. Upper Saddle River,
NJ: Prentice Hall, 2011.

•	 Tanenbaum, A. Modern Operating Systems. Upper Saddle River, NJ: Prentice Hall,
2007.

For the IT student, texts specific to Linux, Windows, Unix, and Mac OS will be essen-
tial. These texts typically cover how to use or administer the OS rather than the theory
and concepts underlying OSs. Texts range from “for dummies” introductory level texts to
advanced texts for system administrators and programmers. A few select texts are listed
here for each OS. Many of these texts also describe how to install the given OS.

•	 Adelstein, T. and Lubanovic, B. Linux System Administration. Sebastopol, CA:
O’Reilly Media, 2007.

•	 Bott, E., Siechert, C., and Stinson, C. Windows 7 Inside Out. Redmond, WA: Microsoft
Press, 2009.

•	 Elboth, D. The Linux Book. Upper Saddle River, NJ: Prentice Hall, 2001.

•	 Frisch, E. Essential System Administration. Cambridge, MA: O’Reilly, 2002.

•	 Fox, T. Red Hat Enterprise Linux 5 Administration Unleashed. Indianapolis, IN:
Sams, 2007.

•	 Helmke, M. Ubuntu Unleashed. Indianapolis, IN: Sams, 2012.

•	 Hill, B., Burger, C., Jesse, J., and Bacon, J. The Official Ubuntu Book. Upper Saddle
River, NJ: Prentice Hall, 2008.

•	 Kelby, S. The Mac OS X Leopard Book. Berkeley, CA: Peachpit, 2008.

•	 Nemeth, E., Snyder, G., Hein, T., and Whaley, B. Unix and Linux System Administration
Handbook. Upper Saddle River, NJ: Prentice Hall, 2010.

•	 Russinovich, M., Solomon, D., and Ionescu, A. Windows Internal. Redmond, WA:
Microsoft Press, 2009.

•	 Sarwar, S. and Koretsky, R. Unix: The Textbook. Boston, MA: Addison Wesley, 2004.

•	 Sobell, M. A Practical Guide to Linux Commands, Editors, and Shell Programming.
Upper Saddle River, NJ: Prentice Hall, 2009.

120 ◾ Information Technology

•	 Wells, N. The Complete Guide to Linux System Administration. Boston, MA: Thomson
Course Technology, 2005.

•	 Wrightson, K. and Merino, J., Introduction to Unix. California: Richard D. Irwin,
2003.

There are also thousands of websites set up by users and developers, and many are worth
exploring.

Virtualization and VMs are becoming a very hot topic although the topic is too advanced
for this text. Books again range from “for dummies” books to texts on cloud computing.
Three references are listed here:

•	 Golden, B. Virtualization for Dummies. Hoboken, NJ: Wiley and Sons, 2007.

•	 Hess, K., and Newman, A. Practical Virtualization Solutions. Upper Saddle River, NJ:
Prentice Hall, 2010.

•	 Kusnetzky, D. Virtualization: A Manager’s Guide. Massachusetts: O’Reilly, 2011.

reVIeW Terms
Terminology from this chapter

Background Initialization

Batch Initialization script

BIOS Interactivity

Booting Interrupt

Boot Loader Interrupt handler

Command line I/O queue

Competitive multitasking Kernel

Concurrent processing Memory management

Context switch Memory violation

Cooperative multitasking Multiprocessing

Deadlock Multiprogramming

Device driver Multitasking

File system management Multithreading

Foreground Mutually exclusive

Introduction to Operating system Concepts ◾ 121

Nonvolatile memory Security

Page Shell

Page fault Single tasking

Page table Swap space

Process Swapping

Process management Synchronization

Process status Thread

Program Timer

Protection User account

Queue User interface

Ready queue Utility program

Rendezvous Virtual machine

Resource management Virtual memory

Root Volatile memory

Root account Waiting queue

Round-robin scheduling

RevIew QuestIons

 1. In what way does the OS support convenient access for a user?

 2. What does the OS help a user control?

 3. What components of an operating system are always in memory?

 4. Why might a user prefer to use a command line for input over a GUI?

 5. What types of status can a process have?

 6. What is an interrupt and when might one arise?

 7. What types of situations might cause a disk drive to raise an interrupt? The keyboard?

 8. Why might a USB flash drive raise an interrupt?

 9. Aside from hardware, programs can raise interrupts. Provide some examples of why
a program might raise an interrupt. Note: if you are familiar with a programming
language such as C++ or Java, an interrupt can trigger an exception handler. This
might help you more fully answer this question.

122 ◾ Information Technology

 10. When does the CPU check for an interrupt? What does the CPU do immediately
before handling an interrupt?

 11. In virtual memory, what is swapped into and out of memory? Where is virtual mem-
ory stored?

 12. Given the following page table for some process, X, which of X’s pages are currently
in memory and which are currently not in memory? Where would you look for page
4? For page 5?

Process X Page Table

Page Memory Frame valid Bit
0 12 1
1 3 1
2 – 0
3 – 0
4 9 1
5 – 0
6 – 0
7 2 1

 13. What happens if a memory request is of a page that is not currently in memory?

 14. Why is swapping a slow process?

 15. If a resource’s access is not synchronized, what could happen to the resource?

 16. If a resource does not require mutually exclusive access, can it be involved in a
deadlock?

 17. Assume a deadlock has arisen between processes P0 and P1. What has to happen
before either process can continue?

 18. If a deadlock arises, what are the choices for the user?

 19. What is the difference between the OS roles of protection and security?

 20. What is the difference between single tasking and batch processing?

 21. What is the difference between batch processing and multiprogramming?

 22. What is the difference between multiprogramming and multitasking?

 23. What is the difference between multitasking and multithreading?

 24. What is the difference between competitive and cooperative multitasking?

 25. Why might you use shortest job first as a scheduling algorithm?

 26. What is the difference between placing a process in the waiting queue versus the
ready queue?

Introduction to Operating system Concepts ◾ 123

 27. What does the CPU do during a context switch?

 28. What changes when a context switch occurs?

 29. Why are context switches more efficient between threads than processes?

 30. What is the difference between a process in the foreground and a process in the
background?

 31. What are the steps of a boot process?

 32. Why is the boot program (at least in part) stored in ROM instead of RAM or the hard
disk?

 33. What is BIOS and what does it do?

 34. What is an initialization script? Provide an example of what an initialization script
does.

 35. Why should a system administrator log in to a computer running a GUI environ-
ment as his/herself and then switch to the administrator account instead of logging
in directly as the administrator?

DIscussIon QuestIons

 1. Are you a fan of entering OS commands via the command line instead of using a
GUI? Explain why or why not.

 2. What are the advantages and disadvantages of using the command line interface for
an ordinary end user? What are the advantages and disadvantages of using the com-
mand line interface for a system administrator?

 3. Are you more likely to use the command line in Windows or Linux, both, or neither?
Why?

 4. As an end user, how can an understanding of concepts such as virtual memory, pro-
cess management, deadlock, protection, and security help you?

 5. Identify specific situations in which understand operating system concepts will be
essential for a system administrator.

 6. Consider a computer without an interrupt system. In such a system, if a program is
caught doing something that you do not want it to (e.g., an infinite loop), you would
not be able to stop it by closing the window or typing control-c or control-alt-delete.
What other things would your computer not do if it did not have an interrupt system?

 7. As a user, do you need to understand concepts such as a context switch, cooperative
multitasking, competitive multitasking, and multithreading? Explain.

124 ◾ Information Technology

 8. As a system administrator, do you need to understand concepts such as a context
switch, cooperative multitasking, competitive multitasking, and multithreading?
Explain.

 9. As a system administrator, do you need to understand concepts of threads, synchro-
nization, and rendezvous? Explain.

 10. Rebooting a computer starts the operating system in a fresh environment. However,
booting can be time consuming. If you are a Windows user, how often do you reboot?
How often would you prefer to reboot? Under what circumstances do you reboot your
computer?

 11. You are planning on purchasing a new computer. In general, you have two choices
of platform, Mac or Windows. You can also install other operating systems. For
instance, it is common to install Linux so that your computer can dual boot to either
Windows or Linux. Alternatively, you could wipe the disk and install Linux. How
would you decide which of these to do? (Mac, Windows, dual boot, Linux, other?)

125

C h a p t e r 5

Files, Directories, and
the File System

The logical and physical implementations of file systems are covered in this chapter. The
logical view of a file system is the organizational units of files, directories, and partitions.
The physical implementation is the translation from the logical view to the physical loca-
tion on disk storage of the file components. File systems of both DOS/Windows and Linux
are presented including the top level directories and the implementation of block indexing.
The chapter concludes with a section that explores how to navigate through the file systems
using command line instructions.

The learning objectives of this chapter are to

•	 Describe the elements of the file system from both the logical and physical viewpoint.

•	 Describe how files are physically stored and accessed.

•	 Present the use of the top level directories in both Windows and Linux.

•	 Illustrate through example Linux and DOS commands to navigate around a file
system.

In this chapter, we will examine the components of a file system and look specifically at
both the Windows file system and the Unix/Linux file system.

Files and directories
A file system exists at two levels of abstraction. There is the physical nature of the file sys-
tem—the data storage devices, the file index, and the mapping process of taking a name and
identifying its physical location within the hard disks (and other storage media). There is
also the logical nature of the file system—how the physical system is partitioned into inde-
pendently named entities. As both users and system administrators, we are mostly inter-
ested in the logical file system. The details for how the files and directories are distributed

126 ◾ information technology

only becomes of interest when we must troubleshoot our file system (e.g., corrupt files, the
need to defragment the file system). We will take a brief look at the physical nature of file
systems later in this chapter, but for now, we will concentrate on the logical side.

In a file system, you have three types of entities:

•	 Partitions

•	 Directories

•	 Files

A partition is a logical division within the file system. In Windows, a partition is denoted
using a letter, for instance C:\ versus D:\ might both refer to parts of the hard disk, but to two
separate partitions. In Linux, a partition refers to a separate logical disk drive although, in
fact, several partitions may reside on a single disk. We place certain directories in a partition,
thus keeping some of the directories separated. For instance, the swap space will be placed
on one partition, the users’ home directories on a second, and quite likely the Linux operat-
ing system (OS) on a third. You usually set up a partition when you first install the OS. Once
established, it is awkward to change the size or number of partitions because that might cause
an existing partition’s space to be diminished and thereby require that some of the files in
that partition be moved or deleted. Partitions are not that interesting, and it is likely that once
you set up your OS, you will not have to worry about the individual partitions again.

Directories, also known as folders, allow the user to coordinate where files are placed.
Unlike partitions, which are few in number, you can create as many directories as desired.
Directories can be placed inside of directories giving the user the ability to create a hierar-
chical file space. Such a directory is usually referred to as a subdirectory. The hierarchical
file space is often presented in a “tree” shape. At the top, or root, of the tree are the parti-
tions. Underneath are the top level directories. Underneath those are files and subdirec-
tories. The tree branches out so that the leaves are at the bottom. File manager programs
often illustrate the tree in a left to right manner (the left side has the root of the tree); as you
move toward the right, you have subdirectories branching out, and the leaves (which are
individual files) are at the right end of any branch. Figure 5.1 illustrates typical file spaces
as viewed in file manager software: Windows on the left-hand side and Linux on the right.
In both OSs, the topmost level is the computer itself, which has underneath it the various
file spaces or drives. In modern computers, it is common to have the hard disk drive (C:)
and an optical drive (D:). There may be additional drives listed, such as an external hard
disk, floppy disk, USB flash drive, file server available by network, or partitions within the
internal hard disk itself. In this latter case, in Linux, they may all still appear underneath
Filesystem, as shown in Figure 5.1. The top level of the Linux file system contains a num-
ber of preestablished directories. In Windows, the file system is typically limited to initial
directories of Program Files (two directories in Windows 7 to denote the 32-bit programs
from the 64-bit programs), Users (the user home directories), and Windows (the OS). In
Linux, the directory structure is more defined. We will explore the use of the various direc-
tories in detail later in this chapter.

Files, directories, and the File system ◾ 127

Files are the meaningful units of storage in a file system. They comprise data and pro-
grams, although we can think of programs as being special types of data files. Data files
come in all sizes and types. Data files might be text files, formatted text files using spe-
cial escape or control characters, or binary files. In Linux, text files are very common.
In Windows, data files are more commonly those produced from software such as Word
documents (docx) and Excel files (xlsx). Data files may also be multimedia files such as
music or sound files (wav, mp3), image files (gif, jpg, bmp), and movie files (mpg, avi, mov).

Files have names. In older OSs, file names were limited to up to eight characters followed
by an optional extension that could be up to three characters. Separating the name from
the extension is a period. In much older OSs, the characters used in file names were lim-
ited to alphabetical, numeric, underscore, and hyphen characters only. Today, file names
can include spaces and some other forms of punctuation although not every character is
allowable. Longer names are often useful because the name should be very descriptive.
Some users ignore extensions but extensions are important because they tell the user what
type of file it is (i.e., what software created it). File extensions are often used by the OS to
determine how a file should be opened. For instance, if you were to double click on a data
file’s icon, the OS could automatically open that file in the proper software if the file has an
extension, and the extension is mapped to the proper software.

Aside from file types and names, files have other properties of note. Their logical location
in the file system is denoted by a pointer. That is, the descriptor of the file will also contain
its location within the file system space. For instance C:\Users\foxr\My Documents\cit130\
notes\ch7.docx describes the file’s logical position in the file system but not its physical
location. An additional process must convert from the logical to physical location. The file’s

FiGUre 5.1 Typical file spaces.

128 ◾ information technology

size, last modification time and date, and owner are also useful properties. Depending on
the OS, the creation time and date and the group that owns the file may also be recorded.
You can find these properties in Windows by right clicking on any file name from the
Windows Explorer and selecting Properties. In Linux, you can see these properties when
you do an ls –l command.

Files are not necessarily stored in one contiguous block of disk space. Instead, files are
broken into fixed sized units known as blocks. A file’s blocks may not be distributed on a
disk such that they are in the same track or sector or even on the same surface. Instead,
the blocks could be distributed across multiple disk surfaces. This will be covered in more
detail later in the chapter.

Many older OSs’ commands were oriented toward managing the file system. The DOS
operating system for instance stands for Disk Operating System. There were few com-
mands other than disk operations that a user would need. This is not to say that the OS
only performed operations on the file system, but that the user commands permitted few
other types of operations. Common commands in both MS-DOS and Linux are listed
below. Similarly, Windows mouse operations are provided. We will explore the Linux and
DOS commands in more detail in Moving around the File System.

Linux:

•	 ls—list the files and subdirectories of the given directory

•	 mv—move or rename a file or directory

•	 cp—copy a file or directory to a new location

•	 rm—remove (delete) a file

•	 cat, more, less—display the contents of a file to the screen

•	 mkdir—create a new (sub)directory

•	 rmdir—remove a directory; the directory must be empty for this to work

DOS:

•	 dir—list the files and subdirectories of the given directory

•	 move—move a file to a new location, or rename the file

•	 copy—copy a file to a new location

•	 del—remove (delete) a file

•	 type—display the contents of a file to the screen

•	 mkdir—create a new (sub)directory

•	 rmdir—remove a directory; the directory must be empty for this to work

Files, directories, and the File system ◾ 129

Windows (using Windows Explorer; see Figure 5.2):

•	 To view a directory’s contents, click on the directory’s name in the left-hand pane; its
contents are shown in the right-hand pane—if the directory is not at the top level, you
will have to expand its ancestor directories from the top of the file system until you
reach the sought directory.

•	 To move a file, drag the file’s icon from the right-hand pane in its current directory to
a directory in the left-hand pane.

•	 To copy a file, right click on the file’s icon, select copy, move to the new directory by
clicking on that directory in the left-hand pane, and then in the right-hand pane,
right click and select paste.

•	 To rename a file, right click on the file’s icon, select rename (or click in the file’s name
in the icon twice slowly), and then type the new name.

•	 To delete a file (or folder), drag the icon into the recycle bin (or right click on the icon
and select delete or left click on the icon and press the delete key) —you will have to
separately empty the recycle bin to permanently delete the file.

•	 To create a new directory (folder), click on the button New Folder. Or, right click
in the right-hand pane and select new and then folder, then name the folder once it
appears.

Right hand pane

Left hand pane

FiGUre 5.2 Windows Explorer.

130 ◾ information technology

•	 To display the contents of a file, you can double click on the file icon and it should
launch in whatever software is associated with the file’s extensions.

Note that in Windows, file extensions may not appear in the file manager, so you would
have to set it up so that file extensions appear (if you want to see them).

In order to reduce the impact that large files have on the available space in a file system,
the user can perform file compression. There are two forms of file compression. In lossless
file compression, a file is reduced in size such that, when it is uncompressed to its original
form, no data are lost. There are many algorithms for performing lossless file compression,
and they will work especially well on text files. With lossless file compression, you usually
have to uncompress the file before you can access it (there are exceptions such as the FLAC
audio compression algorithm). The advantage of lossless file compression is that files that
are not currently in use can be stored in greatly reduced sizes. The primary disadvantage is
that compressing and uncompressing the file is time consuming.

Lossy file compression actually discards some of the data in order to reduce the file’s size.
Most forms of streaming audio and video files are lossy. These include .avi, .mpg, .mov (video)
and .wav and .mp3 (audio). Most forms of image storage also use lossy file compression, such
as .jpg. If you were to compare a bitmap (.bmp) file to a .jpg, you would see that the .bmp
has greater (perhaps much greater) clarity. The .jpg file saves space by “blurring” neighbor-
ing pixels. The .gif format instead discards some of the colors so that if the image uses only
the standard palette of colors, you would not see any loss in clarity. However, if the .gif uses
different colors, the image, while having the same clarity, would not have the correct colors.

When you have a collection of files, another useful action is to bundle them together
into an archive. This permits easy movement of the files as a group whether you are placing
them in backup storage or uploading/downloading them over the Internet. File archiving
is common when a programmer wants to share open source programs. The source code
probably includes many files, perhaps dozens or hundreds. By archiving the collection, the
entire set of source code can be downloaded with one action rather than requiring that a
user download files in a piecemeal fashion. One very common form of archiving is through
the zip file format, which performs both file compression and archiving. To retrieve from
a zipped file, one must unzip the file. There are numerous popular software packages for
performing zip and unzip including winzip and winrar in Windows, and gzip and gunzip
in Linux. Linux also has an older means for archiving called tar. The tar program (tape
archive) was originally used to collect files together into a bundle and save them to tape
storage. Today, tar is used to archive files primarily for transmission over the Internet. The
tar program does not compress, so one must compress the tar file to reduce its size.

Lossy compression is primarily used on image, sound, and movie files, whereas lossless
compression is used on text files and software source files. The amount of compression,
that is, the reduction in file size, depends on the compression algorithm applied and the
data itself. Text files often can be greatly reduced through compression, by as much as 88%.
Lossy audio compression typically can compress data files down to 10% or 20% of their
original version, whereas lossless audio compression only reduces files to as much as 50%
of their original size.

Files, directories, and the File system ◾ 131

File systems and disks
The file system is the hierarchical structure that comprises the physical and logical file space.
The file system includes an index to map from a logical file name to a physical location. A file
system also includes the capability of growing or shrinking the file space by adding and delet-
ing media. This is sometimes referred to as mounting. A mounted file space is one that can
later be removed (unmounted). The file system is physically composed of secondary storage
devices, most predominantly an internal hard disk drive, an internal optical drive, and pos-
sibly external hard disk drives. Additionally, users may mount flash drives and tape drives. For
a networked computer, the file space may include remote drive units (often called file servers).

The OS maintains the file space at two levels: logical and physical. Our view of the file
space is the logical view—partitions, directories, and files. In order to access a file, the OS
must map from the logical location to the physical location. This is done by recording the
physical location of a file in its directory information. The location is commonly referenced
by means of a pointer. Let us assume that we are dealing with files stored only on hard disk.
The pointer indicates a particular file system block. This must itself be translated from a
single integer number into a drive unit, a surface (if we are dealing with a multiplatter disk
drive), a sector, and a track on the disk (Figure 5.3). The term cylinder is used to express the
same track and sector numbers across all platters of a spinning disk. We might reference a
cylinder when we want to access the same tracks and sectors on each surface simultaneously.

As an example, imagine file f1.txt is located at block 381551. Our file system consists of
one hard disk with four platters or eight surfaces. Furthermore, each surface has 64 sec-
tors and 2048 tracks. We would locate this block on surface 381551/(64 * 2048) = surface
2 (starting our count at surface 0). Surface 2 would in fact contain blocks 262144 through
393216. We would find block 381551 in sector 58 (again, starting our count at sector 0) since

Sectors

Disk surface
broken into
tracks and
sectors

Tracks

Read/write
head arm
swings in an
arc to reach
any disk track

Spindle spins all disk
surfaces, read/write head
waits until proper sector
rotates underneath it

Drive spindle
4 platter disk drive

8 read/write heads

1 above and
1 below each surface

Read/write
arm actuator

All read/write heads
move together on
one arm

FiGUre 5.3 Hard disk layout. (Adapted in part from the public domain image by LionKimbro at
http://commons.wikimedia.org/wiki/File:Cylinder_Head_Sector.svg.)

132 ◾ information technology

(381551 – 262144)/2048 = 58.3. Finally, we would find the block on track 623 (381551 – 262144) –
2048 * 58 = 623. So, fl.txt, located at block 381551, is found on surface 2, sector 58, track 623.

As shown in Figure 5.3, hard disk drives contain multiple platters. The platters rotate in
unison as a motorized spindle reaches up through the holes in each platter. The rotation
rate of the disks depends on the type of disk, but hard disk drives rotate at a rate of between
5400 and 15,000 revolutions/min. Each platter will have two read/write heads assigned to
it (so that both surfaces of the platter can be used). All of the read/write heads of the hard
disk drive move in unison. The arms of the read/write heads are controlled by an actuator
that moves them across the surface of the disks, whereas the disks are spun by the spindle.
The read/write heads do not actually touch the surface of the disk, but hover slightly above/
below the surface on a cushion of air created by the rapid rotation rate of the disks. It is
important that the read/write heads do not touch the surface of the disk because they could
damage the surface (scratch or dent it) and destroy data stored there. For this reason, it is
important to “park” the read/write head arm before moving a computer so that you do
not risk damaging the drive. The read/write head arm is parked when you shut down the
computer. Many modern laptop computers use motion sensors to detect rapid movements
so that the read/write head arm can be parked quickly in case of a jerking motion or if the
entire laptop is dropped.

The data stored on hard disk is in the form of positive and negative magnetic charges.
The read/write head is able to read a charge from the surface or write a new charge (load/
open and store/save operations, respectively). An example of a read/write head arm for
eight platters (sixteen heads, only the top head is visible) is shown in Figure 5.4.

Files are not stored consecutively across the surface of the disk. Instead, a file is broken
into fixed size units called blocks, and the blocks of a file are distributed across the disk’s
surface, possibly across multiple surfaces. Figure 5.5 illustrates this idea, where a file of
6 blocks (numbered 0 through 5) are located in various disk block locations, scattered
throughout the hard disk. Note that since every block is the same size, the last block may
not be filled to capacity. The dotted line in disk block 683 indicates a fragment—that is, the
end of the file does not fill up the entire disk block, so a portion of it goes unused.

There are several reasons for scattering the file blocks across the disk surface(s). First,
because of the speed by which a disk is spun, if the read/write head had to access multiple

FiGUre 5.4 Read/write head arm. (Courtesy of Hubert Berberich, http://commons.wikimedia
.org/wiki/File:Seagate-ST4702N-03.jpg.)

Files, directories, and the File system ◾ 133

consecutive disk blocks, it is likely that the time it takes to transfer a block’s worth of con-
tent to memory would be longer than the time it would take for the disk to move the next
block under the read/write head. The result would be that the read/write head would be out
of position for the next access and therefore the access would have to wait until the proper
block spun underneath the read/write head, that is, another rotation of the disk. One way
to combat this problem is to space disk blocks out, in the same general location but not
adjacent. For instance, disk blocks might be saved on every other sector of a given track
and then onto the next adjacent track (e.g., sector 0/track 53, sector 2/track 53, sector 4/
track 53, sector 6/track 53, sector 8/track 53, sector 0/track 54, sector 2/track 54).

Second, this alleviates the problem of fragmentation. As shown in Figure 5.5, only the
last disk block of a file might contain a fragment. Consider what might happen if disk files
are placed in consecutive locations. Imagine a file is stored in 3 consecutive blocks. A sec-
ond file is stored in 2 consecutive blocks immediately afterward. A third file is stored in 4
consecutive blocks after the second file. The second file is edited and enlarged. It no longer
fits in the 2 blocks, and so is saved after the third file. Now, we have file 1 (3 blocks), freed
space (2 blocks), file 3 (4 blocks), and file 2 (3 blocks). Unfortunately, that free space of 2
blocks may not be usable because new files might need more storage space. Thus, we have
a 2-block fragment. It is possible that at some point, we would need the 2-block space to
reuse that freed-up space, but it could remain unused for quite a long time. This is similar
to what happens if you record several items on video or cassette tape and decide you no
longer want one of the earlier items. You may or may not be able to fill in the space of the
item you no longer want. Since we often edit and resave files, using consecutive disk blocks
would likely create dozens or hundreds of unusable fragments across the file system. Thus,
by distributing blocks, we can use any free block any time we need a new block.

Third, it is easier to maintain a description of the available free space in the file system
by using the same mechanism to track disk blocks of a file. The free space consists of those
disk blocks that either have not yet been used, or are of deleted files. Therefore, monitoring
and recording what is free and what is used will not take extra disk space.

This leads to a natural question: if a disk file is broken into blocks that are scattered
around the file system, how does the OS find a given block (for instance, the third block of
a file)? Recall that the OS maintains a listing of the first disk block of each file. Each disk
block contains as part of its storage the location of the next disk block in the file. The stor-
age is a pointer. This creates what is known as a linked list. See Figure 5.6, where the OS
stores a file pointer to the first block and each block stores a pointer to the next block in
the file.

Block Block Block Block Block Block
File

Disk
block
locations

3018 9871 245 10381 2977 683

0 1 2 3 4 5

FiGUre 5.5 File blocks mapped to disk blocks.

134 ◾ information technology

To load a particular disk block, the OS first examines the directory listing to obtain the
file’s first pointer. The first block has a pointer to the second block, which has a pointer to
the third block, and so forth. To reach block n, you must first go through n – 1 previous
blocks, following those pointers. Following the linked list is inefficient because each block
requires a separate disk access, which as noted previously, is one of the slower aspects of
any computer. For a sequential file—that is, one that must be accessed in order from start
to finish—accessing the file in this manner is not a drawback because the file is loaded,
block by block, in order.

Disk Utilities

you might recall from chapter 4 that part of the os is made up of utility software. this soft-
ware includes antiviral programs, for instance. another class of utility programs is the disk utili-
ties. disk utilities can help a user or system administrator manage and maintain the file system
by performing tasks that are otherwise not available. Below is a list of common disk utilities.

Disk defragmentation: although the use of disk blocks, scattered around the file sys-
tem, prevents the creation of fragments, fragments can still arise. disk defragmentation
moves disk blocks across the disk surfaces in order to move them together and remove
free blocks from between used blocks. this can make disk performance more efficient
because it moves blocks of a file closer together so that, when the file is accessed
wholly, the access time is reduced because all blocks are within the same general area
on a surface. Whereas a Windows file system may occasionally benefit from defrag-
mentation, supposedly the linux file system will not become inefficient over time.

File recovery: if you delete a file and then empty the recycle bin, that file is gone, right?
not so. File recovery programs can try to piece together a file and restore it—as long as
the disk blocks that made up the file have not been written over with a new file.

Data backup: many users do not back up their file system, and so when a catastrophic error
arises, their data (possibly going back years) get lost. Backups are extremely important,
but they are sometimes difficult to manage—do you back up everything or just what has
changed since the last backup? a backup utility can help you manage the backup process.

Disk file stored across disk surface

File
pointer

FiGUre 5.6 Pointers are used to determine next file block on disk.

Files, directories, and the File system ◾ 135

Many files can be accessed randomly—that is, any block might be accessed at any time.
To accommodate this, some OSs, including Windows, use a file allocation table (FAT).
The FAT accumulates all of the pointers of every disk block into a single file, stored at
the beginning of the disk. Then, this file is loaded into memory so that the OS need only
search memory to find the location of a given block, rather than searching the disk itself.
Searching memory for the proper block’s disk location is far more efficient than searching
disk. Figure 5.7 illustrates a portion of the FAT. Notice that each disk block is stored in the
FAT, with its successor block. So, in this case, we see that the file that contains block 150
has a next block at location 381, whereas the file that contains block 151 has a next location
at 153 and after 153, the next location is 156, which is the last location in the file. Block 152
is a bad sector and block 154, 155, and 732 are part of another file. EOF stands for “end of
file”.

Free space can also be stored using a linked list where the first free block is pointed to
by a special pointer in the file system’s partition, and then each consecutive free block is
pointed at by the previous free block. To delete a file, one need only change a couple of
pointers. The last free space pointer will point to the first block in the deleted file, and
the entry in the directory is changed from a pointer to the first block, to null (to indicate
that the file no longer exists). Notice that you can easily reclaim a deleted file (undelete a
file) if the deleted files’ blocks have not been reused. This is because file deletion does not
physically delete a file from the disk but instead adds the file’s disk blocks to the list of free
blocks. See the discussion of file recovery in the side bar on the previous page.

The pointers from the file system (directory) to the physical location in the disk drive are
sometimes referred to as hard links. That is, the linking of the file name to location is a hard
link. Linux lets you have multiple hard link pointers to a file. Some OSs also offer soft links.
In a soft link, the pointer from the file system points not to the physical location of the file,
but to another entry in the directory structure. The soft link, also known as a symbolic link
in Linux and a shortcut in Windows, points to the original entry. For instance, if you create
file f1.txt in directory /home/foxr, and later set up a soft link called f2.txt in /home/foxr/
cit130/stuff, then the directory /home/foxr/cit130/stuff has an entry f2.txt whose pointer
points to /home/foxr/f1.txt, and not to the first block of the file itself. See Figure 5.8 for
an example where two hard links, called File1 and File2, point to the first block of the file,
whereas a soft link, called File3, points at the hard link File2.

With either kind of link, aliases are created. An alias means that a particular entity (file
in this case) can be referenced through multiple names. Aliases can be dangerous because
someone might change an item without realizing that they are changing another item. For
instance, if I were to alter f1.txt, then f2.txt changes as well since f2.txt is merely a pointer
to f1.txt. The situation is worse when the original file is deleted. The OS does not necessarily

File allocation table (portion)

Block
Next location

150
381

151
153

152
Bad

153 155
155
154 156

156 732 EOF

FiGUre 5.7 Portion of a file allocation table.

136 ◾ information technology

check to see if there are soft links pointing to a file that is being deleted. The result is that the
file no longer exists and yet a soft link points to it. In this case, following the soft link yields
an error. One can delete the soft link without deleting the physical file itself or causing a prob-
lem, but deleting the original file without deleting the soft link can lead to errors.

Disk access is a great deal slower than CPU speed or access to main memory. Disk access
time is a combination of several different factors. The address must be mapped from a logi-
cal position to a disk block through the FAT followed by mapping to the physical location
in terms of surface, sector, and track. This is relatively quick as this mapping is done by the
CPU accessing memory instead of disk. Now, the read/write must be positioned over the
proper location on the disk. This requires moving the read/write head to the proper track
(known as seek time) and waiting for the proper sector to be spun underneath the read/
write head (known as rotational delay or rotational latency). Now, the read/write head
can begin reading or writing the magnetic charges on the disk. This action is more time
consuming that the access performed in DRAM (dynamic RAM). As the bits are being
read or written, information must be transferred between disk and memory. This is known
as transfer time. The combination of mapping (usually negligible), seek time, rotational
delay, and transfer time is on the order of several milliseconds (perhaps 5 to 30 ms). A mil-
lisecond is a thousandth of a second. Recall that our processors and static RAM (SRAM)
operate at the nanosecond rate (a billionth of a second) and DRAM is perhaps 25 to 100
times slower, but still in the dozens of nanosecond range. Therefore, the disk access time is
a factor of millions of times slower than CPU and memory response rates!

linUx File system

linux File space

The Linux file space is set up with default root-level directories, which are populated with
basic files when you install Linux. This allows you to know where to find certain types of
files. These default directories are:

•	 /bin: common operating system programs such as ls, grep, cp, mv.

•	 /sbin: similar to /bin, but the programs stored here are of Linux commands that are
intended for the system administrator, although many may be available to normal

Directory listings

File (first disk block)File 1 (hard link)

File 2 (hard link)

File 3 (soft link)

...

...

...

...

FiGUre 5.8 Hard links and soft links.

Files, directories, and the File system ◾ 137

users as well. Note: /sbin is often not part of a user’s path, so the user may need to type
the full path name in for the command, e.g., /sbin/ifconfig.

•	 /etc: configuration files specific to the machine (details are provided later in this
section).

•	 /root: the home directory for user root. This is usually not accessible to other users
on the system.

•	 /lib: shared libraries used during dynamic linking; these files are similar to dll files
in Windows.

•	 /dev: device files. These are special files that help the user interface with the various
devices on the system. Some of the important devices are listed below.

•	 /dev/fd0—floppy disk (if available)

•	 /dev/hda0—master IDE drive on the primary IDE controller

•	 /dev/ht0—first IDE tape drive

•	 /dev/lp0—first parallel printer device

•	 /dev/null—not a device but instead a destination for program output that you do
not want to appear on the monitor—in essence, sending anything to /dev/null
makes it disappear

•	 /dev/pcd0—first parallel port CD ROM drive

•	 /dev/pt0—first parallel port tape

•	 /dev/random and /dev/urandom—random number generators (urandom has
potential problems if used to generate random numbers for a cryptography
algorithm)

•	 /dev/sda0—the first SCSI drive on the first SCSI bus

•	 /dev/zero—this is a simple way of getting many 0s

 Note: for devices ending in 0, if you have other devices of the same type, you would
just increase the number, for instance, lp1, lp2 for two additional printers, or pcd1 for
a second CD ROM drive.

•	 /tmp: temporary file storage for running programs that need to create and use tem-
porary files.

•	 /boot: files used by a bootstrap loader, e.g., LILO (Linux Loader) or GRUB (Grand
Unified Boot loader).

•	 /mnt: mount point used for temporarily partitions as mounted by the system admin-
istrator (not regularly mounted partitions).

138 ◾ information technology

•	 /usr, /var, /home: mount points for the other file systems.

•	 /home—the users’ file space

•	 /var—run-time data stored by various programs including log files, e-mail files,
printer spool files, and locked files

•	 /usr—various system and user applications software, with subdirectories:

 − /usr/bin: many Linux user commands are stored here although some are also
stored in /bin or /usr/local/bin.

 − /usr/sbin: system administration commands are stored here.

 − /usr/share/man, /usr/share/info, /usr/share/doc: various manual and docu-
mentation pages.

 − /usr/include: header files for the C programming language.

 − /usr/lib: unchanging data files for programs and systems.

 − /usr/local: applications software and other files.

•	 /proc: this is a peculiar entry as it is not actually a physical directory stored in the file
system but instead is kept in memory by the OS, storing useful process information
such as the list of device drivers configured for the system, what interrupts are cur-
rently in use, information about the processor, and the active processes.

There are numerous important system administration files in /etc. Some of the more
significant files are listed here:

•	 Startup scripts

•	 /etc/inittab: the initial startup script that establishes the run-level and invokes
other scripts (in newer versions of Linux, this script has been replaced with the
program /etc/init)

•	 /etc/rc.d/rc0.d, /etc/rc.d/rc1.d, /etc/rc.d/rc2.d, etc: directories of symbolic links
that point to startup scripts for services, the listings in each directory dictate
which services start up and which do not start up at system initialization time
based on the run-level (See the section Forms of Process Management in Chapter
4 and Chapter 11 for additional details)

•	 /etc/init.d: the directory that stores many of the startup scripts

 − These startup scripts are discussed in Chapter 11.

•	 User account files

•	 /etc/passwd: the user account database, with fields storing the username, real
name, home directory, log in shell, and other information. Although it is called
the password file, passwords are no longer stored there because this file is readable

Files, directories, and the File system ◾ 139

by anyone, and placing passwords there constituted a security risk; so the pass-
words are now stored in the shadow file.

•	 /etc/shadow: stores user passwords in an encrypted form.

•	 /etc/group: similar to /etc/passwd, but describes groups instead of users.

•	 /etc/sudoers: list of users and access rights who are granted some privileges
beyond normal user access rights.

 − These files are discussed in Chapter 6.

•	 Network configuration files

•	 /etc/resolv.conf: the listing of the local machine’s DNS server (domain name sys-
tem servers).

•	 /etc/hosts: stores lists of common used machines’ host names and their IP
addresses so that a DNS search is not required.

•	 /etc/hosts.allow, /etc/hosts.deny: stores lists of IP addresses of machines that are
either allowed or disallowed log in access.

•	 /etc/sysconfig/iptables-config: the Linux firewall configuration file, set rules here for
what types of messages, ports, and IP addresses are permissible and impermissible.

•	 /etc/xinetd: the Internet service configuration file, maps services to servers, for
instance, mapping telnet to 23/tcp where telnet is a service and 23/tcp is the port
number and server that handles telnet; this is a replacement for the less secure
inetd configuration file.

 − Some of these files are discussed in more detail in Chapters 11 and 12.

•	 File system files

•	 /etc/fstab: defines the file systems mounted at system initialization time (also
invoked by the command mount –a).

•	 /etc/mtab: list of currently mounted file systems, updated automatically by the
mount and umount commands, and used by commands such as df.

•	 /etc/mime.types: defines file types; it is the configuration file for the file and more
commands so that these commands know how to treat the given file type.

•	 Message files

•	 /etc/issue: contains a short description or welcoming message to the system, the
contents are up to the system administrator.

•	 /etc/motd: the message of the day, automatically output after a successful login,
contents are up to the system administrator and is often used for getting informa-
tion to every user, such as warnings about planned downtimes.

140 ◾ information technology

•	 User startup scripts

•	 /etc/profile, /etc/bash.rc, /etc/csh.cshrc: files executed at login or startup time by
the Bourne, BASH, or C shells. These allow the system administrator to set global
defaults for all users. Users can also create individual copies of these in their home
directory to personalize their environment.

 − Some of these files are discussed in more detail in Chapter 11.

•	 /etc/syslog.conf: the configuration file that dictates what events are logged and where
they are logged to (we cover this in detail in Chapter 11).

•	 /etc/gdm: directory containing configuration and initialization files for the Gnome
Display Manager (one of the Linux GUI systems).

•	 /etc/securetty: identifies secure terminals, i.e., the terminals from which root is
allowed to log in, typically only virtual consoles are listed so that it is not possible to
gain superuser privileges by breaking into a system over a modem or a network.

•	 /etc/shells: lists trusted shells, used by the chsh command, which allows users to
change their login shell from the command line.

Although different Linux implementations will vary in specific ways such as startup
scripts, types of GUIs, and the types and names of services, most Linux dialects have the
above directories and files, or similar directories and files. See Figure 5.9, which shows

default
bin

rc.d
sysconfig

boot

dev

etc

home

lib

students
marst

X11

zappaf

bearb

foxr
faculty

klinkc
...

lost+found

mnt

proc

root

sbin

X11R6

bin

local

lib

mail

tmp

usr

var spool

www

/

...

FiGUre 5.9 Typical Linux directory structure.

Files, directories, and the File system ◾ 141

the typical arrangement of directories along with some of the initial subdirectories. The
/home directory, of course, will differ based on the population of users. The commonality
behind the Linux file system structure helps system administrators move from one version
of Linux to another. However, with each new release of a version of Linux, changes are
made and so the system administrator must keep up with these changes.

The Linux file system consists not only of the hard disk but also mountable (remov-
able) devices. In order to access a device, it must be physically attached, but it must also be
logically mounted through the mount command. Some mounting is done for you at the
time you boot your system by having a mount file called /etc/fstab (file system table). To
unmount something from the file system, use umount. To mount everything in the fstab
file, use mountall. Note: you will not be able to edit fstab or execute mount, umount, or
mountall unless you are root. Another file, /etc/mtab, stores a table of those partitions that
are currently mounted.

linux Partitions

In order to ensure that the various directories have sufficient room, system administrators
will typically partition the hard disk into three or more areas, each storing a different sec-
tion of the file system. This allows specific areas of the file space to be dedicated for differ-
ent uses such as the kernel, the swap space, and the user directory space. Partitions provide
a degree of data security in that damage to one partition may not impact other partitions
(depending on the source of the damage). It is also possible in Linux to establish different
access controls on different partitions. For instance, one partition might be set as read-only
to ensure that no one could write to or delete files from that partition. One can establish
disk quotas by partition as well so that some partitions will enforce quotas, whereas others
do not. Partitions also allow for easy mounting and unmounting of additional file spaces
as needed or desired.

The root partition (/) will store the Linux /boot directory that contains the boot pro-
grams, and enough space for root data (such as the root’s e-mail). The largest partition will
most likely be used for the /home directory, which contains all of the users’ directories and
subdirectories. Other directories such as /var and /usr may be given separate partitions,
or they may be part of / or /home. The swap partition is used for virtual memory. It serves
as an extension to main (DRAM) memory so that only currently and recently used por-
tions of processes and data need to reside in DRAM. This partition should be big enough
to store the executable code of all currently executing processes (including their data). It is
common to establish a swap space that is twice the size of DRAM. Swap spaces can also be
distributed across two (or more) disks. If the swap space was itself divided among two hard
disk drives, it could provide additional efficiency as it would be possible to handle two page
swappings at a time (refer back to page swapping in Chapter 4).

Partitioning the file space is accomplished at OS installation time, and therefore, once
completed, the partitions and their sizes are fixed. This is unfortunate as you perform the
installation well before you have users to fill up the user’s partition, and therefore you must
make an educated guess in terms of how large this partition should be. At a later point, if
you want to alter the partition sizes you may have to reinstall the OS, which would mean

142 ◾ information technology

that all user accounts and directories would be deleted. You could, if necessary, back up all
OS files and user accounts/directories, reinstall the OS, change the partition size, and then
restore the OS files and user accounts/directories. This would be time consuming (prob-
ably take several hours at a minimum) and should only be done if your original partition-
ing was inappropriate. Fortunately, Linux and Unix do offer another solution, the use of a
dynamic partition resizer. However, using one is not something to do lightly. For instance,
if a power outage or disk crash occurs during resizing, data may be permanently destroyed.
On the other hand, it is much simpler than saving the file system, reinstalling the OS, and
restoring the file system.

There are a number of Linux commands that deal with the file system. The df command
(display file system) will show you all of the partitions and how full they are in both bytes
and percentage of usage. As mentioned above, the mount and umount commands allow
you to mount and unmount partitions from the file system.

The quotaon and quotaoff commands allow you to control whether disk quotas are
actively monitored or not. The system administrator can establish disk quotas for users
and groups. If disk quotas are on for a given file system, then the OS will ensure that those
users/groups using that file system are limited to the established quotas.

The file command will attempt to guess at what type of file the given file is. For instance,
it might return that a file is a text file, a directory, an image file, or a Open Office docu-
ment. The find instruction performs a search of the file system for a file of the given name.
Although find is a very useful Linux instruction, it is not discussed further because it is a
rather complicated instruction.

The utility fsck (file system check) examines the file system for inconsistent files. This
utility can find bad sectors, files that have been corrupted because they were still open
when the system was last shut down, or files whose error correction information indicates
that the file has a problem (such as a virus). The fsck utility not only finds bad files and
blocks, but attempts to repair them as well. It will search for both logical and physical
errors in the file system. It can run in a mode to find errors only, or to find and try to fix
errors. The fsck program is usually run at boot time to ensure a safe and correct file system.
If errors are found, the boot process is suspended, allowing fsck to find and attempt to fix
any corruption found.

linux inodes

Inodes are the Unix/Linux term for a file system component. An inode is not a file, but is
a data structure that stores information about a file. Upon installing Linux and partition-
ing the file system, the OS generates a number of inodes (approximately 1% of the total
file system space is reserved for inodes). Notice that there is a preset number of inodes for
a system, but it is unlikely that the system will ever run out of available inodes. An inode
will store information about a single file; therefore, there is one inode for each file in the
system. An inode for a created file will store that file’s user and group ownership, permis-
sions, type of file, and a pointer to where the file is physically stored, but the inode does not
store the file’s name, and is not the file itself. Instead, in the directory listing, a file’s name
has a pointer to the inode on disk and the inode itself points to the file on disk. If a file has

Files, directories, and the File system ◾ 143

a hard link, then both the file name and the hard link point to the inode. If a file has a soft
link, the file name points to the inode whereas the soft link points to the file name.

In order to obtain an inode’s number, the ls (list) command provides an option, –i. So, ls
–i filename returns that file’s inode number. You can obtain the file’s information, via the
inode, by using ls –l.

Files are not stored in one contiguous block on a disk, as explained earlier in this chap-
ter, but instead are broken into blocks that are scattered around the file system. Every file is
given an initial number of blocks to start. The inode, aside from storing information about
the file, contains a number of pointers to point to these initial blocks. The first pointer
points at the first disk block, the second pointer points at the second disk block where the
first disk block stores the first part of the file, the second disk block stores the second part
of the file, etc.

If a file needs additional blocks, later inode pointers can be created so that the inode
pointer points to a block of pointers, each of which point to the additional disk blocks.
Such a pointer block is called an indirect block. There can be any number of levels added,
for instance, an inode pointer might point to an indirect block, which itself points to an
indirect block that has pointers to actual disk blocks. Figure 5.10 illustrates this concept,
showing the hierarchical structure of disk blocks, inodes, and pointers in Linux. The inode
frees the Linux OS from having to maintain a FAT (as used in Windows).

Aside from storing information about files, inodes are used to store information on
directories and symbolic links. A symbolic link is merely an alternate path to reach a file.
You often set up symbolic links if you wish to be able to specify access to a given file
from multiple starting points. To create a symbolic link, use ln –s filename1 filename2.
Here, filename1 is the preexisting file and filename2 is the symbolic link. Typically, one
of these two file names contains a path so that the file and symbolic link exist in two
separate directories (it makes little sense to have a symbolic link in the same directory

File inode
File size (bytes)
Storage device ID
Owner UID
Group UID
Mode
Flags
Timestamp
Hard link count

File block pointers

Indirect block

Pointers to
additional
disk blocks

Double
indirect block

Indirect block
Pointers to
additional
disk blocks

block 5
block 4

block 3
block 2

block 1
block 0

FiGUre 5.10 Hierarchical inode structure in Linux.

144 ◾ information technology

as the file you are linking to). For instance, if there is an important executable program
in the directory /usr/share/progs called foo and you want to easily access this from your
home directory, you might change to your home directory and then issue the command ln
–s /usr/shar/progs/foo foo. This creates the symbolic link, foo, in your home directory that
references the file /usr/shar/progs/foo.

One must be careful when dealing with symbolic links because if someone deletes or
moves the original file, the link is no longer valid. If the file foo were deleted from /usr/
shar/progs, then typing ~/foo would result in an error.

A hard link, created by the ln command without the –s parameter, is a pointer to the
file’s inode, just as the original name in the directory points to the file’s inode, unlike the
symbolic link that merely points to the file’s name in the directory. Hard links can only be
used to link to files within the same file system. A link across mounted file systems (parti-
tions) must be a symbolic link. This limits hard link usefulness. Hard links are uncom-
mon, but symbolic links are very common. If you do an ls –l, you will see symbolic links
listed with a file type (the first letter in the listing) of ‘l’ to indicate soft link, and with the
name filename -> true location. The filename is the name you provided to the link, whereas
true location is the path and file name of the item being pointed to by the link.

CompUter VirUses

any discussion of the file system would be incomplete without discussing computer viruses
and their dangers. a computer virus is a program that can replicate itself. most commonly, a
computer virus is also a malicious program in that its true purpose is to damage the computer
on which it is stored, or spy on the users of that computer.

How do you get infected? a virus hides inside another executable program. When that
program is executed, the virus code executes. the virus code typically comes in two parts,
the first is to replicate itself and store its own executable code inside other programs or data
files. the second part is the malicious part.

often a virus waits for a certain condition to arise (older viruses might wait for a certain
day such as Friday the 13th, or a time, or an action such as the user attempting to delete a
given file) before the malicious portion executes. the malicious part of the virus might delete
data or copy data and send it to a third party (this data might include information stored in
cookies such as your browser history and/or credit card numbers).

today, the word “virus” applies to many different types of malicious software: spyware,
adware, trojan horses, worms, rootkits. However, the term virus really should only apply to
self-replicating software, which would not include spyware, adware, or trojan horses. the
group of software combined is now called malware.

How do you protect yourself? the best way is to avoid the internet (including e-mail)! But
this is impractical. instead, having an up-to-date antiviral/antimalware program is essential.
disabling cookies can also help. also, avoid opening attachments from people you do not
know. it is also helpful to have some disaster recovery plan. one approach is to create back-
ups of your file system—in the case of a bad infection, you can reinstall the os and restore
your files. if you are a linux or mac user, you might feel safe from malware. most malware
targets Windows machines because Windows is the most common os platform, but in fact
malware can affect any platform.

Files, directories, and the File system ◾ 145

WindoWs File system
The Windows file system layout is simpler than that of Linux, which makes it more com-
plicated when you have to find something because you will find far more files in any one
directory than you tend to find in Linux. The Windows layout has been fairly stable since
Windows 95. The C: partition is roughly equivalent to Linux’ / root directory. A: and B: are
names reserved for floppy disks (which typically are not available in computers purchased
in recent years) and D: is commonly assigned to the computer’s optical drive. Other parti-
tions can be added (or the main hard disk can be partitioned into several “drives”, each
with its own letter).

Underneath the root of the file system (C:), the file system is divided into at least three
directories. The OS is stored under the Windows folder. This directory’s subfolder System32
contains system libraries and shared files, similar to Linux’ /usr/lib. Most of the applica-
tion software is located under Program Files. In Windows 7, there is a separate directory
C:\Program Files (x86) to separate 64-bit software (Program Files) from older 32-bit soft-
ware (Program Files (x86)). In Linux, most of the application software is under /usr. User
directories are commonly stored under C:\Users (whereas in Linux, these directories are
underneath /home). There may be a C:\Temp directory that is similar to Linux’ /tmp.

A large departure between Windows and Linux takes place with the user directories.
Under C:\Users, default folders are set up for various types of files, Desktop, Downloads,
Favorites, Links, My Documents, My Music, My Pictures, My Videos, Searches. In Linux,
for the most part, the user decides where to place these items. In Windows, the specific
folders are established by the software, unless overridden by the user. There are also soft
links so that “My Documents” actually refers to C:\Users\youraccount\My Documents. By
providing these default directories and soft links, it helps shelter the user from having to
remember where files have been stored, or from having to understand the file space.

Many of the Windows operations dealing with the file system are available through GUI
programs. Some of these are found through the Control Panel, others are available through
OS utilities such as Norton Utilities and McAfee tools. The Control Panel includes tools
for system restoration (which primarily restores system settings but can also restore file
system components), backup and restore for the file system, and folder options to control
what is displayed when you view folder contents. And, of course, the default file manager
program is Windows Explorer. There are also DOS commands available. The most signifi-
cant DOS command is chkdsk, a utility that serves a similar purpose as fsck does in Linux.
Other commands include defrag (disk defragmentation utility), diskpart that allows you to
repartition a disk or perform related administrative services on the disk (such as assigning
it a drive letter or attributes), and find, similar to the Linux find program.

When considering the Windows file system, one might feel that it is intuitively easy to
use. On the other hand, the Windows approach might feel overly restrictive. For instance,
if a user wishes to create a CIT 130 folder to collect the various data files related to that
course, a Linux user might create /home/foxr/cit130. Underneath this directory, the user
might place all of the files in a flat space, or might create subdirectories, for instance,
Pictures, Documents, Searches, and Videos. In Windows, the user would have to create

146 ◾ information technology

cit130 folders underneath each of the established folders in order to organize all material
that relates to CIT 130, but the material is distributed across numerous folders. Only if the
user is wise enough to override the default would the user be able to establish a cit130 folder
under which all items could be placed.

movinG aroUnd tHe File system
Here, we look at specific Linux and DOS commands for moving around their respective
file systems. In the following examples, we see the OS commands, the results of those
commands and some comments describing what the operations are doing. We will focus
first on Linux, which is slightly more complicated. Mastering Linux will make it easier to
master DOS. Assume that we have the structure of directories, subdirectories, and files in
Figure 5.11. Items in boxes are files, and all other items are directories. For DOS, replace
home with Users.

linux

What follows is a Linux shell session (commands entered in a Linux shell and the results),
along with explanations of the commands. Comments are given beneath some of the com-
mands. Linux commands appear after $ symbols, which we will assume is the Linux prompt.

Command/Result Explanation
$ pwd print working directory
/home/foxr

$ cd CIT130 change to the CIT130 subdirectory
$ ls list the contents
HW LABS

There are two items in this directory; both are printed

$ ls –l perform a long listing of the contents
drwxr-xr-x 2 foxr foxr
1024 Jan 20 03:41 HW
drwxr-xr-x 4 foxr foxr
4096 Jan 21 17:22 LABS

The long listing provides more details including the creation date and time (in military
time, thus 17:22 instead of 5:22 p.m.). For now, we concentrate only on the first item, which
looks like a random sequence of characters. The initial ‘d’ describes that the item is a direc-
tory. The remaining letters and hyphens provide the access rights (permissions). We will
cover that topic in Chapter 6.

$ cd HW change to the HW directory
$ cp h1.txt /home/foxr/
CIT130/LABS

copy the h1.txt file to the LABS
directory

Files, directories, and the File system ◾ 147

This instruction uses an absolute path, that is, to specify the directory LABS, we start at
the root level of Linux (the first /).

$ cd ..
move up one level (/home/foxr/
CIT130)

$ mv LABS/lab1.txt . move lab1.txt to here

The . means “this directory”. Notice that the specification of the LABS subdirectory is
made as a relative path, that is starting at this point.

$ ls ../../CSC362
list the contents of the CSC362
directory

p1.txt p2.txt

The ../../CSC362 is a relative path starting at this point, but moving up two levels (../..)
and down one level (CSC362).

$ cd ~/CSC362 change to your CSC362 directory
$ rm *.* delete everything here

The ~ symbol represents the current user’s home directory. So in this case, ~ means
/home/foxr. The * as used in rm is a wildcard symbol. The wildcard * means “anything”.
Using *.* means “anything that contains a period”. This command then will delete all files
that have a period in their name (files with extensions, as in p1.txt, a file such as foo would
not be selected because it lacks a period).

The rm command is set up to execute rm –i, which means “interactive mode”. This will
list each item and ask you if you are sure you want to delete it, one at a time, for example:

rm: remove regular file ‘p1.txt’? y

rm: remove regular file ‘p2.txt’? y

rm: remove regular file ‘lab1.txt’? n

home

foxr zappaf

video othermusicCIT130

HW LABS

CSC362

lab1.txt
lab2.txt

h1.txt
h2.txt
h3.txt

p1.txt p2.txt v1.avi f1.txt
f2.txt
f3.txtm1.wav m2.mp3

FiGUre 5.11 Layout for examples in this section.

148 ◾ information technology

The responses provided by the user, in this case, will cause rm to delete p1.txt and p2.txt
but not lab1.txt (which was moved here from the CIT130/LABS directory).

$ cd .. move up to foxr
$ rmdir CSC362 delete the entire CSC362 directory
rmdir: CSC362: Directory
not empty

Because the directory is not empty, it cannot be deleted. We could delete the directory if
we first deleted the remaining item, lab1.txt.

Alternatively, we could issue the command rm –r CSC362. The –r option means “recur-
sive delete”. A recursive delete deletes all of the contents of the directory before deleting
the directory, recursively (so that if the directory had a subdirectory, the contents of the
subdirectory are deleted first, followed by the contents of the directory including the sub-
directory itself). So, for instance, if we issued rm –r ~foxr/CIT130, the pattern of deletions
would operate as follows: h1.txt, h2.txt, h3.txt, HW (the directory), h1.txt, lab2.txt (recall
that we previously copied h1.txt from the HW directory to here and that we moved the
lab1.txt file to another directory), LABS (the directory), and finally the CIT130 directory.

The –r option can be very powerful but also very dangerous. It is best to never use rm
–r unless you do rm –ir. The –i portion of the option forces rm to seek confirmation before
deleting anything. It is especially important never to use rm –r as system administrator
unless you are absolutely sure of what you are doing. Imagine that you did cd / (move to
the top of the file system) followed by rm –r *.*. You would delete everything (including the
rm program itself)!

Note: cp also has a recursive mode, cp –r, to recursively copy any subdirectories of a
directory but mv does not have a recursive mode.

$ cd / move to the top of the file system
$ cd home move down to the home directory
$ ls list the contents
foxr zappaf

$ cd zappaf move to zappaf ’s directory
$ cp music/*.* ~ copy files in music to your directory

Again, the *.* means “everything with a period”. So, this command copies all files in
zappaf ’s music directory that have a period in their name to ~, which denotes your home
directory.

$ mv videos/*.* ~ move everything
mv: cannot move ‘/home/
zappaf/videos/v1.avi’
to ‘./v1.avi’:
Permission denied

Files, directories, and the File system ◾ 149

Although you might have permission to access zappaf ’s directory and the contents, you
do not have access to move because move in essence deletes files from that user’s directory.
We will explore permissions in Chapter 6.

$ cd ~ return to your home directory
$ mkdir STUFF create a directory called STUFF
$ ln –s videos/v1.avi
STUFF/video

create a symbolic link

The symbolic link is stored in the subdirectory STUFF (/home/foxr/STUFF), and the
link is called video. The link points to or links to /home/zappaf/videos/v1.avi.

$ ls STUFF list contents of the STUFF directory
video

The ls command merely lists items by name, without providing any detail. If we want
greater detail, we must use the –l option of ls (for “long listing”).

$ ls –l STUFF

lrwxrwxrwx 1 foxr foxr 16 Jan 21 17:13 video -> /home/zappaf/videos/v1.avi

With the long listing, we see that video is a link to the location /home/zappaf/videos/
v1.avi. The “l” character at the beginning of the line is the file type (link) and the -> on the
right indicates where the link is pointing to.

dos

We limit our look at the DOS commands because they are similar and because there are
fewer options. Here we step through only a portion of the previous example.

Command/Result Explanation
C: switch to C: partition/drive
C:\> cd Users\foxr move to foxr directory
C:\Users\foxr> dir list the contents

Notice that when you switch directories, your prompt changes. There is no equivalent
of the pwd Linux command to list your current directory. The dir command provides the
contents of the directory. This is excerpted below. Some details are omitted.

Wed 11/23/2011 10:53 AM <DIR> .

Wed 11/23/2011 10:53 AM <DIR> ..

Wed 11/23/2011 10:55 AM <DIR> Desktop

150 ◾ information technology

Wed 11/23/2011 10:55 AM <DIR> Documents

Wed 11/23/2011 10:55 AM <DIR> Downloads

...

0 File(s)

15 Dir(s)

C:\Users\foxr> cd
Documents change to Documents directory
C:\Users\foxr\Documents>
copy *.* \Users\zappaf

copy everything to zappaf ’s directory

C:\Users\foxr\Documents>
cd ..

move up 1 level

C:\Users\foxr> cd
Downloads

move down to Downloads

C:\Users\foxr\Downloads>
move *.* \Users\zappaf

move instead of copy

C:\Users\foxr> cd \
Users\zappaf

switch to zappaf ’s directory

Notice that there is no equivalent of ~ in DOS, so you have to specify either a relative or
absolute path to get to zappaf. From \Users\foxr\Downloads to zappaf, you could use this
relative path: cd ..\..\zappaf.

C:\Users\zappaf> dir list zappaf ’s directory contents

This should now include all of the files found under foxr’s Documents and Downloads.
The listing is omitted here.

C:\Users\zappaf> del *.*

C:\Users\zappaf>

Notice that the deletion took place. You were not prevented from deleting zappaf ’s files.
This is because proper permissions to protect zappaf ’s directory and files was not set up!

We conclude this example with these comments. As in Linux, to create and delete direc-
tories, you have the commands mkdir and rmdir. You can also create hard and soft links
using the command mklink. As you may have noticed, the * wildcard symbol also works in
DOS. DOS commands also permit options. The del command can be forced to prompt the
user by using del /P and to delete without prompting using /Q (quiet mode). Unlike Linux,
del does not have a recursive mode.

Files, directories, and the File system ◾ 151

File system and system administration tasks
Although it is up to individual users to maintain their own file system space, there are
numerous tasks that a system administrator might manage. The first and most important
task of course is to make sure that the file system is available. This will require mounting
the system as needed. The Linux commands mount and umount are used to mount a new
partition to the file system and unmount it. The commands require that you specify both
the file system and its mount point. A mount point is the name by which users will refer-
ence it. For instance, if you do a df –k, you will see the various mount points including /var
and /home. The command mount –a will mount all of the file system components as listed
in the special file /etc/fstab (file system table). This command is performed automatically at
system initialization time, but if you have to unmount some partitions, you can issue this
command (as root) to remount everything. The /etc/fstab file includes additional informa-
tion that might be useful, such as disk quotas, and whether a given file space is read-only
or readable and writable. All currently mounted partitions are also indicated in the file
/etc/mtab.

Setting up disk quotas is a complex operation but might be useful in organizations where
there are a lot of users and limited disk space. You might establish a disk usage policy (per-
haps with management) and implement it by setting quotas on the users.

Another usage policy might include whether files should be encrypted or not. Linux has
a number of open source encryption tools, and there are a number of public domain tools
available for Windows as well.

Remote storage means that a portion of the file system is not local to this computer, but
accessible over a network instead. In order to support remote storage, you must expand
your file system to be a network file system. NFS is perhaps the most common form of this,
and it is available in Unix/Linux systems. NFS is very complex. You can find details on NFS
in some of the texts listed in Further Reading.

These last topics, although useful, will not be covered in this text but should be covered
in a Linux system administration text.

FUrtHer readinG
Many of the same texts referenced in Further Reading in Chapter 4 cover material spe-
cific to Linux, Unix, Windows, and Mac OS file systems. Additionally, the OS concepts
books from the same section all have chapters on file systems. More detailed material on
Windows, Unix, and Linux file systems can be found in these texts.

•	 Bar, M. Linux File Systems. New York: McGraw Hill, 2001.

•	 Callaghan, B. NFS Illustrated. Reading, MA: Addison Wesley, 2000.

•	 Custer, H. Inside the Windows NT File System. Redmond, WA: Microsoft Press, 1994.

•	 Kouti, S. Inside Active Directory: A System Administrator’s Guide. Boston: Addison
Wesley, 2004.

152 ◾ information technology

•	 Leach, R. Advanced Topics in UNIX: Processes, Files and Systems. Somerset, NJ: Wiley
and Sons, 1994.

•	 Moshe, B. Linux File Systems. New York: McGraw Hill, 2001.

•	 Nagar, R. Windows NT File System Internals. Amherst, NH: OSR Press, 2006.

•	 Pate, S. UNIX Filesystems: Evolution, Design and Implementation. New Jersey: Wiley
and Sons, 1988.

•	 Von Hagen, W. Linux Filesystems. Indianapolis, IN: Sams, 2002.

On the other hand, these texts describe file systems from a design and troubleshooting
perspective, which might be more suitable for programmers, particularly OS engineers.

•	 Carrier, B. File System Forensic Analysis. Reading, MA: Addison Wesley, 2005.

•	 Giampaola, D. Practical File System Design. San Francisco: Morgan Kaufmann, 1998.

•	 Harbron, T. File Systems: Structure and Algorithms. Upper Saddle River, NJ: Prentice
Hall, 1988.

•	 Kerrisk, M. The Linux Programming Interface: A Linux and UNIX System Programming
Handbook. San Francisco: No Starch Press, 2010.

•	 Pate, S. and Pate, S. UNIX Filesystems: Evolution, Design and Implementation.
Hoboken, NJ: Wiley and Sons, 2003.

•	 Tharp, A. File Organization and Processing. New York: Wiley and Sons, 1998.

revieW terms
Terminology introduced in this chapter:

Absolute path File system

Alias Folder

Archive Fragment

Block Hard link

Cylinder Indirect block

Defragmentation inode

Directory Lossless compression

FAT Lossy compression

File Mounting

Files, directories, and the File system ◾ 153

Mount point Rotational delay

NFS Sector

Partition Seek time

Platter Soft link

Pointer Spindle

Read/write head Surface

Recursive delete Track

Relative path Transfer time

REviEw QuEstions

 1. How does a file differ from a directory?

 2. What makes the file space hierarchical?

 3. Why are disk files broken up into blocks and scattered across the disk surface(s)?

 4. Imagine that a file block is located at disk block 581132. What does this information
tell you?

 5. What is a pointer and what is a linked list?

 6. What is a FAT? Where is the FAT stored?

 7. Why is the FAT loaded into memory?

 8. How much slower is disk access than the CPU?

 9. The Linux operating system does not maintain a FAT, so how are disk blocks accessed?

 10. What is an indirect block inode?

 11. What would happen if your Linux file system were to run out of inodes?

 12. How does the Linux file system differ from the Windows file system?

 13. In the Linux file system, where do you find most of the system configuration files?

 14. In the Linux file system, where do you find the system administration commands
(programs)? The general Linux commands? The user (applications) programs?

 15. Which of the Linux items listed under /dev are not physical devices?

 16. If a disk partition is not mounted, what are the consequences to the user?

 17. What do each of these Linux commands do? cd, cp, ln, ls, mkdir, pwd, rm, rmdir

154 ◾ information technology

 18. What do each of these DOS commands do? cd, copy, del, dir, mklink, move

 19. What is the difference between ls and ls –l in Linux?

 20. What is the difference between rm –i, rm –f, and rm –r in Linux?

 21. Why does DOS not need a pwd command?

 22. What must be true about a directory in Linux before rmdir can be applied?

 23. If you set up a symbolic link to a file in another user’s directory, what happens if the
user deletes that file without you knowing about it? What happens if you delete your
symbolic link?

 24. What does ~ mean in Linux? Is there a similar symbol in DOS?

 25. What does .. mean in both Linux and DOS?

 26. What is the difference between an absolute path and a relative path?

 27. Refer back to Figure 5.11. Write an absolute path to the file p1.txt.

 28. Refer back to Figure 5.11. Write an absolute path to the file m2.mp3.

 29. Refer back to Figure 5.11. Assuming that you are in the subdirectory LABS, write a
relative path to the file v1.avi. Write an absolute path to the file v1.avi.

 30. Refer back to Figure 5.11. Assuming that you are in the subdirectory CSC362, write a
Linux copy to copy the file p1.txt to the directory HW.

 31. Refer back to Figure 5.11. Assuming that you are in the subdirectory CSC362, write a
Linux move command to move the file p1.txt to the directory other (under zappaf).

DisCussion QuEstions

 1. In the Windows operating system, the structure of the file system is often hidden from
the user by using default storage locations such as My Documents and Desktop. Is this
a good or bad approach for an end user who is not very knowledgeable about comput-
ers? What about a computer user who is very familiar with the idea of a file system?

 2. Do you find the finer breakdown of the Linux file system’s directory structure to be
easier or harder to work with than Windows? Why?

 3. What are some advantages to separating the file system into partitions? Do you find the
Windows approach or the Linux approach to partitions to be more understandable?

 4. Now that you have interacted with a file system through both command line and
GUI, which do you find more appealing? Are there situations where you find one
approach to be easier than the other? To be more expressive?

Files, directories, and the File system ◾ 155

 5. The discussion of the FAT (in Windows) and inodes (in Linux) no doubt can be con-
fusing. Is it important for an IT person to have such a detailed understanding of a file
system? Explain.

 6. A hard disk failure can be catastrophic because it is the primary storage media that
contains all of our files and work. Yet the hard disk is probably the one item most apt
to fail in the computer because of its moving parts. Research different ways to backup
or otherwise safeguard your hard disk storage. Describe some of the approaches that
you found and rank them in terms of cheapest to most expensive cost.

 7. Within your lifetime, we have seen a shift in technology from using magnetic tape to
floppy disk as storage to hard disk, and in between, the rise and fall of optical disks.
Although we still use optical disks, they are not nearly as common today for data
storage as they were 10 years ago. Research the shift that has taken place and attempt
to put into perspective the enormous storage capacity now available in our computers
and how that has changed the way we use computers and store files.

This page intentionally left blankThis page intentionally left blank

157

C h a p t e r 6

Users, Groups, and
Permissions

In Chapter 4, the idea of protection and security was introduced. In order to support these
operating system requirements, computer accounts are created. Each account comes with
certain access rights. These rights can be altered in operating systems such as Windows
and Linux such that the owner of a resource can dictate who can use that resource. This
chapter examines user accounts, account creation, groups and group creation, passwords,
and permissions.

The learning objectives of this chapter are to

•	 Describe the role of the user account and the group.

•	 Introduce the mechanisms to create and maintain user and group accounts in
Windows and Linux.

•	 Explain how to change file and directory permissions in both Windows and Linux.

•	 Discuss password management including the concept of the strong password.

•	 Introduce the Linux sudo command.

Users
Recall that a computer system is more than a computer; it is a collection of devices, soft-
ware, and users. If the computer system in question is to be used by more than one user,
then the computer system has to offer some degree of protection. Protection ensures that
the resources granted to one user do not interfere with other users or their resources.
Resources include memory storing user processes, running applications, shared data, and
files. Different operating systems offer different approaches to protection. Here, we will look
at the most common protection mechanism—the user account. Along with establishing

158 ◾ Information Technology

user accounts, we examine the use of permissions so that users can control access to their
resources.

Aside from protection, user accounts are useful for a number of other purposes. They
provide security in that only authorized users are allowed to use the computer and its
available resources. They provide a means by which we can gather statistics on computing
usage. For instance, as a system administrator, you can inspect how the number of users is
impacting CPU performance, whether there is adequate main memory, and to what extent
the users are using the file space. This can, in turn, provide support for asking manage-
ment to spend money on further resources. Tracking computer usage supports both per-
formance monitoring and accounting.

A user is an agent who uses a computer. Most commonly, we will consider humans to
be users. However, in some situations, a user might be a software agent. In most operating
systems, a user requires an account to use the computer. A user account is a set of data,
directories, and privileges granted to a user, as set up by a system administrator.

Typically, a user account will be coupled with a user name and a user password. These
are used to authenticate the user so that the user can be granted access by the operating
system. Authentication is most often accomplished using a login whereby the user enters
both the user name and password, which are then compared in a database of stored user-
name/passwords. Some more advanced systems may couple this with biometric or keycard
access whereby the user must swipe a card through a card reader or use some biometric
such as voice print or fingerprint. These are far less common. In some cases, the biometric
is used in place of a password.

One key concern with proper protection of a computer system is to ensure that users use
strong passwords. It is a fairly simple matter for a hacker to devise a program that will test all
dictionary words as passwords in an attempt to break into a user account. Therefore, strong
passwords are those that do not appear in a dictionary. Requirements for a strong pass-
word are typically that they contain at least one non-alphabetic character or a combination
of upper- and lower-case letters and are at least eight characters in length. Additionally,
strong passwords might require that the user change the password frequently (every 1 to
3 months) without repeating previous passwords. Other restrictions might include that a
password not repeat previous passwords’ characters. For instance, if your password was
abcdef12, then changing the password to abcdef13 might not be permissible because it is
too similar to the previous password.

Multiuser systems require user accounts so that the operating system knows who the
current user is and can match up the user with proper permissions. A single-user system
does not require any user accounts because it is assumed that the same user will always use
that system. Today, although most people have their own computers, it is still common to
create user accounts for a few reasons. First, most operating systems permit remote access
and therefore to protect against other agents from attempting to utilize the single user’s
resources, establishing a login is essential. Second, all systems need to be administered
by a system administrator. Even if there is a single user who uses the system, the need to
differentiate between the user acting as an end user and the user acting as system admin-
istrator is critical. If the user wants to, for instance, delete a bunch of files and accidentally

Users, Groups, and Permissions ◾ 159

includes system files in the list, the operating system would deny the request if the current
user is the normal user. But if there was no user account, only a system administrator
account, then the operating system would not question the deletion leading to perhaps a
catastrophic mistake by the user.

There are at least two types of user accounts. The typical user is an end-user, whose
account gives them access to their own file space and permission to use shared resources,
including application software. Their accounts usually do not give them access to system
resources, particularly system administration programs. The other type of user is then the
system administrator, known as root in Linux and Unix. Root has access to everything—
every program, every file, every resource, no matter who the owner of that resource is.
Some operating systems provide intermediate level accounts where a user is given more
resources than the minimum while not being at the level of a system administrator. In
Linux and Unix, root can permit other users to have some additional access rights. This is
done through the program sudo, covered in Miscellaneous User Account Topics. As will
be discussed in Setting Up User Accounts, software is also given user accounts. In the case
of software accounts, access is actually more restricted than typical end-user accounts, for
instance, by not having a home directory and/or not having a login shell.

seTTInG UP User AccoUnTs
Here, we look at how to create user accounts in both Linux and Windows. Note that only a
system administrator will be able to set up user accounts.

Linux

An initial user account is created when you install the Linux OS. This account is a neces-
sity so that the first user of the system will not have to log into the graphical user interface
(GUI) as root. Doing so can be dangerous as any window that the user were to open would
have root privileges rather than ordinary user privileges. Therefore, by the time you are
ready to use Linux, there will be one user account already created. From there, however,
you would have to create others.

In Linux, there are two ways to set up user accounts: through the GUI and through the
command line. Both approaches require that the person setting up the accounts be the
system administrator. The GUI is shown in Figure 6.1.

The User Manager is fairly simple to use. You can add or delete users, and alter the prop-
erties of users. You can also add, delete, and alter groups (groups are discussed in Role of
a Group). Adding a user requires that you specify, at a minimum, the user’s user account
name, the user’s name (a string which will typically be the first and last names), and an
account number. The account number is used to index the user in the user file, /etc/passwd.
This account number will typically be greater than 99 as the first 99 numbers are reserved
for software accounts. The default account number is 1 greater than the last user added
to the system. However, a system administrator may want to have a numbering scheme
whereby numbers do not follow sequentially. For instance, in a university, faculty accounts
may be assigned numbers between 100 and 200, graduate students numbers between 201

160 ◾ Information Technology

and 500, and undergraduate students numbers greater than 500. In such a case, the next
user you add may not be in the same category as the previously added user and therefore
you would not want to just add 1 to the last user’s number to obtain a new number.

In Figure 6.1, you can see that four users have already been created. For instance, the
first user has an account name of foxr, a user number (UID) of 500, a login shell of /bin/bash,
and a home directory of /home/foxr. As a system administrator, you would create account
policies such as the form of account names (a common policy is last name—first initial or
last name—first initial and a number if that particular combination has been used, so that
for instance Robert Fox might be foxr1). Other policies would include the default locations
of directories, default shells, and whether and to what extent to specify the person’s full
name. Again, in a university setting, faculty directories may be placed in one location and
student directories in another.

Figure 6.2 shows the Add User window. Most of the entries are obvious. Here, the new
user is Tommy Mars and is being given the username marst. Notice that you must enter
an initial user password and confirm it. This enforces proper security so that accounts are
not created without passwords. However, this could be a hassle for a system administrator
who has to create dozens or hundreds of accounts. As we will see later, the command-line
approach to creating accounts is preferable in such cases. The login shell and home direc-
tory default to /bin/bash and /home/username, respectively. A system administrator can
alter what appears as defaults. Additionally, upon entering a new user, you can change
these as needed. Login shells available also include csh, ksh, sh, and tsch (these are covered
in Chapter 9), and you can also select nologin, which means that the user does not have a
login shell upon logging in. This is often specified when the user is a piece of software. You
can also override the default UID and specify a different number as desired. For instance,
if you use one set of numbers for faculty and another for students, you might override the
default value for a new student account.

One item in Figure 6.2 requires explanation. Notice the second checkbox, “Create a
private group for the user.” When a user account is created, a group that shares the user’s

FIGUre 6.1 Linux user manager.

Users, Groups, and Permissions ◾ 161

account name is also created. For instance, user foxr will also have a group foxr. The
private group will be a group that contains exactly one user. If you turn that checkbox
off, the user account is created but a private group is not created. We discuss groups in
Role of a Group.

Deleting or changing a user requires selecting the user from the list of users in the User
Manager window. Once selected, you can either select Properties to change user proper-
ties or Delete User to delete the user. You may change the user’s user name, full name,
password, directory, or login shell. You can also specify an expiration date for the account,
lock the password (so that the user is not allowed to change it), specify account expira-
tion information (i.e., establish a date by which the user must change their password), and
adjust the groups that the user is in. We will talk about password expirations at the end of
this section. If you select Delete, to delete a user, you are also asked whether the user’s home
directory, mail file, and temporary files should also be deleted or not. One might want to
save these directories and files for archival and/or security purposes.

Although the GUI User Manager is easy to use, many system administrators will choose
to use the command line useradd instruction instead. The reason is that a shell script can be
written to create a number of new user accounts automatically by using a file that lists the
new users’ names. In addition, the useradd instruction does not require the specification

FIGUre 6.2 Create new user window.

162 ◾ Information Technology

of an initial password, thus shortening the process. Of course, without an initial password,
the user account can easily be broken into and therefore some initial password should be
created. However, a separate shell script could take care of that. The password instruction
is discussed later.

The useradd instruction is easy to use if you want to specify just a few properties, as with
the GUI. The basic form of useradd is:

useradd [-u uid [-o]] [-g group] [-G group, …] [-d home]
[-s shell] [-m] username

The notation here requires a little explanation. The items listed inside of [] are optional.
Therefore, the only required parameter for useradd is the username. The simplest form of
this command would appear like this:

useradd marst

If you do not specify any other parameter aside from username, the UID defaults to being
1 greater than the last user, the directory defaults to /home/username, and the shell defaults
to the default shell (typically bash). The –m parameter forces Linux to create a home direc-
tory. The reason why this is optional is that some user accounts should not have home
directories, particularly those created for software. Software accounts will be explained in
more detail later.

To specify a non-default ID, use –u followed by the ID number. The –o parameter is
used to permit non-unique ID numbers. There is little reason to permit duplicate IDs, and
this could become a problem. However, the option is still available and might be used, for
instance, if you want users to share an account without sharing the same login/password,
or if you want to give a user multiple account names. Such a command might look like this:

useradd –u 500 –o foxr2

which would create a second account that would use the same UID as foxr (from Figure 6.1).
To override the default private group, –g allows you to specify a different private group

whereas –G allows you to insert this user into a number of other groups. You might notice in
Figure 6.1 that keneallym has been inserted into the default group users as he was not pro-
vided his own private group. The parameters –d and –s are respectively used to specify home
directories and shells other than the default. Two other parameters of note are –p, which
allows you to specify an initial password, and –c, which allows you to specify the name
field. The –c parameter is used to insert a “comment” into the user account file, /etc/passwd,
but the comment is primarily used to specify the user’s name.

Figure 6.3 demonstrates the useradd command, using several of the parameters. In
this case, we are adding the user Ruth Underwood. Her login shell is csh (c-shell) rather
than bash. Her home directory is the default directory. We are giving her a user ID

Users, Groups, and Permissions ◾ 163

number outside of the ordinary sequence, and assigning her to several groups. The #
symbol is not part of the command but instead the prompt for Linux’ system admin-
istrator (root). Note that we specify the full path to the instruction because /usr/sbin is
probably not in root’s path. Also notice that there is no space placed between the groups
(percussionists, music, cit130).

As you add a user, the user’s account information is added to the file /etc/passwd. The
information in this file includes for each account, the account name, ID number, group
ID number, name (comment field), home directory, and login shell. The group ID number
is the ID number of the user’s private account. For actual users (humans), ID and private
group numbers are usually the same.

Interestingly, missing from the /etc/passwd file is the user’s password. In the past, this
file included all user passwords, stored in an encrypted format. But the /etc/passwd file can
be read by anyone. This created a security risk. Even though passwords were encrypted,
one could see the length of a password. For instance, if my password were eight characters
long and I noticed that someone else’s encrypted password was the same length as my
encrypted password, I might infer that their password was also eight characters in length,
and that could help me crack their password. Now, the /etc/passwd file stores the character
‘x’ for passwords, and all passwords are stored in the file /etc/shadow. The shadow file is
accessible only by root.

Figure 6.4 shows portions of the /etc/passwd file. This listing shows three segments of
the password file. The accounts listed in the figure are of operating system accounts, other
software accounts, and user accounts. Operating system accounts include root (naturally,
the most important account), bin, daemon, adm, and other Linux software accounts such
as mail, news, uccp, ftp. Application software accounts include apache, for instance. Each
account in the passwd file is on a separate line, and within a line, the individual pieces of
information for each user are separated by colons.

Most of the software accounts specify /sbin/nologin to prevent the software from hav-
ing a login shell (this is done for security purposes), and have directories other than under
/ home. For instance, root’s directory is /root; lp, mail, and apache have directories under
/var; and news has a directory under /etc. The /var directory is largely used for software
storage and log files. Also notice that all of the software accounts have UIDs less than 100
(below 42 in this case), whereas the human users account numbers start at 500. In every
case, the password is merely x, indicating that the password now resides in the /etc/shadow

Useradd command

Linux prompt
for root

Create
home
directory

Add to groups Use as login
shell

Use as
user ID

Username

/usr/sbin/useradd -m -G percussionists,music,citl30 -s /bin/csh -u 1053 Underwoodr#

FIGUre 6.3 Linux useradd command.

164 ◾ Information Technology

file. All entries also have a comment field. In some cases, the comment field merely lists
the user name (root, bin, daemon) and in other cases a true name (FTP User for FTP,
NSCD Daemon for nscd, X Font Server for xfs, and rf for foxr). Users zappaf, underwoodr,
and keneallym have an empty comment field, which appears as ::, that is, nothing occurs
between the two colon symbols.

Entries in the /etc/shadow file are somewhat cryptic because they are encrypted. For
instance, two of the users in Figure 6.4 (foxr and zappaf) might have entries as follows:

foxr:1KJlIWAtJ$aE1YjCp9i5j924vlUXx.V.:15342:0:38:31:::
zappaf:1G2nb6Kml$2pWqFx8EHC5LNypVC8KFf0:15366:0:14:7:::

The listings are of the user name followed by the encrypted password. This is followed by a
sequence of information about password expiration. In the above example, there are four
numbers, but there could be as many as six. These numbers are in order:

•	 The number of days since January 1, 1970 that the password was last changed

•	 The minimum number of days required between password changes (this might be 7
if, for instance, we require that passwords not be changed more often than once per
week)

FIGUre 6.4 Excerpts of the /etc/passwd file.

Users, Groups, and Permissions ◾ 165

•	 The maximum number of days that a password is valid (99999 is the default, here
foxr’s password is valid for 38 more days whereas zappaf ’s is only valid for 14 more
days)

•	 The number of days until a warning is issued to alert the user that the password needs
to be changed

•	 The number of days after password expiration that an account will become disabled

•	 The number of days since January 1, 1970 that the account has been disabled

These last two numbers do not appear in the example above because they had not been
established for these two users.

What we see here is that foxr changed his password at some point in the recent past and
zappaf did not, so zappaf ’s password expires sooner than foxr’s. In 7 days, zappaf will be
warned to reset the password. You can see through simple subtraction (14 – 7 for zappaf
and 38 – 31 for foxr) that the system warns a user 7 days in advance of password expiration.
If the user does not reset the password, the account becomes disabled.

In Linux, the passwd instruction is used to change a passwd. For a typical user, the com-
mand is just passwd. The user is then prompted for their current password to ensure that
the user is allowed to change the password (imagine if you walked away from your com-
puter and someone came up and tried to change your password without your knowledge!),
followed by the new password, entered twice to confirm the new password. The passwd
program will inform you of whether a password is a bad password because it is too short
or because the characters of the password match or come close to matching a dictionary
word.

As a system administrator, you can change any user’s passwd with the command passwd
username, for instance, passwd foxr. As root, you are not required to enter the user’s cur-
rent password before changing it. This can be useful for creating initial passwords or for
changing mass passwords because of a policy change. But it can also be very dangerous as
you may change someone’s password inadvertently, and if you enter the passwd command
without the username, you will be changing the root password.

The passwd command has many useful parameters for a system administrator. With
these, the administrator can enforce deadlines for changing passwords. The –f param-
eter forces the user to change the password at the next login. With –w days (where days
is a positive integer), the warn field is set so that the user is warned in that many days to
change their password. With –x max, the maximum field is set that establishes the num-
ber of days that the password remains valid before it must be changed. When combined,
you are able to establish that a user must change a password in some number of days and
be warned about it before that. For instance, passwd –w 7 –x 30 foxr would require that
foxr change his password within 30 days, and if the password is not changed in the next
23 days, foxr receives a warning. The –l parameter locks the password entry so that it
cannot be changed.

166 ◾ Information Technology

The usermod command is used to modify a user’s account. You can use this command
to change the user’s comment, home directory, initial group, other groups (See the section
Role of a Group), login shell, user ID, password, account expiration date, and the number
of days after a password expires before the account is permanently disabled. Two other
options allow you to lock or unlock the user’s password.

As mentioned earlier, human users and software are given accounts. You might ask why
software would be given an account. The reason is because of the use of permissions to
control access to files and directories. This is covered in Permissions. Consider, however,
that a piece of software will need to read and write files to a particular directory. We want
to make sure that other users cannot write to that directory or to those files for security
purposes (we may also want to restrict other users from reading the directory and files).
When a user starts a process, the process is owned by that user. And therefore, if a file was
not owned by that user, then the file may not be readable or writable to that program. If,
instead, the program has its own account that owns the files, then the program can access
those files even though the user who ran the program cannot. Therefore, in Linux, there
are two types of user accounts, those for human users and those for software. It is common,
as described earlier, that software accounts will not have a login shell (because the program
will never log in) and may not have a home directory.

Windows

Early versions of Windows were intended to be single user systems, so there was no need to
create user accounts. With Windows NT, a networked version of Windows, this changed.
Now, user accounts are incorporated into each version of Windows. As with Linux, an
initial user account is created during OS installation so that the user of the computer can
log in as a non-administrator. Although the initial user account does not need a password,

Hacking

The term hacking is meant to convey a programmer, someone who “hacks” code. In fact,
hacking has several definitions. Another is applied to the hobbyist who likes to experiment
with something new. But many people view a hacker as a person who attempts to break into
computers by guessing user passwords (more appropriately, this is called cracking). There are
many ways to break into a user’s account. We look at some of them here.

Password cracking: trying a variety of passwords such as no password at all (just the enter
key), dictionary words, the user’s name, or the name of the user’s spouse, children,
pets, parents, etc.

Social engineering: trying to get the user to give you their password, for instance, by call-
ing on the phone and saying “This is Bob from IT, our server crashed and in order to
restore your account, I need your password.” This is also called phishing.

Dumpster diving: many people write their passwords on post-it notes. A quick look
around the person’s workplace or their trashcan may yield a password!

iP spoofing: by changing your IP address, you may be able to intercept Internet messages
intended for someone else. It is possible (although not very likely) that passwords might
be found this way.

Users, Groups, and Permissions ◾ 167

it is strongly recommended that the account have a password (and similarly for all future
accounts created).

To create additional accounts, you must act as Administrator. You would do this through
the User Accounts window, available through the control panel. The User Account func-
tion is made available through a GUI as shown in Figure 6.5.

Similar to the Linux User Manager, you have the ability to add, remove, or alter the prop-
erties of users. Properties here, however, are limited to group placement. By default, there
is only one group, Administrators. However, you can create additional groups as needed.
In Figure 6.5, there are three accounts: the system administrator account (Administrator);
foxr, who is also an administrator; and heggeju, who is in the group HelpLibraryUpdaters.
This account is used by a member of IT to automatically update the computer’s system as
needed. The advanced tab at the top of the User Account window permits one to change
passwords, add groups, and alter group memberships. It is likely that if you are running
Windows 7 on a home computer that you will have two accounts: Administrator and the
account that you created when you installed the operating system. If there are multiple
users who share the computer, you may or may not desire to give each user a separate
account. By having separate accounts, you create not only file space for each individual
user (under the C:\Users directory), but you also can set file permissions so that different
users are able to access different files and run different programs. If you are dealing with
a Windows 7 machine that is shared among users in a work environment, then it is likely
that each user has an account within the organization’s domain (domains are not covered

FIGUre 6.5 Windows user account GUI.

168 ◾ Information Technology

in this text) and you are able to add an account for them to any of the computers in the
domain.

Users can also be added through the Computer Management tool. Right click on the
Computer shortcut icon and select Manage. From the Computer Management tool, select
System Tools and then Local Users and Groups. Right click on the Users icon and select
New User. The New User window appears, as shown in Figure 6.6. Notice here that a pass-
word is required, unlike adding a new user through the window in Figure 6.5.

roLe oF A GroUP
An individual user creates and manages files. It is often desirable to share the files with
others. However, there are some files where the access should be limited to specific users.
The ability to control who can access a file and what types of access rights those users are
granted is accomplished through permissions. In Linux, for instance, permissions can be
established for three different classes of users: the file’s owner, those users who share the
same group as the file’s owner, and the rest of the world. This requires that we have an
entity called a group. Both Linux and Windows use groups so that access does not have to
be restricted solely to the owner of the file and the rest of the world.

A group is merely a name (and an ID number) along with the list of users who are a part
of that group. A file can be owned by both a user and a group. Permissions can be estab-
lished so that the owner has certain access rights, and group members have different access
rights. In this way, for instance, an owner might be able to read and write a file, whereas
group members can read the file only and all other users have no access to the file.

FIGUre 6.6 New user window.

Users, Groups, and Permissions ◾ 169

Both Linux and Windows permit the creation of groups. In Linux, group creation can
be accomplished through the User Manager GUI (see Figure 6.1, the Group tab is used)
or through the groupadd instruction from the command line. As with users, groups are
given ID numbers. When creating a group, like adding a user, you may specify the group
ID number, or it can default to being 1 greater than the last created group. In Windows,
group creation is handled through the Computer Manager window. Once a group is cre-
ated, individual users can be added to the group.

In Linux, users can be added or removed from groups through the User Management
tool or from the command line. To add a user to an existing group, you can use either use-
radd with the –G parameter, or usermod (modify user). An example is usermod –G cit130
zappaf. This will add zappaf to the group cit130. Group information is stored in the file /etc/
group. This file stores, for each group, the group name, the group ID number, a password
for the group (as with /etc/passwd, this merely appears as an ‘x’), and the list of usernames
who belong to that group. One could edit this file to change group memberships, although
it is safer to use the usermod instruction. In Windows, users can be added or removed
from groups through the Computer Manager Users and Groups selection, as shown in
Figure 6.7.

In Linux, when creating a new user account, you are able to specify whether a private
account should be generated for that user. This is typically the case. Creating a private
group causes a new group whose name is equal to that of the user name to be created and
added to the /etc/group file. The only member of that group will be the user. For instance,
there will be a group called foxr with one member, foxr, and a group called zappaf with one
member, zappaf. Any file created by a user, by default, is owned by that user’s private group.
It is up to the file owner to change the group ownership. If foxr were to create a file f1.txt,

FIGUre 6.7 Adding (or removing) users to groups in Windows.

170 ◾ Information Technology

it would initially be owned by user foxr and the group foxr. If foxr wanted to share the file
with members of the cit130 group, foxr would have to change group ownership. The Linux
command chown allows the owner of a file to change the owner to another user, and chgrp
allows the owner of the file to change the group owner to another group.

These two Linux commands work as follows:

chown newuser filename
chgrp newgroup filename

For instance, if you have a file foo.txt owned by root, and as root you want to change it to
be owned by foxr, the command would be chown foxr foo.txt. You might change the group
ownership as well, for instance, as chgrp cit130 foo.txt. Notice that this command is chang-
ing group ownership not to foxr’s private group, but to cit130, presumably a group of more
than one user.

If you want to change both owner and group, this can be done using chown alone:

chown newuser:newgroup filename

If you do not own a file, you would not be able to change the user or group ownership.
However, if you are root, you can change the ownership or group of any file.

PermIssIons
Access control lists (ACLs) are used in some operating systems to implement protection
of the system resources. For every resource, there is a list that describes for every user
in the system, what their access rights are for that resource. Users with no access will
not be listed. For instance, some file f1.txt might have an ACL of foxr:read,write,execute;
zappaf:read,execute; underwoodr:read. The advantage of an ACL is that you are able to
specify different access rights for every user. The disadvantages are that the ACLs require
storage space that grows with each user that you add to the list, and the rather time-con-
suming nature of changing access rights. For instance, imagine that a new user, dukeg, is
added to the system. We decide to give dukeg read access to every file in the system. Adding
dukeg:read to every ACL, if not automated through some script, could be an unpleasant
chore for an administrator.

Linux simplifies the use of an ACL by having three types of permissions—read, write,
and execute—applied to three classes of users: the file’s owner, the file’s group, and the rest
of the world. These permissions are placed on every system file and directory. Users have
the option to alter any or all permissions from their default settings when the file /directory
is created.

If a file is readable, it can be viewed or copied. If a file is writeable, it can be written to,
overwritten (modified), or deleted. If a file is executable, it can be executed. We usually
would not worry about the executability of nonprograms. Shell scripts are an exception.
A shell script is not executed directly; it is instead executed by an interpreter. This should
imply that the shell script need only be readable by the interpreter but, in fact, it needs to be

Users, Groups, and Permissions ◾ 171

both readable and executable. The interpreter would not be the owner of the file nor in the
file’s group, so it would require read and execute access for the rest of the world.

Permissions on directories have a slightly different meaning than the permissions of
files. If a directory is readable, then you can view its contents (i.e., do an ls). If a directory is
not readable, not only can you not view its contents, but you would not be able to view the
contents of individual files in that directory. If a directory is writable, then you are able to
save files into that directory as well as copy or move files into that directory. If a directory
is executable, then you can cd into it. If a directory were readable but not executable by you,
then although you could use ls on the directory, you would not be able to cd into it.

The three classes of users in Linux permissions are the resource’s owner, the resource’s
group, and everyone else in the world who can log into the Linux machine. We will refer to
these as user (u), group (g), and other (o). This is unfortunately a little confusing because
owner is represented by ‘u’ rather than ‘o’. For each of these three levels, there are three pos-
sible access rights that can be supplied: read (r), write (w), and execute (x). These letters are
important as we will see below. Files and directories will default to certain permissions. In
order to change permissions, you must own the file (or be root) and use the chmod (change
mode) command. This is covered in the Linux subsection below.

In Windows, file access is slightly different. Access rights are full control, modify, read &
execute, read, write, and special permissions. Full control is given to the owner who then
has the ability to change the access rights of others. Modify means that the file can be
written over, that is, the save command will work. Read & execute would be applied to an
executable file, whereas read would be applied to a nonexecutable. Write allows one to save
anew through save as, or resave. Any user or group can be given any combination of the
above access rights. Access rights can be set to “Allow” or “Deny”. We look at modifying
Windows permissions in the Windows subsection.

Linux

As stated, Linux has three levels of permission: owner (u for user), members of the group
(g), and the rest of the world (o for others). Each level can be set to any combination of
readable (r), writable (w), and executable (x). You are able to view the permissions of a file
(or directory) when you use the command ls –l. The –l option means “long form”. The per-
missions are shown as a nine-character set showing for the owner if readable is set, writable
is set, executable is set, and the same for group and world. For instance, a file that is listed
as rwxr-x--x means that it is readable, writable, and executable by the owner, readable and
executable by members of the group, and executable only by the world. The – indicates
that the particular permission is not set. When doing an ls –l, this list of nine characters is
preceded by a tenth character that represents the file type. Typically, this is either a hyphen
(file) or ‘d’ (directory), and as we saw in Chapter 5, the letter ‘l’ means a link.

Figure 6.8 shows a typical long listing. The listing includes, aside from the permissions,
the owner and group of the file, the file’s size, last modification date, and file’s name. Note
that the ~ at the end of some file names indicates that it is a backup file. When you modify
a file using certain editors (such as Emacs), the old file is still retained but labeled as an old
file with the ~ character. Therefore, foo2.txt is a newer version and foo2.txt~ is an older

172 ◾ Information Technology

version. Saving foo2.txt again would copy foo2.txt into foo2.txt~ to make room for the new
version.

Let us take a look at a couple of items in Figure 6.8 to gain a better understanding of the
information supplied by the long listing. First, Desktop has permissions of “drwxr-xr-x”.
The ‘d’ indicates that this is a directory. The directory is owned by foxr and in foxr’s private
group. The user foxr has rwx permissions (read, write, execute). Therefore, foxr can cd into
the directory, ls the directory, read files from the directory (presuming those files are read-
able by the owner), write to the directory, and resave files to the directory (again, presum-
ing those files are writable by the owner). Other users, whether in foxr’s private group (of
which there would probably be no one) or the rest of the world have read and execute access
to this directory but not write access. All other items shown in Figure 6.8 are files because
their permissions start with the character ‘-’. The file foo2.txt is readable and writable by
foxr only. No other user (aside from root) can read or write this file. The file foo3.txt is read-
able and writable by foxr and users in the group foxr (again, there are probably none other
than foxr). It is read-only by the rest of the world.

To change permissions, you must either be the owner of a file or the system administra-
tor. The command to change permissions is chmod (change mode). The command receives
two parameters: the changes in permission and the name of the file. Changing the permis-
sions can be done in one of three ways.

First, you can specify what changes you want by using a notation like this: u+w,g-x. The
first letter in each group represents the type of user: user (u), group (g), other (o), recalling
that user means owner and other means the rest of the world. The plus sign indicates that
you are adding a permission, and the minus sign indicates that you are removing a per-
mission. The second letter in the group is the permission being added or removed. In the
above example, the owner is adding writability to himself and removing executability from
the group. You can list multiple permission changes for each type of user such as through
u-wx,g-rwx. This would remove both write and execute from the owner’s permissions and
remove all permissions (rwx) from the group.

Second, you can specify the entire set of permissions by using the letters (u, g, o, r, w,
x) but assigning the permissions through an equal sign instead of the plus and/or minus.
For instance, we might use u=rwx,g=rx,o=x to give a file all of the permissions for owner,
read and execute for the group, and execute only for the world. To specify no permission
for a level, you immediately follow the equal sign with a comma, or leave it blank for o

FIGUre 6.8 Long listing in Linux.

Users, Groups, and Permissions ◾ 173

(other). For instance, u=rw,g=,o= would give the owner read and write access, and group
and world would have no permissions.

You can combine the first and second methods as long as they are consistent. You
would tend to use the first method if you want to change permissions slightly and the
second method if you want to reset permissions to something entirely different (or if
you did not know what the permissions were previously). Note that for both of these
approaches, the letter ‘a’ can be used to mean all users (u, g, and o). So, for instance,
a+r means everyone gains read access, or a=x means everyone is reset to only have
execute access.

The third approach is similar to the second approach in that you are replacing all
access rights with a new set; however, in this case you specify the rights as a three-digit
number. The three digits will correspond to the rights given to user, group, and other,
respectively. The digit will be between 0 and 7 depending on which combination of read,
write, and execute you wish to assign. To derive the digit, think of how the file permis-
sions appear using the notation rwxrwxrwx. Change each group of 3 (rwx) into three
binary bits where a bit is 1 if you want that access right granted and a 0 if you do not
want that access right granted. For instance, rwxr-x--x would be rewritten as 111 101 001.
Now, convert each of these 3-bit numbers to decimal (or octal): 111 is 7, 101 is 5, 001 is
1, giving us 751. Therefore, the three-digit number matching the access rights rwxr-x--x
is 751.

Another way to view the 3-valued number is to simply assign the values of 4 for
readability, 2 for writability, and 1 for executability. Now, add up the values that you
want for each of owner, group, and world to create your 3-valued number. If you want
to combine readable, writable, and executable, this will be 4 + 2 + 1 = 7. If you want
to permit only readable and writable, this will be 4 + 2 = 6. If you want to permit only
readable and executable, this will be 4 + 1 = 5. If you want readability only, this will
be 4. And so forth. You compute the sum for each of owner, group, and world. So the
value 640 would be readable and writable for owner, readable for group, and nothing
for world. The value 754 means that the owner would have all three types of access
(r, w, x), the group would have read and execute permission and the world would have
read access only.

The following are some other common values you might find for files and directories:

 660—read and write for owner and group, nothing for the world

 755—read, write, execute for owner, read and execute for group and world

 711—read, write, and execute for owner, execute for group and world

 444—a read-only file for everyone

 400—read access for owner, nothing for group and world

 000—no access for anything (only system administrator could access such a file)

174 ◾ Information Technology

The following are some values you would probably not see for files and directories:

 557—there is no reason why the world would have greater access than the owner

 220—a “write-only” file makes little sense without being able to open or read the file

 420—this file is read only for the owner but write only for the group

 777— although this is an allowable permission, it is dangerous to give the world write
access

Furthermore, it is rare not to make a directory executable, whereas non-executable files are
rarely given execute access. So we would tend to see 755 or 775 for directories and 644 or
664 for files.

Each of chmod, chown, and chgrp can alter multiple files at a time by listing each file.
For instance, chown zappaf foo1.txt foo2.txt foo3.txt, will change the owner of all three
files to the user zappaf.

Linux can also be enhanced with a feature called Security-Enhanced Linux (SELinux),
which allows permissions to be allocated in a much finer grained manner. SELinux goes
above and beyond the permissions discussed thus far and incorporates the use of ACLs to
allow much greater levels of control and security. SELinux maintains a completely separate
set of users and roles than the ones we have discussed so far. SELinux is much more com-
plex than standard Linux file permissions, and the details of its use are beyond the scope
of this text.

Windows

The Windows operating system uses a similar idea for permissions as in Linux.
Changing permissions is not as easy (at least when you have a large number of files to
change) and does not provide quite the amount of flexibility. To view the level of per-
missions on a file, from the file manager, right click a file’s icon and select properties.
From the properties window, select the Security tab. You will see something like what
is shown in Figure 6.9.

From the security tab on a file’s properties, you will see the various groups that have
access to the file. They will include System, Administrators, and Users. In this case,
we also see Authenticated Users. These are roughly equivalent to the system admin-
istrator and the world. Authenticated Users might constitute a group. Permissions are
limited to full control, modify, read and execute, read, write, and special. If you give
a user full control access, then you are allowing that user to change permissions of
others. Changing permissions requires first that you select the Edit… button. From a
new pop-up window, you can add or remove permissions by clicking in check boxes.
You can also add or remove specific users and groups from the list. Thus, Windows
gives you a way to add permissions for specific users without having to deal with group
creation. See Figure 6.10.

Users, Groups, and Permissions ◾ 175

FIGUre 6.9 Security tab to change permissions.

FIGUre 6.10 Changing permissions (left) and adding or removing users and groups (right).

176 ◾ Information Technology

mIsceLLAneoUs User AccoUnT ToPIcs
Consider the following situation. You are currently logged into your Windows 7 machine.
You are editing a few files. One of your family members needs to quickly access a file of
their own and e-mail it to a friend. Since that file is owned by that family member and they
have secured the permissions to be readable only by their own account, you cannot simply
let them use the computer for a minute. Instead, you would have to save your files, log
out, let them log in, edit their file, e-mail it, log out, and then you would have to log back
in and reopen your files. This task could take several minutes. Instead, Windows 7 has a
switch user facility (this feature was first included in Windows XP and available in Vista).
To switch user, go to the Start button, select the Shut down menu and select Switch user
(Figure 6.11). This allows you to interrupt your own session, let your family member log
in and do their work, and then return to your account. When you return to your account,
you will find it exactly as you left it, with all of your windows still open and your programs
running. It is probably best to save your work before switching users, however, in case your
family member accidentally or mistakenly shuts the computer down rather than logging
off. The switch user facility does not save any of your files.

In Linux, switching users is done in a much simpler fashion. If you are working in a shell
window, you use the command su username. You will be asked to log in as the new user.
Although you now are the new user in terms of access rights, interestingly, you will be still
be in whatever working directory you were in before issuing the su command. Therefore,
you might follow the su command with a cd ~ command to move to the new user’s home
directory. To exit from the new shell session, type exit and you will be back to your previ-
ous log in (and the previous directory). If you issue the command su without a user name,
you will be attempting to switch to root, the system administrator account. Note that if
you are currently root, you can switch to any user without having to enter their password.

As has been noted before, every operating system has a special account, the system
administrator (Administrators in Windows, root in Linux and Unix, and sometimes
referred to as superuser in other operating systems). This account has access to every sys-
tem resource. In Windows, there are a set of administrator programs and tools that are
not available to ordinary users. In Linux, many of the administrator programs are only
available to root, and these are often found either in /sbin or /usr/sbin. Among these pro-
grams are useradd, userdel, usermod, groupadd, groupdel, and groupmod (all of these are

FIGUre 6.11 Switching users.

Users, Groups, and Permissions ◾ 177

in/usr/sbin). If you do an ls –l on these files, you will see that they all have permissions of
rwxr-x---, which means that only the owner and group members can read or execute these
programs. The owner is root and the group is root, so only root can run them. There are
other system programs that are only executable by root in both of these directories.

Consider in Linux that you might want to provide some form of permission to a subset
of users by using groupadd. So you wish to create a group, add the subset of users to that
group, and then change permissions on your file giving those users access. But if you look
at the groupadd program (located in/usr/sbin), you will see that it is owned by root and in
root’s private group. Furthermore, its permissions are “-rxwr-x---” meaning that it is not
accessible to the average Linux user (only root or someone in root’s private group). Yet, as a
system administrator, you would not want to encourage people to make their files open to
the world in such cases, and there does not seem to be another option unless the user can
convince the system administrator to use groupadd to create the new group. Linux does
offer another approach, although this might be deemed a compromise between forcing
users to set dangerous permissions and having the system administrator create groups on
request. This approach is to permit one or a select group of users the ability to run specific
system programs. This is done through the program sudo and a file called /etc/sudoers.

In order to use sudo, there are two steps. First, as root, you edit the sudoers file. While
the file already has a number of entries, you would add your own, probably at the bottom
of the file. An entry is of the form:

username(s) host = command

There can be more than one user listed if you wish to give the same access to multiple
users. Usernames will be separated by commas. You can also specify members of a group
by using

%groupname or %gid (the ID number of the group).

The value for host will either be localhost, all, or a list of host (computer) names. The
word localhost means the machine that the sudoers file is stored on. This restricts users to
having to be logged in to that machine and restricts the command to only be executed on
that machine. The word all is used to indicate any machine on the network. The command
can be a list of commands that are separated by spaces. The command must include the full
path name, for example,

/sbin/mount or /usr/sbin/useradd.

The second step is to issue the sudo command. The sudo command is the word sudo fol-
lowed by the actual command that the user wishes to issue. For instance, if you have been
given sudoer privilege to run useradd, then you would perform the operation as

sudo /usr/sbin/useradd –d/home/cit130 –G cit130,students –m newguy

178 ◾ Information Technology

Here, in addition to the useradd command (which defines a different home directory
location and adds the new user to two existing groups), the command is preceded by
sudo. The sudo program, before attempting to execute the command, requires that the
user enter their password. If the password matches, then the sudo program compares
the username and command to the entries in the /etc/sudoers file. If a match is found,
the command is executed as if the user was in fact root; otherwise, the user is given an
error message such as:

foxr is not in the sudoers file. This incident will be reported.

Sudo access should not be granted on a whim. In fact, it should not be granted at all unless
the user has been trained and the organization provides a policy that clearly states the roles
and requirements of granting some system administration access. One general exception
to this rule is the following sudoer entry:

%users localhost =/sbin/shutdown –h now

The shutdown command shuts down the machine. This command is issued by the GUI
when the user selects shutdown. Therefore, all users will need to be able to shut down the
computer whether by GUI or command line. The users group is a group of all users, auto-
matically adjusted whenever users are added to the system.

User accounts permit tailored environments, known as shells in Linux, often referred to
as the desktop in Windows. Information describing the tailored environment is stored in
the user’s home directory. Upon logging in, the file(s) will be loaded into the shell or GUI
environment. In this way, the user is able to create an environment for how things look,
where things will be located, and shortcuts for executing commands. In Windows, this file,
or profile, is saved automatically as the user adjusts the desktop. In Linux, there are several
different files that can store profile information. For instance, if the user is using the Bash
shell as their login shell, the user would most likely edit the .bashrc file stored in their home
directory. We will explore Bash in more detail in Chapter 9.

FUrTher reAdInG
There are no specific books that discuss user accounts or groups, or file permissions.
Instead, those are topics in texts of various operating systems. For such texts, see Further
Reading section of Chapter 4.

revIeW Terms
Terminology introduced in this chapter:

Access control list Account name

Account Execute access

Users, Groups, and Permissions ◾ 179

Group Strong password

Group access Superuser

Owner Sudoers

Owner access Sudo

Password Switching user

Permission User

Read access World

Root account World access

SELinux Write access

Shell

Review Questions

 1. Why are user accounts needed in computer systems? Are user accounts needed if
only one person is going to be use the computer?

 2. How does a normal user account differ from a software account?

 3. What is the difference between a user account and an administrator account?

 4. Examine a Linux/etc/shadow file. Can you figure out the length of any of the pass-
words given their encrypted form?

 5. Why do we need groups?

 6. How do you create a new user account in Linux from the command line?

 7. How do you change ownership of a file in Linux from the command line?

 8. How do you change group ownership of a file in Linux from the command line?

 9. What does the usermod command allow you to do in Linux?

 10. What is a file permission?

 11. What is the difference between read access and execute access in a directory?

 12. What does execute access mean for a file that is not an executable program?

 13. What does the sudoers file store? What does the sudo command do?

 14. Why would we allow all users in a Linux computer system the ability to issue the
shutdown command?

180 ◾ Information Technology

Review PRoblems

 1. Provide Linux chmod instructions using the ugo= approach to match the following
permissions:

foo.txt -rwxr-xr--
bar drwx--x--x
stuff.txt -rw-r--r--
notstuff.txt -r-x--x---
another.txt -rwxrw-r--
temp drwxrwxr-x

 2. Repeat #1 using the 3-valued approach in Linux.

 3. Assume all items in a directory are currently set at 644. Provide Linux chmod instruc-
tions using the ugo+/– approach to match the following permissions.

foo.txt -rwxr-xr--
bar drwx--x--x
stuff.txt -rw-r--r--
notstuff.txt -r-x--x---
another.txt -rwxrw-r--
temp drwxrwxr-x

 4. Repeat #3 using the 3-value approach in Linux.

 5. What is the difference between the Linux instruction useradd and usermod?

 6. What is the difference between the Linux instruction chown and chgrp? How can
you use chown to change both file owner and file group?

 7. Write a Linux passwd command to force user marst to change his password within
10 days, issuing a warning in 7 days if the password has not been changed by then.

 8. How would you lock an account using the Linux passwd command? How would
you force a user to change their password in the next login using the Linux passwd
command?

Discussion Questions

 1. Organizations have different policies for computer usage by their users. Some ques-
tions that an organization may want to generate polices for include: How long should
an account exist after the user has left the organization? Should users have disk quo-
tas? If so, should all users have the same quota size? Can users store personal files in

Users, Groups, and Permissions ◾ 181

their storage space? Develop your own policies assuming that the organization is a
small private university or college. How would your policies differ if it was a large
public university?

 2. Repeat #1 for a small (10–20 employees) company. How would your policies differ if
it was a large (1000+ employees) company?

 3. Do you find yourself with numerous computer accounts and different passwords for
each? If so, do you have a system for naming and remembering your passwords? For
instance, do you use the same password in each account? Do you write your pass-
words down? Do you use people’s (or pets’) names as passwords? Why are these bad
ideas? Do you have any recommendations to help people who might have a dozen
different computer accounts or more? As a system administrator, should you advise
your colleagues on how to name and remember their passwords?

 4. In Linux, the /etc/passwd file is automatically modified whenever you use the
 useradd, userdel, or usermod instruction. Why should you always use these instruc-
tions rather than directly modifying the passwd file yourself? What might happen
if you modified the file directly that would not happen if you used the proper Linux
command(s)?

 5. Although the passwords are stored in an encrypted form, why was leaving the pass-
words in the /etc/passwd file a threat to system security? Attempt to explain how a
user could use the encrypted password information to hack into other users’ accounts.

 6. Explain why groups are an important unit to help better support system permissions
in an operating system. What would be the consequences on a user if groups were not
available?

 7. Find a Linux system administrator reference and examine the commands available to
the system administrator that are not available to ordinary users. From the list, can
you identify any commands that you might want to make available to ordinary users,
or even a few select users, via the sudo command? If so, explain which commands
and why or in what circumstances they should be available via sudo.

This page intentionally left blankThis page intentionally left blank

183

C h a p t e r 7

History of Computers

Most people take computers for granted today without even noticing their impact on soci-
ety. To gain a better understanding of our digital world, this chapter examines the history
of computing: hardware, software, and users. This chapter begins with the earliest com-
puting devices before moving into the development of the electronic, digital, program-
mable computer. Since the 1940s, computers fall into four “generations,” each of which is
explored. The evolution of computer software provides three overlapping threads: changes
in programming, changes to operating systems, changes to application software. The chap-
ter also briefly considers how computer users have changed as the hardware and software
have evolved.

The learning objectives of this chapter are to

•	 Compare computer hardware between the four computer generations.

•	 Describe the impact that integrated circuits and miniaturization have played on the
evolution of computer hardware.

•	 Describe shifts in programming from low level languages to high level languages
including concepts of structured programming and object-oriented programming.

•	 Explain how the role of the operating system arose and examine advances in software.

•	 Discuss the changes in society since the 1950s with respect to computer usage and
computer users.

In all of human history, few inventions have had the impact on society that computers have
had. Perhaps language itself, the ability to generate and use electricity, and the automo-
bile have had similar impacts as computers. In the case of the automobile, the impact has
been more significant in North America (particularly in the United States) than in other
countries that rely on mass transit such as trains and subways. But without a doubt, the
computer has had a tremendous impact on most of humanity, and the impact has occurred
in a shorter time span than the other inventions because large-scale computer usage only

184 ◾ Information Technology

dates back perhaps 25–30 years. In addition to the rapid impact that computers have had,
it is certainly the case that no other human innovation has improved as dramatically as
the computer. Consider the following simple comparisons of computers from the 1950s to
their present-day counterparts:

•	 A computer of the 1950s cost hundreds of thousands of 1950s dollars, whereas com-
puters today can be found as cheaply as $300 and a “typical” computer will cost no
more than $1200.

•	 A computer of the 1950s could perform thousands of instructions per second,
whereas today the number of instructions is around 1 billion (an increase of at least
a million).

•	 A computer of the 1950s had little main memory, perhaps a few thousand bytes;
today, main memory capacity is at least 4 GB (an increase of perhaps a million).

•	 A computer of the 1950s would take up substantial space, a full large room of a build-
ing, and weigh several tons; today, a computer can fit in your pocket (a smart phone)
although a more powerful general-purpose computer can fit in a briefcase and will
weigh no more than a few pounds.

•	 A computer of the 1950s would be used by no more than a few people (perhaps a
dozen), and there were only a few hundred computers, so the total number of people
who used computers was a few thousand; today, the number of users is in the billions.

If cars had progressed like computers, we would have cars that could accelerate from
0 to a million miles per hour in less than a second, they would get millions of miles to a
gallon of gasoline, they would be small enough to pack up and take with you when you
reached your destination, and rather than servicing your car you would just replace it with
a new one.

In this chapter, we will examine how computers have changed and how those changes
have impacted our society. We will look at four areas of change: computer hardware, com-
puter software, computer users, and the overall changes in our society. There is a separate
chapter that covers the history of operating systems. A brief history of the Internet is cov-
ered in the chapter on networks, although we will briefly consider here how the Internet
has changed our society in this chapter.

EvoluTIon of CompuTEr HardwarE
We reference the various types of evolution of computer hardware in terms of genera-
tions. The first generation occurred between approximately the mid 1940s and the late
1950s. The second generation took place from around 1959 until 1965. The third genera-
tion then lasted until the early 1970s. We have been in the fourth generation ever since.
Before we look at these generations, let us briefly look at the history of computing before
the computer.

History of Computers ◾ 185

Before the Generations

The earliest form of computing was no doubt people’s fingers and toes. We use decimal
most likely because we have 10 fingers. To count, people might hold up some number of
fingers. Of course, most people back in 2000 b.c. or even 1000 a.d. had little to count.
Perhaps the ancient shepherds counted their sheep, and mothers counted their children.
Very few had much property worth counting, and mathematics was very rudimentary.
However, there were those who wanted to count beyond 10 or 20, so someone invented
a counting device called the abacus (see Figure 7.1). Beads represent the number of items
counted. In this case, the abacus uses base 5 (five beads to slide per column); however,
with two beads at the top of the column, one can either count 0–4 or 5–9, so in fact, each
column represents a power of 10. An abacus might have three separate regions to store dif-
ferent numbers, for instance: the first and third numbers can range from 0 to 9999, and the
middle number can be from 0 to 99999. We are not sure who invented the abacus or how
long ago it was invented, but it certainly has been around for thousands of years.

Mathematics itself was very challenging around the turn of the millennium between BC
and AD because of the use of Roman numerals. Consider doing the following arithmetic
problem: 42 + 18. In Roman numerals, it would be written as XLII + XVIII. Not a very easy
problem to solve in this format because you cannot simply line up the numbers and add the
digits in columns, as we are taught in grade school.

It was not until the Renaissance period in Europe that mathematics began to advance,
and with it, a desire for automated computing. One advance that permitted the improve-
ment in mathematics was the innovation of the Arabic numbering system (the use of dig-
its 0–9) rather than Roman numerals. The Renaissance was also a period of educational
improvement with the availability of places of learning (universities) and books. In the
1600s, mathematics saw such new concepts as algebra, decimal notation, trigonometry,
geometry, and calculus.

In 1642, French mathematician Blaise Pascal invented the first calculator, a device
called the Pascaline. The device operated in a similar manner as a clock. In a clock, a
gear rotates, being moved by a pendulum. The gear connects to another gear of a different
size. A full revolution of one gear causes the next gear to move one position. In this way,
the first gear would control the “second hand” of the clock, the next gear would control

fIGurE 7.1 An abacus. (Courtesy of Jrpvaldi, http://commons.wikimedia.org/wiki/File:Science_
museum_030.jpg.)

186 ◾ Information Technology

the “minute hand” of the clock, and another gear would control the “hour hand” of the
clock. See Figure 7.2, which demonstrates how different sized gears can connect together.
For a mechanical calculator, Pascal made two changes. First, a gear would turn when the
previous gear had rotated one full revolution, which would be 10 positions instead of 60
(for seconds or minutes). Second, gears would be moved by human hand rather than the
swinging of a pendulum. Rotating gears in one direction would perform additions, and
rotating gears in the opposite direction would perform subtractions. For instance, if a gear
is already set at position 8, then rotating it 5 positions in a clockwise manner would cause it
to end at position 3, but it will have passed 0 so that the next gear would shift one position
(from 0 to 1), leaving the calculator with the values 1 and 3 (8 + 5 = 13). Subtraction could
be performed by rotating in a counterclockwise manner.

In 1672, German mathematician and logician Gottfried Leibniz expanded the capabil-
ity of the automated calculator to perform multiplication and division. Leibniz’s calcula-
tor, like Pascal’s, would use rotating gears to represent numbers whereby one gear rotating
past 10 would cause the next gear to rotate. However, Leibniz added extra storage locations
(gears) to represent how many additions or subtractions to perform. In this way, the same
number could be added together multiple times to create a multiplication (e.g., 5 * 4 is just
5 added together 4 times). Figure 7.3 shows both Pascal’s (a) and Leibniz’s (b) calculators.
Notice the hand crank in Leibniz’s version to simplify the amount of effort of the user,
rather than turning individual gears, as with the Pascaline.

In 1801, master weaver Joseph Marie Jacquard invented a programmable loom. The loom
is a mechanical device that allows threads to be interwoven easily. Some of the threads
are raised, and a cross-thread is passed under them (but above other threads). The raising

fIGurE 7.2 Gears of a clock. (Courtesy of Shutterstock/mmaxer.)

History of Computers ◾ 187

of threads can be a time-consuming process. Hooks are used to raise some selection of
threads. Jacquard automated the process of raising threads by punch cards. A punch card
would denote which hooks are used by having holes punched into the cards. Therefore, a
weaver could feed in a series of cards, one per pass of a thread across the length of the object
being woven. The significance of this loom is that it was the first programmable device. The
“program” being carried out is merely data that dictates which hooks are active, but the
idea of automating the changes and using punch cards to carry the “program” instructions
would lead to the development of more sophisticated programmable mechanical devices.
Figure 7.4 illustrates a Jacquard loom circa end of the 1800s. Notice the collection of punch
cards that make up the program, or the design pattern.

In addition to the new theories of mathematics and the innovative technology, the idea
behind the binary numbering system and the binary operations was introduced in 1854
when mathematician George Boole invented two-valued logic, now known as Boolean
logic.* Although this would not have a direct impact on mechanical-based computing, it
would eventually have a large impact on computing.

In the early 1800s, mathematician Charles Babbage was examining a table of logarithms.
Mathematical tables were hand-produced by groups of mathematicians. Babbage knew
that this table would have errors because the logarithms were computed by hand through a
tedious series of mathematical equations. These tables were being computed by a new idea,

* As with most discoveries in mathematics, Boole’s work was a continuation of other mathematicians’ work on logic
including William Stanley Jevons, Augustus De Morgan, and Charles Sanders Peirce.

(a)

(b)

fIGurE 7.3 (a) Pascal’s calculator (Scan by Ezrdr taken from J.A.V. Turck, 1921, Origin of Modern
Calculating Machines, Western Society of Engineers, p. 10. With permission.) and (b) Leibniz’s cal-
culator. (Scan by Chetvorno, taken from J.A.V. Turck, 1921, Origin of Modern Calculating Machines,
Western Society of Engineers, p. 133. With permission.)

188 ◾ Information Technology

difference equations. Difference equations consist solely of additions and subtractions, but
each computation could be very involved. Babbage hit on the idea that with automated cal-
culators, one could perhaps program a calculator to perform the computations necessary
and even print out the final table by using a printing press form of output. Thus, Babbage
designed what he called the Difference Engine. It would, like any computer, perform input
(to accept the data), processing (the difference equations), storage (the orientation of the
various gears would represent numbers used in the computations), and output (the final
set of gears would have digits on them that could be printed by adding ink). In 1822, he
began developing the Difference Engine to compute polynomial functions. The machine
would be steam powered. He received funding from the English government on the order
of ₤17,000 over a 10-year period.

By the 1830s, Babbage scrapped his attempts at building the Difference Engine when he
hit upon a superior idea, a general-purpose programmable device. Whereas the Difference
Engine could be programmed to perform one type of computation, his new device would
be applicable to a larger variety of mathematical problems. He named the new device the

fIGurE 7.4 Jacquard’s programmable loom. (Mahlum, photograph from the Norwegian
Technology Museum, Oslo, 2008, http://commons.wikimedia.org/wiki/File:Jacquard_loom.jpg.)

History of Computers ◾ 189

Analytical Engine. Like the Difference Engine, the Analytical Engine would use punch
cards for input. The input would comprise both data and the program itself. The program
would consist of not only mathematical equations, but branching operations so that the
program’s performance would differ based on conditions. Thus, the new device could make
decisions by performing looping (iteration) operations and selection statements. He asked
a fellow mathematician, Lady Ada Lovelace, to write programs for the new device. Among
her first was a program to compute a sequence of Bernoulli numbers. Lovelace finished her
first program in 1842, and she is now considered to be the world’s first computer program-
mer. Sadly, Babbage never completed either engine having run out of money. However,
both Difference Engines and Analytical Engines have been constructed since then using
Babbage’s designs. In fact, in 1991, students in the UK constructed an Analytical Engine
using components available in the 1830s. The cost was some $10 million. Figure 7.5 is a
drawing of the Difference Engine on display at London’s Science Museum.

fIGurE 7.5 A difference engine. (From Harper’s New Monthly Magazine, 30, 175, p. 34. http://
digital.library.cornell.edu/cgi/t/text/pageviewer-idx?c=harp;cc=harp;rgn=full%20text;idno= harp0030- 1;
didno=harp0030-1;view=image;seq=00044;node=harp0030-1%3A1. With permission.)

190 ◾ Information Technology

Babbage’s “computer” operated in decimal, much like the previous calculator devices
and was mechanical in nature: physical moving components were used for computation.
Gears rotated to perform additions and subtractions. By the late 1800s and into the 1900s,
electricity replaced steam power to drive the rotation of the mechanical elements. Other
mechanical elements and analog elements (including in one case, quantities of water) were
used rather than bulky gears. But by the 1930s and 1940s, relay switches, which were used
in the telephone network, were to replace the bulkier mechanical components. A drawing
of a relay switch is shown in Figure 7.6. A typical relay switch is about 3 cm2 in size (less
than an inch and a half). The relay switch could switch states more rapidly than a gear
could rotate so that the performance of the computing device would improve as well. A
relay switch would be in one of two positions and thus computers moved from decimal to
binary, and were now referred to as digital computers.

first Generation

Most of the analog (decimal) and digital computers up until the mid 1940s were special-
purpose machines—designed to perform only one type of computation (although they
were programmable in that the specific computation could vary). These included devices to

TaBlE 7.1 Early Computers

Name Year Nationality Comments

Zuse Z3 1941 German Binary floating point, electromechanical, programmable
Atanasoff-Berry 1942 US Binary, electronic, nonprogrammable
Colossus Mark 1 1944 UK Binary, electronic, programmable
Harvard (Mark 1) 1944 US Decimal, electromechanical, programmable
Colossus Mark 2 1944 UK Binary, electronic, programmable
Zuse Z4 1945 German Binary floating point, electromechanical, programmable

fIGurE 7.6 Electromagnetic relay switch. (Adapted from http://commons.wikimedia.org/wiki/
File:Schema_rele2.PNG.)

History of Computers ◾ 191

compute integral equations and differential equations (note that this is different from the
previously mentioned difference equations).

By the time World War II started, there was a race to build better, faster, and more
usable computers. These computers were needed to assist in computing rocket trajectories.
An interesting historical note is that the first computers were not machines—they were
women hired by the British government to perform rocket trajectory calculations by hand!
Table 7.1 provides a description of some of the early machines from the early 1940s.

The Allies also were hoping to build computers that could crack German codes.
Although completed after World War II, the ENIAC (Electronic Numerical Integrator and
Computer) was the first digital, general-purpose, programmable computer, and it ended all
interest in analog computers. What distinguishes the ENIAC from the computers in Table
7.1 is that the ENIAC was general-purpose, whereas those in Table 7.1 were either special
purpose (could only run programs of a certain type) or were not electronic but electrome-
chanical. A general-purpose computer can conceivably execute any program that can be
written for that computer.

Built by the University of Pennsylvania, the ENIAC was first made known to the public
in February of 1946. The computer cost nearly $500,000 (of 1940s money) and consisted of
17,468 vacuum tubes, 7200 crystal diodes, 1500 relays, 70,000 resistors, 10,000 capacitors,
and millions of hand-soldered joints. It weighed more than 30 tons and took up 1800 ft2.
Data input was performed by punch cards, and programming was carried out by con-
necting together various electronic components through cables so that the output of one
component would be used as the input to another component (Figure 7.7). Output was
produced using an offline accounting machine. ENIAC’s storage was limited to about 200
digits. Interestingly, although the computer was a digital computer (which typically means
a binary representation), the ENIAC performed decimal computations. Although the
ENIAC underwent some upgrades in 1947, it was in continuous use from mid 1947 until
October 1955. The ENIAC, with its use of vacuum tubes for storage, transistors, and other
electronics for computation, was able to compute at the rate of 5000 operations per second.
However, the reliance on vacuum tubes, and the difficulty in programming by connecting

fIGurE 7.7 Programming the Electronic Numerical Integrator and Computer (ENIAC). (Courtesy
of http://commons.wikimedia.org/wiki/File:Eniac.jpg, author unknown.)

192 ◾ Information Technology

components together by cable, led to a very unreliable performance. In fact, the longest
time the ENIAC went without a failure was approximately 116 hours.

The ENIAC, and other laboratory computers like it, constitute the first generation of
computer hardware, all of which were one-of-a-kind machines. They are classified not only
by the time period but also the reliance on vacuum tubes, relay switches, and the need to
program in machine language. By the 1940s, transistors were being used in various elec-
tronic appliances. Around 1959, the first computers were developed that used transistor
components rather than vacuum tubes. Transistors were favored over vacuum tubes for a
number of reasons. They could be mass produced and therefore were far cheaper. Vacuum
tubes gave off a good deal of heat and had a short shelf life of perhaps a few thousand hours,
whereas transistors could last for up to 50 years. Transistors used less power and were far
more robust.

1 cm

1 in

(a)

(b)

fIGurE 7.8 The vacuum tube and transistor (a) (Courtesy of Andrew Kevin Pullen, http://commons
.wikimedia.org/wiki/File:955ACORN.jpg.) and magnetic core memory (b) (Courtesy of HandigeHarry,
http://commons.wikimedia.org/wiki/File:Core_memory.JPG.)

History of Computers ◾ 193

Second and Third Generations

Around the same time, magnetic core memory was being introduced. Magnetic core mem-
ory consists of small iron rings of metal, placed in a wire-mesh framework. Each ring stores
one bit by having magnetic current rotate in either clockwise or counterclockwise fashion.

It was these innovations that ushered in a new generation of computers, now referred
to as the second generation. Figure 7.8 illustrates these two new technologies. Figure 7.8a
provides a comparison between the vacuum tube and transistor (note the difference in size),
and Figure 7.8b shows a collection of magnetic core memory. The collection of magnetic
cores and wires constitute memory where each ring (at the intersection of a horizontal and
a vertical wire) stores a single bit. The wires are used to specify which core is being accessed.
Current flows along one set of wires so that the cores can retain their charges. The other
set of wires is used to send new bits to select cores or to obtain the values from select cores.

The logic of the computer (controlling the fetch–execute cycle, and performing the
arithmetic and logic operations) could be accomplished through collections of transistors.
For instance, a NOT operation could be done with two transistors, an AND or OR opera-
tion with six transistors, and a 1-bit addition circuit with 28 transistors. Therefore, a few
hundred transistors would be required to construct a simple processor.

By eliminating vacuum tubes, computers became more reliable. The magnetic core
memory, although very expensive, permitted computers to have larger main memory sizes
(from hundreds or thousands of bytes to upward of a million bytes). Additionally, the size
of a computer was reduced because of the reduction in size of the hardware. With smaller
computers, the physical distance that electrical current had to travel between components
was lessened, and thus computers got faster (less distance means less time taken to travel
that distance). In addition, computers became easier to program with the innovation of
new programming languages (see the section Evolution of Computer Software).

fIGurE 7.9 IBM 7094 mainframe. (From National Archives and Records Administration, record
278195, author unknown, http://arcweb.archives.gov/arc/action/ExternalIdSearch?id=278195&j
Script=true.)

194 ◾ Information Technology

More computers were being manufactured and purchased such that computers were
no longer limited to government laboratories or university research laboratories. External
storage was moving from slow and bulky magnetic tape to disk drives and disk drums.
The computers of this era were largely being called mainframe computers—computers
built around a solid metal framework. All in all, the second generation found cheaper,
faster, easier to program, and more reliable computers. However, this generation was short-
lived. Figure 7.9 shows the components of the IBM 7094 mainframe computer (circa 1962)
including numerous reel-to-reel tape drives for storage.

During the 1950s, the silicon chip was introduced. By 1964, the first silicon chips were
used in computers, ushering in the third generation. The chips, known as printed circuits
or integrated circuits (ICs), could incorporate dozens of transistors. The IC would be a
pattern of transistors etched onto the surface of a piece of silicon, which would conduct
electricity, thus the term semiconductor. Pins would allow the IC, or chip, to be attached to
a socket, so that electrical current could flow from one location in the computer through
the circuit and out to another location. Figure 7.10 shows both the etchings that make up
an IC and the chip itself with pins to insert the chip into a motherboard. The chip shown
in Figure 7.10b is a typical chip from the late 1960s.

ICs would replace both the bulkier transistors and magnetic core memories, so that
chips would be used for both computation and storage. ICs took up less space, so again
the distance that current had to flow was reduced even more. Faster computers were the
result. Additionally, ICs could be mass produced, so the cost of manufacturing a computer

Display

JP1

JP3

OK2

S1 S2 S3LED1 S4

RN1
R4

1

1

SV2

OK1

J1

7 8

14

(a)

(b)

fIGurE 7.10 An integrated circuit (a) (Courtesy of Martin Broz, http://commons.wikimedia.org/
wiki/File:Navrh_plosny_spoj_soucastky.png.) and a silicon chip (b) (Courtesy of Xoneca, http://
commons.wikimedia.org/wiki/File:Integrated_circuit_optical_sensor.jpg.)

History of Computers ◾ 195

was reduced. Now, even small-sized organizations could consider purchasing a computer.
Mainframe computers were still being produced at costs of perhaps $100,000 or more.
Now, though, computer companies were also producing minicomputers at a reduced cost,
perhaps as low as $16,000. The minicomputers were essentially scaled-down mainframes,
they used the same type of processor, but had reduced number of registers and process-
ing elements, reduced memory, reduced storage, and so forth, so that they would support
fewer users. A mainframe might be used by a large organization of hundreds or thousands
of people, whereas a minicomputer might be used by a small organization with tens or
hundreds of users.

During the third generation, computer companies started producing families of com-
puters. The idea was that any computer in a given family should be able to run the same
programs without having to alter the program code. This was largely attributable to com-
puters of the same family using the same processor, or at least processors that had the
same instruction set (machine language). The computer family gave birth to the software
development field as someone could write code for an entire family and sell that program
to potentially dozens or hundreds of customers.

Organizations were now purchasing computers with the expectation that many employ-
ees (dozens, hundreds, even thousands) would use it. This created a need for some mecha-
nisms whereby the employees could access the computer remotely without having to go to
the computer room itself. Computer networks were introduced that would allow individual
users to connect to the computer via dumb terminals (see Figure 7.11). The dumb terminal
was merely an input and output device, it had no memory or processor. All computation
and storage took place on the computer itself. Operating systems were improved to handle
multiple users at a time. Operating system development is also described in Evolution of
Computer Software.

fIGurE 7.11 A dumb terminal, circa 1980. (Adapted from Wtshymanski, http://en.wikipedia.org/
wiki/File:Televideo925Terminal.jpg.)

196 ◾ Information Technology

fourth Generation

The next major innovation took place in 1974 when IBM produced a single-chip processor.
Up until this point, all processors were distributed over several, perhaps dozens, of chips
(or in earlier days, vacuum tubes and relay switches or transistors). By creating a single-
chip processor, known as a microprocessor, one could build a small computer around the
single chip. These computers were called microcomputers. Such a computer would be small
enough to sit on a person’s desk. This ushered in the most recent generation, the fourth
generation.

It was the innovation of the microprocessor that led to our first personal computers
in the mid 1970s. These computers were little more than hobbyist devices with little to
no business or personal capabilities. These early microcomputers were sold as component
parts and the hobbyist would put the computer together, perhaps placing the components
in a wooden box, and attaching the computer to a television set or printer. The earliest such
computer was the Mark 8. Apple Computers was established in 1976, and their first com-
puter, the Apple I, was also sold as a kit that people would build in a box. Unlike the Mark
8, the Apple I became an overnight sensation (Figure 7.12).

Although the early microcomputers were of little computing use being hobbyist toys,
over time they became more and more popular, and thus there was a vested interest in
improving them. By the end of the 1970s, both microprocessors and computer memory
capacities improved, allowing for more capable microcomputers—including those that
could perform rudimentary computer graphics. Modest word processing and accounting
software, introduced at the end of the 1970s, made these computers useful for small and

TABLE 7.2 Linear versus Exponential Increase

1000 1000
1200 2000
1400 4000
1600 8000
1800 16,000
2000 32,000
2200 64,000
2400 128,000

fIGurE 7.12 Apple I built in a wooden box. (Courtesy of Alpha1, http://commons.wikimedia.org/
wiki/File:Apple_1_computer.jpg.)

History of Computers ◾ 197

mid-sized businesses. Later, software was introduced that could fill niche markets such as
desktop publishing, music and arts, and education. Coupled with graphical user interfaces
(GUI), personal computers became an attractive option not just for businesses but for home
use. With the introduction of a commercialized Internet, the computer became more than
a business or educational tool, and today it is of course as common in a household as a car.

The most significant change that has occurred since 1974 can be summarized in one
word: miniaturization. The third-generation computers comprised multiple circuit boards,
interconnected in a chassis. Each board contained numerous ICs and each IC would con-
tain a few dozen transistors (up to a few hundred by the end of the 1960s). By the 1970s,
it was possible to miniaturize thousands of transistors to be placed onto a single chip. As
time went on, the trend of miniaturizing transistors continued at an exponential rate.

Most improvements in our society occur at a slow rate, at best offering a linear increase
in performance. Table 7.2 demonstrates the difference between an exponential and a linear
increase. The linear improvement in the figure increases by a factor of approximately 20%
per time period. This results in a doubling of performance over the initial performance in
about five time periods. The exponential improvement doubles each time period resulting
in an increase that is orders-of-magnitude greater over the same period. In the table, an
increase from 1000 to 128,000 occurs in just seven time periods.

What does this mean with respect to our computers? It means that over the years, the
number of transistors that can be placed on a chip has increased by orders of magnitude
rather than linearly. The improvements in our computers have been dramatic in fairly short
periods. It was Gordon Moore, one of the founders of Intel, who first noticed this rapidly

10,000,000,000

1,000,000,000

100,000,000

10,000,000

1,000,000

100,000

10,000

2,300

1971 1980 1990 2000 2004

Itanium 2
(9MB cache)

Itanium 2

Pentium IV

Pentium III
Pentium II

Pentium

Itanium

486

386

286

8086

8008
80804004

�e transistor count for various Intel chips over the years.
�e upper line indicates the level if transistor count doubled
every 18 months, the lower line indicates the level if transistor
count doubled every 24 months

fIGurE 7.13 Charting miniaturization—Moore’s law. The scale on the left increases exponen-
tially, not linearly. (Adapted from Wgsimon, http://commons.wikimedia.org/wiki/File:Moore_
Law_diagram_%282004%29.jpg.)

198 ◾ Information Technology

increasing “transistor count” phenomenon. In a 1965 paper, Moore observed that the trend
from 1958 to 1965 was that the number of transistors on a chip was doubling every year.
This phenomenon has been dubbed “Moore’s law.” Moore predicted that this trend would
continue for at least 10 more years.

We find, in fact, that the degree of miniaturization is a doubling of transistor count
roughly every 18 to 24 months, and that this trend has continued from 1965 to the present.
The graph in Figure 7.13 illustrates the progress made by noting the transistor count on
a number of different processors released between 1971 and 2011. It should be reiterated
that Moore’s law is an observation, not a physical law. We have come to rely on the trend in
miniaturization, but there is certainly no guarantee that the trend will continue forever. In
fact, there were many engineers who have felt that the rate of increase would have to slow
down by 2000. Once we reached 2000 and Moore’s law continued to be realized, engineers
felt that 2010 would see the end of this trend. Few engineers today feel that Moore’s law will
continue for more than a few more years or a decade, and so there is a great deal of active
research investigating new forms of semiconductor material other than silicon.

What might it mean if Moore’s law was to fail us? Consider how often you purchase a
car. Most likely, you buy a car because your current car is not road-worthy—perhaps due to
accidents, wear and tear from excessive mileage, or failure to keep the car up to standards
(although in some cases, people buy new cars to celebrate promotions and so forth). Now
consider the computer. There is little wear and tear from usage and component parts sel-
dom fail (the hard disk is the one device in the computer with moving parts and is likely to
fail much sooner than any other). The desire to purchase a new computer is almost entirely
made because of obsolescence.

What makes a computer obsolete? Because newer computers are better. How are they
better? They are faster and have more memory. Why? Because miniaturization has led to
a greater transistor count and therefore more capable components that are faster and have
larger storage. If we are unable to continue to increase transistor count, the newer computers
will be little better or no better than current computers. Therefore, people will have less need
to buy a new computer every few years. We will get back to this thought later in the chapter.

Moore’s law alone has not led us to the tremendously powerful processors of today’s com-
puters. Certainly, the reduction in size of the components on a chip means that the time it
takes for the electrical current to travel continues to lessen, and so we gain a speedup in our
processors. However, of greater importance are the architectural innovations to the processor,
introduced by computer engineers. These have become available largely because there is more
space on the chip itself to accommodate a greater number of circuits. Between the excessive
amount of miniaturization and the architectural innovations, our processors are literally mil-
lions of times more powerful than those of the ENIAC. We also have main memory capacities
of 8 GB, a number that would have been thought impossible as recently as the 1980s.

Many architectural innovations have been introduced over the years since the mid 1960s.
But it is the period of the past 20 or so years that has seen the most significant advance-
ments. One very important innovation is the pipelined CPU. In a pipeline, the fetch–exe-
cute cycle is performed in an overlapped fashion on several instructions. For instance,
while instruction 1 is being executed, instruction 2 is being decoded and instruction 3 is

History of Computers ◾ 199

being fetched. This would result in three instructions all being in some state of execution at
the same time. The CPU does not execute all three simultaneously, but each instruction is
undergoing a part of the fetch–execute cycle. Pipelines can vary in length from three stages
as described here to well over a dozen (some of the modern processors have 20 or more
stages). The pipelined CPU is much like an automotive assembly line. In the assembly line,
multiple workers are working on different cars simultaneously.

Other innovations include parallel processing, on-chip cache memories, register win-
dows, hardware that speculates over whether a branch should be taken, and most recently,
multiple cores (multiple CPUs on a single chip). These are all concepts studied in computer
science and computer engineering.

The impact of the microprocessor cannot be overstated. Without it, we would not have
personal computers and therefore we would not have the even smaller computing devices
(e.g., smart phones). However, the fourth generation has not been limited to just the inno-
vations brought forth by miniaturization. We have also seen immense improvements in
secondary storage devices. Hard disk capacity has reached and exceeded 1 TB (i.e., 1 tril-
lion bytes into which you could store 1 billion books of text or about 10,000 high-quality
CDs or more than 1000 low-resolution movies). Flash drives are also commonplace today
and provide us with portability for transferring files. We have also seen the introduction of
long-lasting batteries and LCD technologies to provide us with powerful laptop and note-
book computers. Additionally, broadband wireless technology permits us to communicate
practically anywhere.

MAchinEs ThAT chAngEd ThE WorLd

In 1992, pBS aired a five-part series on the computer called The Machine That Changed the
World. It should be obvious in reading this chapter that many machines have changed our world
as our technology has progressed and evolved. Here is a list of other machines worth mentioning.

Z1—built by Konrad Zuse in Germany, it predated the EnIaC although was partially
mechanical in nature, using telephone relays rather than vacuum tubes.

unIvaC I—built by the creators of the EnIaC for remington rand, it was the first com-
mercial computer, starting in 1951.

CdC 6600—the world’s first supercomputer was actually released in 1964, not the 1980s!
This mainframe outperformed the next fastest computer by a factor of 3.

altair 8800—although the mark 8 was the first personal computer, it was the altair 8800
that computer hobbyists initially took to. This computer was also sold as a computer
kit to be assembled. Its popularity though was nothing compared to the apple I, which
followed 5 years later.

IBm 5100—the first commercially available laptop computer (known as a portable com-
puter in those days). The machine weighed 53 lb and cost between $9000 and $19,000!

IBm Simon—In 1979, nTT (nippon Telegraph and Telephone) launched the first cellular
phones. But the first smart phone was the IBm Simon, released in 1992. Its capabilities
were limited to mobile phone, pager, fax, and a few applications such as a calendar,
address book, clock, calculator, notepad, and e-mail.

200 ◾ Information Technology

Today, we have handheld devices that are more powerful than computers from 10 to
15 years ago. Our desktop and laptop computers are millions of times more powerful than
the earliest computers in the 1940s and 1950s. And yet, our computers cost us as little as a few
hundred to a thousand dollars, little enough money that people will often discard their com-
puters to buy new ones within just a few years’ time. This chapter began with a comparison
of the car and the computer. We end this section with a look at some of the milestones in the
automotive industry versus milestones in the computer industry (Table 7.3). Notice that mile-
stones in improved automobiles has taken greater amounts of time than milestones in com-
puting, whereas the milestones in the automobile, for the most part, have not delivered cars
that are orders-of-magnitude greater as the improvements have in the computing industry.

EvoluTIon of CompuTEr SofTwarE
The earliest computers were programmed in machine language (recall from Chapter 2 that
a machine language program is a lengthy list of 1s and 0s). It was the engineers, those
building and maintaining the computers of the day, who were programming the comput-
ers. They were also the users, the only people who would run the programs. By the second
generation, better programming languages were produced to make the programming task
easier for the programmers. Programmers were often still engineers, although not neces-
sarily the same engineers. In fact, programmers could be business people who wanted

TaBlE 7.3 Milestone Comparisons

Year Automotive Milestone Computing Milestone Year

6500 b.c. The wheel Abacus 4000? b.c.
1769 Steam-powered vehicles Mechanical calculator 1642
1885 Automobile invented Programmable device 1801
1896 First automotive death (pedestrian hit by a

car going 4 mph)
First mechanical computer designed
(analytical engine)

1832

1904 First automatic transmission First digital, electronic, general
purpose computer (ENIAC)

1946

1908 Assembly line permits mass production Second-generation computers
(cheaper, faster, more reliable)

1959

1911 First electric ignition Third-generation computers (ICs,
cheaper, faster, computer families)

1963

1925 About 250 highways available in the
United States

ARPANET (initial incarnation of the
Internet)

1969

1940 One quarter of all Americans own a car Fourth-generation computers
(microprocessors, PCs)

1974

1951 Cars reach 100 mph at reasonable costs First hard disk for PC 1980
1956 Interstate highway system authorized

(took 35 years to complete)
IBM PC released 1981

1966 First antilock brakes Macintosh (first GUI) 1984
1973 National speed limits set in the United

States, energy crisis begins
Stallman introduces GNUs 1985

1977 Handicapped parking introduced Internet access in households 1990s
1997 First hybrid engine developed Cheap laptops, smart phones 2000s

History of Computers ◾ 201

software to perform operations that their current software could not perform. In the mid
1960s, IBM personnel made a decision to stop producing their own software for their hard-
ware families. The result was that the organizations that purchased IBM computers would
have to go elsewhere to purchase software. Software houses were introduced and the soft-
ware industry was born.

The history of software is not nearly as exhilarating as the history of hardware. However,
over the decades, there have been a number of very important innovations. These are
briefly discussed in this section. As IT majors, you will have to program, but you will most
likely not have to worry about many of the concerns that arose during the evolution of soft-
ware because your programs will mostly be short scripts. Nonetheless, this history gives an
illustration of how we have arrived where we are with respect to programming.

Early computer programs were written in machine language, written for a specific
machine, often by the engineers who built and ran the computers themselves. Entering
the program was not a simple matter of typing it in but of connecting memory locations to
computational circuits by means of cable, much like a telephone operator used to connect
calls. Once the program was executed, one would have to “rewire” the entire computer
to run the next program. Recall that early computers were unreliable in part because of
the short lifetime and unreliability of vacuum tubes. But add to that the difficult nature
of machine language programming and the method of entering the program (through
cables), and you have a very challenging situation. As a historical note, an early program-
mer could not get his program working even though the vacuum tubes were working, his
logic was correct, and the program was correctly entered. It turned out that a moth had
somehow gotten into a relay switch so that it would not pass current. This, supposedly, has
led to the term bug being used to mean an error. We now use the term debugging not only
to refer to removal of errors in a program, but just about any form of troubleshooting! See
Figure 7.14.

fIGurE 7.14 The first computer bug. (Courtesy of the U.S. Naval Historical Center, Online library
photograph NH 96566-KN.)

202 ◾ Information Technology

Recall at this time, that computer input/output (I/O) was limited mostly to reading
from punch cards or magnetic tape and writing to magnetic tape. Any output produced
would be stored onto tape, unmounted from the tape drive, mounted to a printer, and then
printed out. Since a computer only ran one program at a time and all input and output was
restricted in such a manner, there was no need for an operating system for the computer.
The programmer would include any I/O-specific code in the program itself.

The programming chore was made far easier with several innovations. The first was
the idea of a language translator program. This program would take another program as
input and output a machine language version, which could then be run on the computer.
The original program, often known as the source code, could not be executed in its original
form. The earliest language translators were known as assemblers, which would translate
an assembly program into machine language. Assembly language, although easier than
machine language, still required extremely detailed, precise, and low-level instructions
(recall the example from Chapter 2). By 1959, language translation improved to the point
that the language converted could be written in a more English-like way with far more
powerful programming constructs. The improved class of language translator was known
as a compiler, and the languages were called high-level languages. The first of these lan-
guage translators was made for a language called FORTRAN. The idea behind FORTRAN
was that the programmer would largely specify mathematical formulas using algebraic
notation, along with input, output, and control statements. The control statements (loops,
selections) would be fairly similar to assembly language, but the rest of the language
would read more like English and mathematics. The name of the language comes from
FORmula TRANslator. FORTRAN was primarily intended for mathematic/scientific com-
puting. A business-oriented language was also produced at roughly the same time called
COBOL (Common Business Oriented Language). Other languages were developed to sup-
port artificial intelligence research (LISP), simulation (Simula), and string manipulations
(SNOBOL).

C code
 for(i=1;i<=x;i++)
 sum=sum+i;

Assembly Language code Machine Language code
01231407 mov dword ptr [i], 1 C7 45 EC 01 00 00 00
0123140E jmp main+69h (1231419h) EB 09
01231410 mov eax, dword ptr [i] 8B 45 EC
01231413 add eax, 1 83 C0 01
01231416 mov dword ptr [i], eax 89 45 EC
01231419 mov eax, dword ptr [i] 8B 45 EC
0123141C cmp eax, dword ptr [x] 3B 45 F8
0123141F jg main+7Ch (123142Ch) 7F 0B
01231421 mov eax, dword ptr [sum] 8B 45 E0
01231424 add eax, dword ptr [i] 03 45 EC
01231427 mov dword ptr [sum], eax 89 45 E0
0123142A jmp main+60h (1231410h) EB E4

fIGurE 7.15 A comparison of high level, assembly and machine code.

History of Computers ◾ 203

Let us compare high level code to that of assembly and machine language. Figure 7.15
provides a simple C statement that computes the summation of all integer values from 1 to
an input value, x. The C code is a single statement: a for loop. The for loop’s body is itself a
single assignment statement.

When this single C instruction is assembled into assembly language code (for the Intel
x86 processor), the code is 12 instructions long. This is shown in the figure as three columns
of information. The first column contains the memory address storing the instruction. The
second column is the actual operation, represented as a mnemonic (an abbreviation). The
third column contains the operands (data) that the instruction operates on.

For instance, the first instruction moves the value 1 into the location pointed to by a vari-
able referenced as dword ptr. The fourth instruction is perhaps the easiest to understand,
add eax, 1 adds the value 1 to the data register named the eax. Each assembly instruction is
converted into one machine language instruction. In this case, the machine language (on
the right-hand side of the figure) instructions are shown in hexadecimal. So, for instance,
the first mov instruction (data movement) consists of 14 hexadecimal values, shown in
pairs. One only need examine this simple C code to realize how cryptic assembly language
can be. The assembly language mnemonics may give a hint as to what each operation does,
but the machine language code is almost entirely opaque to understanding. The C code
instead communicates to us with English words like for, along with variables and math-
ematical notation.

Although assembly language is not impossible to decipher for a programmer, it is still
a challenge to make sense of. High level language code, no matter which language, con-
sists of English words, mathematical notation, and familiar syntax such as a semicolon
used to end statements. The C programming language was not written until 1968; how-
ever, the other high level languages of that era (FORTRAN, COBOL, etc.) were all much
easier to understand than either machine or assembly language. The move to high level

ProgrAMMErs WAnTEd!

Computer scientist and software engineer are fairly recent terms in our society. The first com-
puter science department at a university was at purdue university in 1962. The first ph.d. in
Computer Science was granted from the university of pennsylvania in 1965. It was not until
the 1970s that computer science was found in many universities. Software engineering was
not even a term in our language until 1968.

Today, most programmers receive computer science degrees although there are also some
software engineering degree programs. But who were the programmers before there were
computer scientists? Ironically, like the story of Joe from Chapter 1, the computer scientist
turned IT specialist, early programmers were those who learned to program on their own.
They were engineers and mathematicians, or they were business administrators and accoun-
tants. If you knew how to program, you could switch careers and be a computer programmer.

Today, computer programmer is a dying breed. few companies are interested in hiring
someone who knows how to program but does not have a formal background in computing.
So, today, when you see programming in a job listing, it will most likely require a computer
science, information systems, computer engineering, or IT degree.

204 ◾ Information Technology

programming languages represents one of the more significant advances in computing
because without it, developing software would not only be a challenge, the crude program-
ming languages would restrict the size of the software being developed. It is unlikely that a
team of 20 programmers could produce a million-line program if they were forced to write
in either machine or assembly language.

Into the 1960s, computers were becoming more readily available. In addition, more I/O
resources were being utilized and computer networks were allowing users to connect to the
computer from dumb terminals or remote locations. And now, it was not just the engineers
who were using and programming computers. In an organization that had a computer, any
employee could wind up being a computer user. These users might not have understood the
hardware of the computer, nor how to program the computer. With all of these added com-
plications, a program was required that could allow the user to enter simple commands to
run programs and move data files in such a way that the user would not have to actually
write full programs. This led to the first operating systems.

In the early 1960s, the operating system was called a resident monitor. It would always
be resident in memory, available to be called upon by any user. It was known as a moni-
tor because it would monitor user requests. The requests were largely limited to running
a program, specifying the location of the input (which tape drive or disk drive, which
file(s)), and the destination of the output (printer, disk file, tape file, etc.). However, as the
1960s progressed and more users were able to access computers, the resident monitor had
to become more sophisticated. By the mid 1960s, the resident monitor was being called
an operating system—a program that allowed a user to operate the computer. The operat-
ing system would be responsible for program scheduling (since multiple programs could
be requested by several users), program execution (starting and monitoring the program
during execution, terminating the program when done), and user interface. The operat-
ing system would have to handle the requests of multiple users at a time. Program execu-
tion was performed by multiprogramming at first, and later on, time sharing (now called
multitasking).

Operating systems also handled user protection (ensuring that one user does not violate
resources owned by another user) and network security. Throughout the 1960s and 1970s,
operating systems were text-based. Thus, even though the user did not have to understand
the hardware or be able to program a computer, the user was required to understand how
to use the operating system commands. In systems such as VMS (Virtual Memory System)
run on DEC (Digital Equipment Corporation) VAX computers and JCL (Job Control
Language) run on IBM mainframes, commands could be as elaborate and complex as with
a programming language.

With the development of the personal computer, a simpler operating system could
be applied. One of the most popular was that of MS-DOS, the disk operating system.
Commands were largely limited to disk (or storage) operations—starting a program,
saving a file, moving a file, deleting a file, creating directories, and so forth. Ironically,
although the name of the operating system is DOS, it could be used for either disk or tape
storage! The next innovation in operating systems did not arise until the 1980s. However,
in the meantime….

History of Computers ◾ 205

Lessons learned by programmers in the 1960s led to a new revolution in the 1970s known
as structured programming. Statements known as GOTOs were used in a large number of
early languages. The GOTO statement allowed the programmer to transfer control from
any location in a program to anywhere else in the program. For a programmer, this free-
dom could be a wonderful thing—until you had to understand the program to modify it
or fix errors. The reason is that the GOTO statement creates what is now called spaghetti
code. If you were to trace through a program, you would follow the instructions in sequen-
tial order. However, with the use of GOTO statements, suddenly after any instruction, you
might have to move to another location in the program. Tracing through the program
begins to look like a pile of spaghetti. In structured programming, the programmer is lim-
ited to high level control constructs such as while loops, for loops, and if–else statements,
and is not allowed to use the more primitive GOTO statement. This ushered in a new era
of high level languages, C and Pascal being among the most notable.

In the 1980s, another innovation looked to rock the programming world. Up until the
mid 1980s, a programmer who wanted to model some entity in the world, whether a physi-
cal object such as a car, or an abstract object such as a word process document, would use
individual variables. The variables would describe attributes of the object. For the car, for
instance, variables might include age, gas mileage, type of car, number of miles, and cur-
rent Blue Book value. A better modeling approach was to define classes of entities called
objects. Objects could then be spawned by a program, each object being unique and model-
ing a different physical object (for instance, given a car class, we could generate four differ-
ent cars). Objects would then interact with each other and with other types of objects. The
difference between the object-oriented approach and the older, variable-based approach, is
that an object is a stand-alone entity that would be programmed to handle its own inter-
nal methods as well as messages received from other objects. And with classes defined, a
programmer could then expand the language by defining child classes. Through a tech-
nique called inheritance, a programmer is able to take a previous class and generate a more
specific class out of it. This provides a degree of code reuse in that programmers could use
other programmers’ classes without having to reinvent the code themselves. The notion of

Class: Bicycle
Wheels: 2
Powered: pedaling

Subclass: Girls bicycleSubclass: Racing bicycle
Gears: 10

Subclass: Child’s bicycle
Wheels 2 + training wheels

fIGurE 7.16 Object-oriented inheritance. (Adapted from Shutterstock/photo-master.)

206 ◾ Information Technology

inheritance is illustrated in Figure 7.16, where a bicycle class is the basis for several more
specific types of bicycles. For instance, all bicycles in the hierarchy represent modes of
transportation that contain two wheels powered by a human pedaling. However, there are
subtypes of bicycles such as a racing bike, a girl’s bike, or a bike with training wheels.

Object-oriented programming (OOP) was initially introduced in the language Smalltalk
in the 1970s and early 1980s. In the mid 1980s, a variant of Smalltalk’s object-oriented
capabilities was incorporated into a new version of C, called C++. C++ became so popular
that other object-oriented programming languages (OOPL) were introduced in the 1990s.
Today, nearly every programming language has OOP capabilities.

Hand in hand with the development of OOPLs was the introduction of the first win-
dowing operating system. To demonstrate the use of OOP, artificial intelligence research-
ers at Xerox Palo Alto California (Xerox Parc) constructed a windows-based environment.
The idea was that a window would be modeled as an object. Every window would have
certain features in common (size, location, background color) and operations that would
work on any window (moving it, resizing it, collapsing it). The result was a windows oper-
ating system that they would use to help enhance their research. They did not think much
of marketing their creation, but they were eager to demonstrate it to visitors. Two such
visitors, Steven Jobs and Steven Wozniak (the inventors of the Apple personal computers),
found this innovation to be extraordinary and predicted it could change computing. Jobs
and Wozniak spent many years implementing their own version. Jobs was involved in the
first personal computer to have the GUI, the Apple Lisa. But when it was released in 1983
for $10,000 per unit, very few were sold. In fact, the Lisa project became such a mess that
Jobs was forced off of the project in 1982 and instead, he moved onto another Apple project,
the Macintosh. Released in 1984 for $2500, the Macintosh was a tremendous success.*

A windows-based interface permits people to use a computer by directing a pointer at
menu items or using clicking and dragging motions. With a windowing system, one does
not need to learn the language of an operating system such as VMS, DOS, or Unix, but
instead, one can now control a computer intuitively after little to no lessons. Thus, it was the
GUI that opened up computer usage to just about everyone. Today, graphical programming
and OOP are powerful tools for the programmer. Nearly all software today is graphical in
nature, and a good deal of software produced comes from an object-oriented language.

Another innovation in programming is the use of an interpreter rather than a compiler.
The compiler requires that the components of the software all be defined before compila-
tion can begin. This can be challenging when a software project consists of dozens to hun-
dreds of individual components, all of which need to be written before compilation. In a
language such as Java, for instance, one must first write any classes that will be called upon
by another class. However, if you simply want to test out an idea, you cannot do so with

* For those of you old enough, you might recall the first Apple Macintosh commercial. Airing during Super Bowl XVIII
in January 1984 for $1.5 million, the commercial showed a number of similarly dressed men walking through drab hall-
ways and seated in an auditorium. They were listening to a “Big Brother”-like figure. A young female athlete in a white
tank top ran into the hall and threw a hammer at the screen. Upon impact, the screen exploded and the commercial
ended with the caption that “…you’ll see why 1984 won’t be like ‘1984.’ ” The commercial was directed by Ridley Scott.
You can find the commercial on YouTube.

History of Computers ◾ 207

incomplete code. The Lisp programming language, developed at the end of the 1950s for
artificial intelligence research, used an interpreter. This allowed programmers to test out
one instruction at a time, so that they could build their program piecemeal.

The main difference between a compiled language and an interpreted language is that
the interpreted language runs inside of a special environment called the interpreter. The
programmer enters a command, then the interpreter converts that command to machine
language and executes it. The command might apply the result of previous commands by
referring to variables set by earlier commands, although it does not necessarily have to.
Thus, interpreted programming relies on the notion of a session. If the programmer suc-
ceeds in executing several instructions that go together, then the programmer can wrap
them up into a program. In the compiled language, the entire program is written before it
can be compiled, which is necessary before it can be executed. There are many reasons to
enjoy the interpreted approach to programming; however, producing efficient code is not
one of them. Therefore, most large software projects are compiled.

As an IT administrator, your job will most likely require that you write your own code
from time to time. Fortunately, since efficiency will not necessarily be a concern (your code
will be relatively small, perhaps as few as a couple of instructions per program), you can
use an interpreted environment. In the Linux operating system, the shell contains its own
interpreter. Therefore, writing a program is a matter of placing your Linux commands into
a file. These small programs are referred to as scripts, and the process of programming is
called shell scripting. In Windows, you can write DOS batch files for similar results.

Scripting goes beyond system administration, however. Small scripts are often written
in network administration, web server administration, and database server administration.
Scripts are also the tool of choice for web developers, who will write small scripts to run on
the web server (server-side scripts), or in the web browser (client-side scripts). Server-side
scripts, for instance, are used to process data entered in web-page forms or for generating
dynamic web pages by pulling information out of a database. Client-side scripts are used to
interact with the user, for instance, by ensuring that a form was filled out correctly or through
a computer game. Many of the interpreted languages today can serve as scripting languages
for these purposes. Scripting languages include perl, php, ruby, python, and asp. We will visit
programming and some of these scripting languages in more detail in Chapter 14.

EvoluTIon of THE CompuTEr uSEr
Just as computer hardware and computer software have evolved, so has the computer user.
The earliest computer users were the engineers who both built and programmed the com-
puters. These users had highly specialized knowledge of electronics, electrical engineering,
and mathematics. There were only hundreds of such people working on a few dozen labo-
ratory machines. By the 1950s, users had progressed to include programmers who were no
longer (necessarily) the engineers building the computers.

In the 1960s and through the 1970s, users included the employees of organizations that
owned or purchased time on computers. These users were typically highly educated, but per-
haps not computer scientists or engineers. Some of the users were computer operators, whose
job included such tasks as mounting tapes on tape drives and working with the computer

208 ◾ Information Technology

hardware in clean rooms. But most users instead worked from their offices on dumb terminals.
For this group of users, their skills did not have to include mathematics and electronics, nor
programming, although in most cases, they were trained on the operating system commands
of their computer systems so that they could enter operating system instructions to accomplish
their tasks. The following are some examples from VMS, the operating system for DEC’s VAX
computers, which were very popular in the 1970s and 1980s (excerpted from a tutorial on VMS).

ASSIGN DEV$DISK:[BOB]POSFILE.DAT FOR015
COPY SYS$EXAMPLES:TUT.FOR TUT.FOR
DEL SYS$EXAMPLES:TUT.FOR
PRINT/FORM = 1/QUEUE = SYS$LASER TUT.FOR
SHOW QUEUE/ALL SYS$LASER

As the 1970s progressed, the personal computer let just about anyone use a computer
regardless of their background. To control the early PCs, users had to know something of
the operating system, so again, they wrote commands. You have already explored some
MS-DOS commands earlier in the text. Although the commands may not be easy to
remember, there are far fewer commands to master than in the more complex mainframe
operating systems such as VMS.

With the release of the Apple Macintosh in 1984, however, the use of operating system
commands became obsolete. Rather than entering cryptic commands at a prompt, the user
instead controlled the computer using the GUI. All of the Macintosh software was GUI-
based such that, for the first time, a user would not have to have any specialized knowledge
to use the computer. It was intuitively easy. The Microsoft Windows operating system was
introduced a year later, and by the 1990s, nearly all computers were accessible by windows-
based GUI operating systems and applications software. In an interesting turn of events, it
was often the younger generations who easily learned how to use the computer, whereas the
older generations, those who grew up thinking that computers were enormous, expensive,
and scary, were most hesitant to learn to use computers.

The most recent developments in computer usage is the look and feel of touch screen
input devices such as smart phones and tablet PCs. Pioneered by various Apple products,
the touch screen provides an even more intuitive control of the computer over the more
traditional windows-style GUI. Scrolling, tapping, bringing up a keyboard, and using your
fingers to move around perhaps is the next generation of operating systems. It has already
been announced that Microsoft plans on adopting this look and feel to their next genera-
tion of desktop operating system, Windows 8.

Today, it is surprising to find someone who does not know how to use a computer. The
required skill level remains low for using a computer. In fact, with so many smart phones on
the planet, roughly half of the population of the planet can be considered computer users.

To understand computer fundamentals, one must know some basic computer literacy.
To understand more advanced concepts such as software installation, hardware installa-
tion, performance monitoring, and so forth, even greater knowledge is needed. Much of
this knowledge can be learned by reading manuals or magazines. It can also be learned by

History of Computers ◾ 209

watching a friend or family member do something similar. Some users learn by trial and
error. Today, because of the enormous impact that computers have had on our society,
much of this knowledge is easily accessible over the Internet as there are web sites that both
computer companies and individuals create that help users learn. Only the most special-
ized knowledge of hardware repair, system/network administration, software engineering,
and computer engineering require training and/or school.

ImpaCT on SoCIETy
You are in your car, driving down the street. You reach a stop light and wait for it to change.
Your GPS indicates that you should go straight. You are listening to satellite radio. While
at the stop light, you are texting a friend on your smart phone (now illegal in some states).
You are on your way to the movies. Earlier, you watched the weather forecast on television,
telling you that rain was imminent. While you have not touched your computer today, you
are immersed in computer technology.

•	 Your car contains several processors: the fuel-injection carburetor, the antilock
brakes, the dashboard—these are all programmable devices with ICs.

•	 Your GPS is a programmable device that receives input from a touch screen and from
orbiting satellites.

•	 Your satellite radio works because of satellites in orbit, launched by rocket and com-
puter, and programmed to deliver signals to specific areas of the country.

•	 Your smart phone is a scaled-down computer.

•	 The movie you are going to see was written almost certainly by people using word
processors. The film was probably edited digitally. Special effects were likely added
through computer graphics. The list of how computers were used in the production of
the film would most likely be lengthy, and that does not take into account marketing
or advertising of the movie.

•	 The weather was predicted thanks to satellites (again, placed in orbit by rocket and
computer), and the weather models were run on computers.

•	 Even the stop light is probably controlled by a computer. See the sensors in the road?

In our world today, it is nearly impossible to escape interaction with a computer. You
would have to move to a remote area and purposefully rid yourself of the technology in
order to remove computers from your life. And yet you may still feel their impact through
bills, the post office, going to country stores, and from your neighbors.

Computer usage is found in any and every career. From A to Z, whether it be account-
ing, advertising, air travel, the armed forces, art, or zoology, computers are used to assist
us and even do a lot of the work for us.

But the impact is not limited to our use of computers in the workforce. They are the
very basis for economic transactions. Nearly all of our shopping takes place electronically:

210 ◾ Information Technology

inventory, charging credit cards, accounting. Computers dominate our forms of entertain-
ment whether it is the creation of film, television programs, music, or art, or the medium
by which we view/listen/see the art. Even more significantly, computers are now the center
of our communications. Aside from the obvious use of the cell phone for phone calls, we
use our mobile devices to see each other, to keep track of where people are (yes, even spy
on each other), to read the latest news, even play games.

And then there is the Internet. Through the Internet, we shop, we invest, we learn, we
read (and view) the news, we seek entertainment, we maintain contact with family, friends,
and strangers. The global nature of the Internet combined with the accessibility that people
have in today’s society has made it possible for anyone and everyone to have a voice. Blogs
and posting boards find everyone wanting to share their opinions. Social networking has
allowed us to maintain friendships remotely and even make new friends and lovers.

The Internet also provides cross-cultural contact. Now we can see what it’s like to live
in other countries. We are able to view those countries histories and historic sites. We can
watch gatherings or entertainment produced from those countries via YouTube. And with
social networking, we can find out, nearly instantaneously what news is taking place in
those countries. As a prime example, throughout 2011, the Arab Spring was taking place.
And while it unfolded, the whole world watched.

To see the impact of the computer, consider the following questions:

 1. When was the last time you wrote someone a postal letter? For what reason other
than sending a holiday card or payment?

 2. When was the last time you visited a friend without first phoning them up on your
cell phone or e-mailing them?

 3. When was the last time you read news solely by newspaper?

You will study the history of operating systems, with particular emphasis on DOS,
Windows, and Linux, and the history of the Internet in Chapters 8 and 12, respectively.
We revisit programming languages and some of their evolution in Chapter 14.

furTHEr rEadInG
There are a number of excellent sources that cover aspects of computing from computer
history to the changing social impact of computers. To provide a complete list could quite
possibly be as lengthy as this text. Here, we spotlight a few of the more interesting or semi-
nal works on the topic.

•	 Campbell-Kelly, M. and Aspray, W. Computer: A History of the Information Machine.
Boulder, CO: Westview Press, 2004.

•	 Campbell-Kelly, M. From Airline Reservations to Sonic the Hedgehog: A History of the
Software Industry. Cambridge, MA: MIT Press, 2004.

History of Computers ◾ 211

•	 Ceruzzi, P. A History of Modern Computing. Cambridge, MA: MIT Press, 1998.

•	 Ceruzzi, P. Computing: A Concise History. Cambridge, MA: MIT Press, 2012.

•	 Daylight, E., Wirth, N. Hoare, T., Liskov, B., Naur, P. (authors) and De Grave, K. (edi-
tor). The Dawn of Software Engineering: from Turing to Dijkstra. Heverlee, Belgium:
Lonely Scholar, 2012.

•	 Ifrah, G. The Universal History of Numbers: From Prehistory to the Invention of the
Computer. New Jersey: Wiley and Sons, 2000.

•	 Mens, T. and Demeyer, S. (editors). Software Evolution. New York: Springer, 2010.

•	 Rojas, R. and Hashagen, U. (editors). The First Computers: History and Architectures.
Cambridge: MA: MIT Press, 2000.

•	 Stern, N. From ENIAC to UNIVAC: An Appraisal of the Eckert–Mauchly Computers.
Florida: Digital Press, 1981.

•	 Swedin, E. and Ferro, D. Computers: The Life Story of a Technology. Baltimore, MD:
Johns Hopkins University Press, 2007.

•	 Williams, M. History of Computing Technology. Los Alamitos, CA: IEEE Computer
Society, 1997.

There are a number of websites dedicated to aspects of computer history. A few are men-
tioned here.

•	 http://americanhistory.si.edu/collections/comphist/

•	 http://en.wikipedia.org/wiki/Index_of_history_of_computing_articles

•	 http://www.computerhistory.org/

•	 http://www.computerhope.com/history/

•	 http://www.computersciencelab.com/ComputerHistory/History.htm

•	 http://www.trailing-edge.com/~bobbemer/HISTORY.HTM

rEvIEw TErmS
Terminology introduced in this chapter:

Abacus Compiler

Analytical Engine Difference Engine

Assembler Dumb terminal

Bug ENIAC

212 ◾ Information Technology

GUI Minicomputer

Integrated circuit OOPL

Interpreter Relay switch

Magnetic core memory Resident monitor

Mainframe Structured programming

Mechanical calculator Vacuum tube

Microcomputers Windows operating system

Microprocessor

Review QuestioNs

 1. How did Pascal’s calculator actually compute? What was used to store information?

 2. What device is considered to be the world’s first programmable device?

 3. In what way(s) should we consider Babbage’s Analytical Engine to be a computer?

 4. What notable achievement did Lady Ada Augusta Lovelace have?

 5. Which of the four computer generations lasted the longest?

 6. In each generation, the hardware of the processor was reduced in size. Why did this
result in a speed up?

 7. What was the drawback with using vacuum tubes?

 8. What technology replaced vacuum tubes for second generation computers?

 9. At what point in time did we see a shift in users from those who were building and
programming computers to ordinary end users?

 10. Since both the third- and fourth-generation computers used integrated circuits on sili-
con chips, how did the hardware of the fourth generation differ from that of the third?

 11. In the evolution of operating systems, what was the most significant change that
occurred in the fourth generation?

 12. In the evolution of operating systems, at what point did they progress from tackling
one program at a time to switching off between multiple programs?

 13. What is structured programming and what type of programming instruction did
structured programming attempt to make obsolete?

 14. How did object-oriented programming improve on programming?

 15. How do computer users today differ from those who used computers in the 1960s?
From those who used computers in the 1950s?

History of Computers ◾ 213

DisCussioN QuestioNs

 1. In your own words, describe the improvements in computer hardware in terms of
size, expense, speed, value (to individuals), and cost from the 1950s to today.

 2. A comparison was made in this chapter that said “if cars had progressed like com-
puters, …” Provide a similar comparison in terms of if medicine had progressed like
computers.

 3. What other human achievements might rival that of the computer in terms of its
progress and/or its impact on humanity?

 4. We might look at language as having an equal or greater impact on humanity as
computers. Explain in what ways language impacts us more significantly than com-
puter usage. Are there ways that computer usage impacts us more significantly than
language?

 5. Provide a ranking of the following innovations, creations, or discoveries in terms
of the impact that you see on our daily lives: fire, refrigeration, automobiles, flight,
radio/television, computers (including the Internet).

 6. Imagine that a 50-year-old person has been stranded on an island since 1980 (the
person would have been 18 at that time). How would you explain first what a personal
computer is and second the impact that the personal computer has had on society?

 7. Describe your daily interactions with computers or devices that have computer com-
ponents in them. What fraction of your day is spent using or interacting with these
devices (including computers).

 8. Attempt to describe how your life would be different without the Internet.

 9. Attempt to describe how your life would be different without the cell phone.

 10. Attempt to describe how your life would be different without any form of computer
(these would include your answers to questions #8 and #9).

 11. Imagine that computing is similar to how it was in the early 1980s. Personal com-
puters were available, but most people either used them at home for simple book-
keeping tasks (e.g., accounting, taxes), word processing, and/or computer games, and
businesses used them largely for specific business purposes such as inventory and
maintaining client data. Furthermore, these computers were entirely or primarily
text-based and not connected to the Internet. Given that state, would you be as inter-
ested in IT as a career or hobby? Explain.

This page intentionally left blankThis page intentionally left blank

215

C h a p t e r 8

Operating Systems History

Chapter 7 covered the evolution of hardware and software. In this chapter, the focus is
on the evolution of operating systems with particular emphasis on the development of
Linux and Unix and separately, the development of PC-based GUI operating systems. The
examination of Linux covers two separate threads: first, the variety of Linux distributions
that exist today, and second, the impact that the open source community has had on the
development of Linux.

The learning objectives of this chapter are to

•	 Describe how operating systems have evolved.

•	 Discuss the impact that Linux has had in the world of computing.

•	 Compare various Linux distributions.

•	 Describe the role that the open source community has played.

•	 Trace the developments of PC operating systems.

In this chapter, we look at the history and development of various operating systems (OSs),
concentrating primarily on Windows and Linux. We spotlight these two OSs because they
are two of the most popular in the world, and they present two separate philosophies of
software. Windows, a product of the company Microsoft, is an OS developed as a com-
mercial platform and therefore is proprietary, with versions released in an effort to entice
or force users to upgrade and thus spend more money. Linux, which evolved from the OS
Unix, embraces the Open Source movement. It is free, but more than this, the contents of
the OS (the source code) are openly available so that developers can enhance or alter the
code and produce their own software for the OS—as long as they follow the Open GNUs
Licensing (GL) agreement. Before we look at either Windows or Linux, we look at the evo-
lution of earlier OSs.

216 ◾ Information Technology

Before LInux and WIndoWs
As discussed in Chapter 7, early computers had no OSs. The users of these computers were
the programmers and the engineers who built the computers. It was expected that their
programs would run with few or no resources (perhaps access to punch cards for input,
with the output being saved to tape). The operations of reading from punch cards and writ-
ing to tape had to be inserted into the programs themselves, and thus were written by the
users.

Several changes brought about the need for an OS. The first was the development of
language translators. To run a program, a programmer would have to first compile (or
assemble) the program from its original language into machine language. The program-
mer would have to program the computer for several distinct steps. First, a translation
program (compiler or assembler) would have to be input from tape or punch card. Second,
the source code would have to be input, again from tape or punch card. The translation
program would execute, loading the source code, translating the source code, and saving
the resulting executable code onto magnetic tape. Then the executable program would be
input from tape, with data being input again from card or tape. The program would be
executed and the output would be sent to magnetic tape to be printed later. Without an OS,
every one of the input and output tasks would have to be written as part of the program.
To simplify matters, the resident monitor was created to handle these operations based on
a few commands rather than dozens or hundreds of program instructions. See Figure 8.1,
which illustrates in Job Control Language (JCL; used on IBM mainframes) the instruc-
tions to copy a file from one location to another.

Another change that brought about the need for OSs was the availability of comput-
ers. Into the second generation, computers were less expensive, resulting in more com-
puters being sold and more organizations having access to them. With the increase in
computers came an increase in users. Users, starting in the second generation, were not
necessarily programmers or engineers. Now, a typical employee might use a computer. The
OS was a mechanism that allowed people to use a computer without necessarily having to
understand how to program a computer.

Additionally, the improvement in computer hardware led to OSs in two ways. First, the
improved speed led to programs requiring less time to execute. In the first generation, the
computer user was also the engineer and the programmer. Switching from one program

//IS198CPY JOB (IS198T30500),’COPY JOB’, CLASS = L, MSGCLASS = X
//COPY01 EXEC PGM = IEBGENER
//SYSPRINT DD SYSOUT = *
//SYSUT1 DD DSN = OLDFILE, DISP = SHR
//SYSUT2 DD DSN = NEWFILE,
// DISP = (NEW, CATLG, DELETE),
// SPACE = (CYL, (40,5), RLSE),
// DCB = (LRECL = 115, BLKSIZE = 1150)
//SYSIN DD DUMMY

fIGure 8.1 JCL instructions.

operating systems History ◾ 217

and thus one user to another was time consuming. With programs taking less time to
execute, the desire to improve this transition led to OSs. Also, the improved reliability of
computers (having abandoned short lifespan vacuum tubes) permitted longer programs to
execute to completion. With longer programs came a need for handling additional com-
puting resources and therefore a greater demand for an OS.

OSs grew more complex with the development of multiprogramming and time sharing
(multitasking). This, in turn, permitted dozens or hundreds or thousands of users to use
the computer at the same time. This increase in usage, in turn, required that OSs handle
more and more tasks, and so the OSs became even more complex. And as discussed in
Chapter 7, windowing OSs in the fourth generation changed how users interact with com-
puters. What follows is a brief description of some of the early OSs and their contributions.

The earliest OS used for “real work” was GM-NAA I/O, written by General Motors for
use on IBM 701 mainframe computers. Its main purpose was to automatically execute a
new program once the previously executing program had terminated. It used batch pro-
cessing whereby input was supplied with the program. It was a collection of an expanded
resident monitor written in 1955 along with programs that could access the input and
output devices connected to the mainframe.

Atlas Supervisor in 1957 for Manchester University permitted concurrent user access. It
is considered to be the first true OS (rather than resident monitor). Concurrent processing
would not generally be available until the early 1960s (see CTSS). Additionally, the Atlas
was one of the first to offer virtual memory.

BESYS was Bell Operating System, developed by Bell Laboratories in 1957 for IBM 704
mainframes. It could handle input from both punch cards and magnetic tape, and output
to either printer or magnetic tape. It was set up to compile and run FORTRAN programs.

IBSYS, from 1960, was released by IBM with IBM 7090 and 7094 mainframes. OS com-
mands were embedded in programs by inserting a $ in front of any OS command to differ-
entiate it from a FORTRAN instruction. This approach would later be used to implement
JCL (Figure 8.1) instructions for IBM 360 and IBM 370 mainframe programs.

CTSS, or Compatible Time-Sharing System, released in 1961 by the Massachusetts
Institute of Technology’s (MIT) Computation Center, was the first true time-sharing (mul-
titasking) OS. Unlike the Atlas Supervisor, one component of CTSS was in charge of cycling
through user processes, offering each a share of CPU time (thus the name time sharing).

EXEC 8, in 1964, was produced for Remington Rand’s UNIVAC mainframes. It is
notable because it was the first successful commercial multiprocessing OS (i.e., an OS that
runs on multiple processors). It supported multiple forms of process management: batch,
time sharing, and real-time processing. The latter means that processes were expected to
run immediately without delay and complete within a given time limit, offering real-time
interaction with the user.

TOPS-10, also from 1964, was released by Digital Equipment Corporation (DEC) for
their series of PDP-10 mainframes. TOPS-10 is another notable time sharing OS because
it introduced shared memory. Shared memory would allow multiple programs to com-
municate with each other through memory. To demonstrate the use of shared memory, a
multiplayer Star Trek–based computer game was developed called DECWAR.

218 ◾ Information Technology

MULTICS, from 1964, introduced dynamic linking of program code. In software
engineering, it is common for programmers to call upon library routines (pieces of code
written by other programmers, compiled and stored in a library). By using dynamic link-
ing, those pieces of code are loaded into memory only when needed. MULTICS was the
first to offer this. Today, we see a similar approach in Windows with the use of “dll” files.
MULTICS was a modularized OS so that it could support many different hardware plat-
forms and was scalable so that it could still be efficient when additional resources were
added to the system. Additionally, MULTICS introduced several new concepts including
access control lists for file access control, sharing process memory and the file system (i.e.,
treating running process memory as if it were file storage, as with Unix and Linux using
the /proc directory), and a hierarchical file system. Although MULTICS was not a very
commercially successful OS, it remained in operation for more than a decade, still in use
by some organizations until 1980. It was one of the most influential OSs though because it
formed a basis for the later Unix OS.

OS360 for IBM 360 (and later, OS370 for IBM 370) mainframe computers was released
in 1966. It was originally a batch OS, and later added multiprogramming. Additionally,
within any single task, the task could be executed through multitasking (in essence, there
was multithreading in that a process could be multitasked, but there was no multitasking
between processes). OS360 used JCL for input/output (I/O) instructions. OS360 shared a
number of innovations introduced in other OSs such as virtual memory and a hierarchical
file system, but also introduced its own virtual storage access method (which would later
become the basis for database storage), and the ability to spawn child processes. Another
element of OS360 was a data communications facility that allowed the OS to communicate
with any type of terminal. Because of the popularity of the IBM 360 and 370 mainframes,
OS360 became one of the most popular OSs of its time. When modified for the IBM 370,
OS360 (renamed System/370) had few modifications itself. Today, OS360 remains a popu-
lar experimental OS and is available for free download.

Unics (later, UNIX) was developed by AT&T in 1969 (see the next section for details).
Also in 1969, the IBM Airline Control Program (ACP) was separated from the remainder
of IBM’s airline automation system that processed airline reservations. Once separated,
ACP, later known as TPF (Transaction Processing Facility) was a transaction processing
OS for airline database transactions to handle such tasks as credit card processing, and
hotel and rental car reservations. Although not innovative in itself, it provides an example
of an OS tailored for a task rather than a hardware platform.

In the early 1970s, most OSs merely expanded upon the capabilities introduced during
the 1960s. One notable OS, VM used by IBM, and released in 1972, allowed users to create
virtual machines.

a HIsTory of unIx
The Unix OS dates back to the late 1960s. It is one of the most powerful and portable
OSs. Its power comes from a variety of features: file system administration, strong network
components, security, custom software installation, and the ability to define your own ker-
nel programs, shells, and scripts to tailor the environment. Part of Unix’s power comes

operating systems History ◾ 219

from its flexibility of offering a command line to receive OS inputs. The command line
allows the user or system administrator to enter commands with a large variety of options.
It is portable because it is written in C, a language that can be compiled for nearly any
platform, and has been ported to a number of very different types of computers including
supercomputers, mainframes, workstations, PCs, and laptops. In fact, Unix has become so
popular and successful that it is now the OS for the Macintosh (although the Mac window-
ing system sits on top of it).

Unix was created at AT&T Bell Labs. The original use of the OS was on the PDP-7 so that
employees could play a game on that machine (called Space Travel). Unix was written in
assembly language and not portable. Early on, it was not a successful OS; in fact, it was not
much of a system at all. After the initial implementation, two Bell Laboratories employees,
Ken Thompson and Dennis Ritchie, began enhancing Unix by adding facilities to handle
files (copy, delete, edit, print) and the command-line interpreter so that a user could enter
commands one at a time (rather than through a series of punch cards called a “job”). By
1970, the OS was formally named Unix.

By the early 1970s, Unix was redeveloped to run on the PDP-11, a much more popular
machine than the PDP-7. Before it was rewritten, Ritchie first designed and implemented a
new programming language, C. He specifically developed the language to be one that could
implement an OS, and then he used C to rewrite Unix for the PDP-11. Other employees
became involved in the rewriting of Unix and added such features as pipes (these are dis-
cussed in Chapter 9). The OS was then distributed to other companies (for a price, not for free).

By 1976, Unix had been ported to a number of computers, and there was an ever-
increasing Unix interest group discussing and supporting the OS. In 1976, Thompson took
a sabbatical from Bell Labs to teach at University of California–Berkeley, where he and
UCB students developed the Berkeley Standard Distribution version of Unix, now known
as BSD Unix. BSD version 4.2 would become an extremely popular release. During this
period, Unix also adopted the TCP/IP protocol so that computers could communicate over
network. TCP/IP was the protocol used by the ARPAnet (what would become the Internet),
and Unix was there to facilitate this.

Into the 1980s, Unix’s increasing popularity continued unabated, and it became the
OS of choice for many companies purchasing mainframe and minicomputers. Although
expensive and complex, it was perhaps the best choice available. In 1988, the Open Source
Foundation (OSF) was founded with the express intent that software and OS be developed
freely. The term “free” is not what you might expect. The founder, Richard Stallman, would
say “free as in freedom not beer.” He intended that the Unix user community would invest
time into developing a new OS and support software so that anyone could obtain it, use
it, modify it, and publish the modifications. The catch—anything developed and released
could only be released under the same “free” concept. This required that all code be made
available for free as source code. He developed the GPL (GNUs* Public License), which

* GNU stands for GNU Not Unix. This is a recursive definition that really does not mean anything. What Stallman was
trying to convey was that the operating system was not Unix, but a Unix-like operating system that would be composed
solely of free software.

220 ◾ Information Technology

stated that any software produced from GPL software had to also be published under the
GPL license and thus be freely available. This caused a divide into the Unix community—
those willing to work for free and those who worked for profit.

The OSF still exists and is still producing free software, whereas several companies are
producing and selling their own versions of Unix. Control of AT&T’s Unix was passed on
to Novell and then later to Santa Cruz Operation, whereas other companies producing
Unix include Sun (which produces a version called Solaris), Hewlett Packard (which sells
HP-UX), IBM (which sells AIX), and Compaq (which sells Tru64 Unix). Unix is popular
today, but perhaps not as popular as Linux.

a HIsTory of LInux
Linux looks a lot like Unix but was based on a free “toy” OS called Minix. Minix was avail-
able as a sample OS from textbook author Andrew Tanenbaum. University of Helsinki
student Linus Torvalds wanted to explore an OS in depth, and although he enjoyed learn-
ing from Minix, he ultimately found it unsatisfying, so he set about to write his own. On
August 26, 1991, he posted to the comp.os.minix Usenet newsgroup to let people know of
his intentions and to see if others might be interested. His initial posting stated that he
was building his own version of Minix for Intel 386/486 processors (IBM AT clones). He
wanted to pursue this as a hobby, and his initial posting was an attempt to recruit other
hobbyists who might be interested in playing with it. His initial implementation contained
both a Bash interpreter and the current GNU’s C compiler, gcc. Bash is the Bourne Again
Shell, a variation of the original Bourne shell made available for Unix. Bash is a very popu-
lar shell, and you will learn about it in Chapter 9. He also stated that this initial implemen-
tation was completely free of any Minix code. However, this early version of an OS lacked
device drivers for any disk drive other than AT hard disks.

Torvalds released version .01 in September of 1991 and version .02 in October having
received a number of comments from users who had downloaded and tested the fledgling
OS. On October 5, to announce the new release, Torvalds posted a follow-up message to
the same newsgroup. Here, he mentions that his OS can run a variety of Unix programs
including Bash, gcc, make (we cover make in Chapter 13), sed (mentioned in Chapter 10),
and compress. He made the source code available for others to not only download and play
with, but to work on the code in order to bring about more capabilities.

By December, Torvalds released version .10 even though the OS was still very much in a
skeletal form. For instance, it had no log in capabilities booting directly to a Bash shell and
only supported IBM AT hard disks. Version .11 had support for multiple devices and after
version .12, Torvalds felt that the OS was both stable enough and useful enough to warrant
the release number .95. Interestingly, at this point, Torvalds heard back from Tanenbaum
criticizing Torvalds’ concept of an OS with a “monolithic” kernel, remarking that “Linux
is obsolete.” Tanenbaum would be proved to be wrong with his comments. In releasing his
first full-blown version, Linus Torvalds decided to adopt the GNU General Public License.
This permitted anyone to obtain a free copy of the OS, make modifications, and publish
those modifications for free. However, Torvalds also decided to permit others to market

operating systems History ◾ 221

versions of Linux. This decision to have both free versions (with source code available for
modification) and commercial versions turns out to be a fortuitous idea.

Within a few years, Linux group supporters numbered in the hundreds of thousands.
Commercial versions were being developed while the user community continued to con-
tribute to the software to make it more useful and desirable. Graphical user interfaces were
added to make Linux more useable to the general computing populace.

Today, both Unix and Linux are extremely popular OS formats. Both are available for a
wide range of machines from handheld devices to laptops and PCs to mainframes to super-
computers. In fact, Linux can run on all of the following machines/processors: Sun’s Sparc,
Compaq’s Alpha, MIPS processors, ARM processors (found in many handheld devices),
Intel’s x86/Pentium, PowerPC processors, Motorola’s 680x0 processors, IBM’s RS6000, and
others. One reason why the OSs are so popular is that most servers on the Internet run
some version of Unix or Linux.

Here are a few interesting facts about Linux:

•	 The world’s most powerful supercomputer, IBM’s Sequoia, runs on Linux, and 446 of
the top 500 supercomputers run Linux.

•	 Ninety-five percent of the servers used in Hollywood animation studios run Linux.

•	 Google runs its web servers in Linux.

•	 The OSs for Google’s Android and Nokia’s Maemo are built on top of the Linux kernel.

•	 Notably, 33.8% of all servers run Linux (as of 2009), whereas only 7.3% run a Microsoft
server.

•	 Available application software for Linux include Mozilla Firefox and OpenOffice,
which are free, and Acrobat Reader and Adobe Flash Player, which are proprietary.

•	 There are more than 300 distributions of Linux deployed today.

•	 The Debian version of Linux consists of more than 280 million lines of code, which,
if developed commercially, would cost more than $7 billion; the original Linux kernel
(1.0.0) had 176,250 lines of code.

On the other hand, as of January 2010, slightly more than 1% of all desktops run Linux.
Aside from the popularity of Linux, its cross-platform capabilities and the ability to

obtain Linux versions and application software for free, there are several other appealing
characteristics of Linux. First, Linux is a stable OS. If you are a Windows user, you have no
doubt faced the frustration of seeing application software crash on you with no notice and
little reason. There are also times when rebooting Windows is a necessity because the OS
has been active for too long (reasons for the need to reboot Windows include corrupted OS
pages and fragmented swap space). Linux almost never needs to be rebooted. In fact, Linux
only tends to stop if there is a hardware failure or the user shuts the system down. Anything
short of a system upgrade does not require a reboot. Furthermore, Linux is not susceptible

222 ◾ Information Technology

to computer viruses. Although most viruses target the Windows OS, if someone were to
write a virus to target Linux, it would most likely fail because of Linux’ memory manage-
ment, which ensures no memory violations (see Chapter 4).* Also, Linux is able to support
software more efficiently. As an experiment, Oracle compared the performance of Oracle 9i
when run on Windows 2000 versus Linux. The Linux execution was 25–30% more efficient.

In a survey of attendees at LinuxCon 2011, the results showed that the most popular
distribution of Linux was Ubuntu (34%), followed by Fedora/Red Hat (28%). Of those sur-
veyed, nearly half used Linux at home, work, and/or school, whereas 38% used Linux at
work and 14% at home.

dIfferences and dIsTrIBuTIons
Figure 8.2 provides a timeline for the various releases between the original Unics OS
through Unix, MacOS, and Linux releases (up to 2010). See Figure 8.3 for a look at the
more significant Linux distribution releases. What are the differences between Unix and
Linux? What are the differences between the various distributions of Linux (Debian, Red
Hat, etc.)? Why are there so many releases? Why is this so confusing?

Let us consider how Linux and Unix differ. If you look at the two OSs at a shallow level,
they will look very similar. They have nearly identical commands (e.g., ls, cd, rm, pwd),
and most of those commands have overlapping or identical options. They have many of
the same shells available, and the most common graphical user interfaces (GUIs) run on
both platforms (KDE and Gnome). They have very similar top level directory structures.
Additionally, both Linux and Unix are reliable (as compared to say Windows), portable
to many different types of hardware, and on the small size (when compared to an OS like
Windows). What are the differences then?

Although Linux is open source and many of the software products written for Linux and
Unix are open source, commercial versions of Unix are not open source, and most versions
of Unix are commercial products. There are standards established for the various Unix
releases that help maintain consistency between versions. This does not guarantee that a
software product written for one version of Unix will run on another, but it does help. For
Linux, the Linux Standards Base project began in 2001 and is an ongoing attempt to help
create standards for all Linux releases. The standards describe what should or should not
be contained in a distribution. For instance, the standard dictates which version of the
C++ gnus compiler and which C++ libraries should be included. In 2011, the Java compiler
was removed from the standard. However, Linux programmers do not have to follow the
Linux Standards Base. This can lead to applications software that may not run on a given
distribution, patches that are required for one release but not another, and command line
arguments which work in one distribution that may not work in another. This can be very
frustrating for both programmers and users.

Other differences between Linux and Unix are subtle and perhaps not noticeable to
end users. Some differences are seen by system administrators because configuration files

* Linux does not claim to be virus-free, but years of research have led to an operating system able to defeat many of the
mechanisms used by viruses to propagate themselves.

operating systems History ◾ 223

will differ (different locations, different names, different formats). A programmer might
see deeper differences. For instance, the Linux kernel rarely executes in a threaded form
whereas in Unix, kernel threads are common.

What about the Linux releases? As you can see in Figure 8.3, there are many different
forms, or distributions, of Linux, and the various “spinoff” distributions have occurred
numerous times over the past 20 years. For instance, as shown in the figure, SLS/Slackware
Linux was used to develop S.u.S.E Linux, which itself was used to develop OpenSUSE.

BSD family

1970 1980 1990 2000 Time

7.2

5.0

4.5OpenBSD

NetBSD

FreeBSD

Darwin

MacOS X 5.7
NextStep 3.3

4.1.3SunOS

Xenix OS

BSD (Berkeley Software Distribution)

Microsoft/SCO

GNU Project
Richard Stallman GNU/Linux

Linus Torvalds
Andrew S. Tanenbaum
Minix

10

Commercial Unix (AT&T)

Research Unix (Bell Labs)

UnixWare (Univel/SCO)

Solaris (Sun Microsystems) 10 5/09

11i v3

7.1.4 MP46.1

6.5.30IRIX (SGI)

AIX (IBM)

HP-UX

3.1.3a

2.6.30.1

GNU/Hurd K16

fIGure 8.2 Unix/Linux timeline. (Courtesy of http://commons.wikimedia.org/wiki/File:Unix
.png, author unknown.)

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011

Arch linux
Enoch

Yellow Dog
Mandrake

Knoppix
Red Hat

S.u.S.E.
Free BSD

Debian Linux

DLD

SLS/Slackware

Initial development of Linux kernel

MCC Interim Linux/TAMU Linux (Texas A&M)
Oracle Linux

Fedora

CentOS

Morphix

PC Linux
Ubuntu Lite

Ubuntu

Kanotix

Kubuntu
Mandriva

Mageia

Linux Mint

OpenSUSE

fIGure 8.3 Key Linux distribution releases.

224 ◾ Information Technology

Debian Linux led to both Knoppix and Ubuntu, whereas Ubuntu led to Kubuntu, Linux
Mint, and Ubuntu Lite. Red Hat was the basis for Mandrake, Yellow Dog, CentOS, Fedora,
and Oracle Linux. Out of Mandrake came PC Linux and Mandiva.

The main two distributions of Linux are Debian and Red Hat, which along with
Slackware (SLS), were the earliest distributions. Although Figure 8.3 shows the major dis-
tributions of Linux, there are dozens of other releases that are not shown.

There are far too many differences in the various distributions to list here. In fact, there
are websites whose primary reason for existence is to list such differences. Here, we will
limit ourselves to just four releases: Red Hat, Debian, Ubuntu, and SUSE.

•	 Red Hat—Released in 1994 by Bob Young and Marc Ewing, it is the leading version
of Linux in terms of development and deployment. It can be found anywhere from
embedded devices to Internet servers. Red Hat (the OS) is open source. However, Red
Hat Enterprise Linux is only available for purchase, although it comes with support.
Red Hat supports open source applications software, and in an interesting develop-
ment, has acquired proprietary software and made it available as open source as well.
Some of the innovations of Red Hat include their software management package,
RPM (Red Hat Package Manager), SELinux (security enabled Linux), and the JBoss
middleware software (middleware permits multiprocessing between applications
software and the OS). Two Spinoffs of Red Hat are Fedora and CentOS, both of which
were first released in 2004 and are free and open source. CentOS Linux is currently
the most popular Linux distribution for web servers.

•	 Debian—Released in 1993 by Ian Murdock, Debian was envisioned to be entirely
noncommercial, unlike Red Hat for which organizations can purchase and obtain
support. Debian boasts more than 20,000 software packages. Debian has been cited
as the most stable and least buggy release of any Linux. Debian also runs on more
architectures (processors) than any other version of Linux. However, these two
advantages may not necessarily be as good as they sound, as to support this the OS
developers are more conservative in their releases. Each release is limited regarding
new developments and features. In fact, Debian major releases come out at a much
slower pace than other versions of Linux (every 1 to 3 years). Debian, like Red Hat,
can run in embedded devices. Debian introduced the APT (Advanced Package Tool)
for software management. Unlike Red Hat, the Debian OS can be run from remov-
able media (known as a live CD). For instance, one could boot Debian from either
CD or USB device rather than having Debian installed on the hard disk. Aside from
Ubuntu (see below), there are several other Debian spinoffs, most notably MEPIS,
Linux Mint, and Knoppix, all of which can be run from a boot disk or USB.

•	 Ubuntu—This was released in 2004 by Mark Shuttleworth and based on an unstable
version of Debian, but has moved away from Debian so that it is not completely com-
patible. Unlike Debian, Ubuntu has regular releases (6 months) with occasional long-
term support releases (every 3 to 5 years). Ubuntu, more than other Linux releases,
features a desktop theme and assistance for users who wish to move from Windows

operating systems History ◾ 225

to Linux. There are 3-D effects available, and Ubuntu provides excellent support for
Wiki-style documentation. Shuttleworth is a multimillionaire and shared Ubuntu
with everyone, including installation CDs for free (this practice was discontinued
in 2011). As with other Debian releases, Ubuntu can be run from a boot disk or USB
device.

•	 SUSE—Standing for Software und System-Entwicklung (German for software and
systems development), it is also abbreviated as SuSE. This version of Linux is based
on Slackware, a version of Linux based on a German version of Softlanding Linux
Systems (SLS). Since SLS became defunct, SuSE is then an existing descendant of
SLS. The first distribution of SuSE came in 1996, and the SuSE company became the
largest distributor of Linux in Germany. SuSE entered the U.S. market in 1997 and
other countries shortly thereafter. In 2003, Novell acquired SuSE for $210 million.
Although SuSE started off independently of the Linux versions listed above, it has
since incorporated aspects of Red Hat Linux including Red Hat’s package manager
and Red Hat’s file structure. In 2006, Novell signed an agreement with Microsoft so
that SuSE would be able to support Microsoft Windows software. This agreement cre-
ated something of a controversy with the Free Software Foundation (FSF; discussed
in the next section).

Still confused? Probably so.

open source MoveMenT
The development of Linux is a more recent event in the history of Unix. Earlier, those work-
ing in Unix followed two different paths. On one side, people were working in BSD Unix,
a version that was developed from UC Berkeley from work funded by Defense Advanced
Research Projects Agency (DARPA). The BSD users, who came from all over the world, but
largely were a group of hackers from the West Coast, helped debug, maintain, and improve
Unix over time. Around the same time in the late 1970s or early 1980s, Richard Stallman,
an artificial intelligence researcher at MIT, developed his own project, known as GNU.*
Stallman’s GNU project was to develop software for the Unix OS in such a way that the
software would be free, not only in terms of cost but also in terms of people’s ability to
develop the software further.

Stallman’s vision turned into the free software movement. The idea is that any software
developed under this movement would be freely available and people would be free to
modify it. Therefore, the software would have to be made available in its source code for-
mat (something that was seldom if ever done). Anyone who altered the source code could
then contribute the new code back to the project. The Unix users who followed this group
set about developing their own Unix-like OS called GNU (or sometimes GNU/Linux). It
should be noted that although Stallman’s project started as early as 1983, no stable version
of GNU has ever been released.

* GNU stands for GNU Not Unix, thus a recursive definition, which no doubt appeals to Stallman as recursion is a com-
mon tool for AI programming.

226 ◾ Information Technology

In 1985, Stallman founded the FSF. The FSF, and the entire notion of a free software
movement, combines both a sociological and political view—users should have free access
to software to run it, to study it, to change it, and to redistribute copies with or without
changes.

It is the free software movement that has led to the Open Source Initiative (OSI), an
organization created in 1998 to support open source software. However, the OSI is not the
same as the FSF; in fact, there are strong disagreements between the two (mostly brought
about by Stallman himself). Under the free software movement, all software should be
free. Selling software is viewed as ethically and morally wrong. Software itself is the imple-
mentation of ideas, and ideas should be available to all; therefore, the software should be
available to all. To some, particularly those who started or are involved in OSI, this view
is overly restrictive. If one’s career is to produce software, surely that person has a right to
earn money in doing so. The free software movement would instead support hackers who
would illegally copy and use copyrighted software.

The open source community balances between the extremes of purely commercial soft-
ware (e.g., Microsoft) and purely free software (FSF) by saying that software contributed
to the open source community should remain open. However, one who uses open source
software to develop a commercial product should be free to copyright that software and
sell it as long as the contributions made by others are still freely available. This has led to
the development of the GNU General Public License (GPL). Although the GPL was written
by Stallman for his GNU Project, it is in fact regularly used by the open source community.
It states that the given software title is freely available for distribution and modification
as long as anything modified retains the GPL license. Stallman called the GPL a copyleft
instead of a copyright. It is the GPL that has allowed Linux to have the impact it has had.
About 50% of Red Hat Linux 7.1 contains the GPL as do many of the software products
written for the Linux environment. In fact, GPL accounts for nearly 65% of all free software
projects.*

Today, the open source community is thriving. Thousands of people dedicate time to
work on software and contribute new ideas, new components within the software, and new
software products. Without the open source philosophy, it is doubtful that Linux would
have attained the degree of success that is has because there would be no global community
contributing new code. The open source community does not merely contribute to Linux,
but Linux is the largest project and the most visible success to come from the community.
It has also led to some of the companies rethinking their commercial approaches. For
instance, Microsoft itself has several open source projects.

a HIsTory of WIndoWs
The history of Windows in some ways mirrors the history of personal computers because
Windows, and its predecessor, MS-DOS, have been the most popular OS for personal

* The GPL discussed here is actually the second and third versions, GPLv2 and GPLv3, released in 1991 and 2005, respec-
tively. GPLv1 did not necessarily support the ideology behind FSF, because it allowed people to distribute software in
binary form and thus restrict some from being able to modify it.

operating systems History ◾ 227

computers for decades. Yet, to fully understand the history of Windows, we also have to
consider another OS, that of the Macintosh. First though, we look at MS-DOS.

MS-DOS was first released in 1981 to accompany the release of the IBM PC, the first per-
sonal computer released by IBM. IBM decided, when designing their first personal com-
puter for the market, to use an open architecture; they used all off-the-shelf components to
construct their PC, including the Intel 8088 microprocessor. This, in effect, invited other
companies to copy the architecture and release similar computers, which were referred to
as IBM PC Clones (or Compatibles). Since these computers all shared the same processor,
they could all run the same programs. Therefore, with MS-DOS available for the IBM
PC, it would also run on the PC Clones. The popularity of the IBM PC Clones was largely
because (1) the computers were cheaper than many competitors since the companies (other
than IBM) did not have to invest a great deal in development, and (2) there was more soft-
ware being produced for this platform because there were more computers of this type in
the marketplace. As their popularity increased, so did MS-DOS’s share in the marketplace.

DOS was a single tasking, text-based (not GUI) OS. The commands were primarily
those that operated on the file system: changing directories, creating directories, moving
files, copying files, deleting files, and starting/running programs. As a single tasking OS,
the OS would run, leaving a prompt on the screen for the user. The user would enter a com-
mand. The OS would carry out that command.

Learning MuLtipLe Operating SySteMS

as an IT professional, you should learn multiple oss. However, you do not need to buy
multiple computers to accomplish this. Here, we look at three approaches to having multiple
systems on your computer.

The first is the easiest. If you have an apple Macintosh running os version x, you can get to
unix any time you want by opening up an xterm window. This is available under utilities. The
xterm window runs the Mach kernel, which is based, at least in part, on freeBsd and netBsd
versions of unix. This is not strictly speaking unix, but it looks very similar in nearly every way.

another approach, no matter which platform of computer you are using, is to install a vir-
tual machine. The vM can mimic most other types of machines. Therefore, you install a vM in
your computer, you boot your computer normally, and then you run the vM software, which
boots your vM. Through a virtual machine, you can actually run several different oss. The
drawbacks of this approach are that you will have to install the oss, which may require that
you purchase them from vendors (whereas Linux is generally free, Windows and the Mac os
are not). additionally, the vM takes a lot of resources to run efficiently, and so you might find
your system slows down when running a vM. a multicore processor alleviates this problem.

finally, if you are using a Windows machine, and you do not want to use a virtual machine,
then you are limited to dual booting. a dual boot computer is one that has two (or more) oss
available. upon booting the computer, the Windows boot loader can be paused and you can
transfer control to a Linux boot loader. The two most popular boot loaders are Lilo (Linux
Loader) and GruB (Grand unified Boot loader). Thus, Windows and Linux share your hard
disk space and although the default is to boot to Windows, you can override this to boot to
Linux any time. unlike the Macintosh or the virtual machine approach, however, you will
have to shut down from one os to bring up the other.

228 ◾ Information Technology

If the user command was to start a program, then the program would run until it com-
pleted and control would return as a prompt to the user. The only exceptions to this single
tasking nature were if the program required some I/O, in which case the program would
be interrupted in favor of the OS, or the user did something that caused an interrupt to
arise, such as by typing cntrl+c or cntrl+alt+del. Most software would also be text-based
although many software products used (text-based) menus that could be accessed via the
arrow keys and some combination of control keys or function keys.

In the 1970s, researchers at Xerox Palo Alto (Xerox Parc) had developed a graphical
interface for their OS. They did this mostly to simplify their own research in artificial
intelligence, not considering the achievement to be one that would lead to a commercial
product. Steve Jobs and Steve Wozniak, the men behind Apple computers, toured Xerox
Parc and realized that a windows-based OS could greatly impact the fledgling personal
computer market.

Apple began development of a new OS shortly thereafter. Steve Jobs went to work on
the Apple Lisa, which was to be the first personal computer with a GUI. However, because
of development cost overruns, the project lagged behind and Jobs was thrown off of the
project. He then joined the Apple Macintosh group. Although the Lisa beat the Macintosh
to appear first, it had very poor sales in part due to an extremely high cost ($10,000 per
unit). The Macintosh would be sold 1 year later and caught on immediately. The Apple
Macintosh’s OS is considered to be the first commercial GUI-based OS because of the
Mac’s success. During the Macintosh development phase, Apple hired Microsoft to help
develop applications software. Bill Gates, who had been developing MS-DOS, realized the
significance of a windows OS and started having Microsoft develop a similar product.

Although MS-DOS was released in 1981, it had been under development during much of
the 1970s. In the latter part of the 1970s, Microsoft began working on Windows, originally
called Interface Manager. It would reside on top of MS-DOS, meaning that you would first
boot your computer to MS-DOS, and then you would run the GUI on top of it. Because
of its reliance on MS-DOS, it meant that the user could actually use the GUI, or fall back
to the DOS prompt whenever desired. Windows 1.0 was released in 1985, 1 year after the
release of the Apple Macintosh. The Macintosh had no prompt whatsoever; you had to
accomplish everything from the GUI.

Microsoft followed Windows 1.0 with Windows 2.0 in 1987 and Windows 3.0 in 1990.
At this point, Windows was developed to be run on the Intel 80386 (or just 386) processor.
In 1992, Windows 3.1 was released and, at the time, became the most popular and widely
used of all OSs, primarily targeting the Intel 486 processor. All of these OSs were built
upon MS-DOS and they were all multiprogramming systems in that the user could force a
switch from one process (window) to another. This is a form of cooperative multitasking.
None (excluding a version of Windows 2.1 when run with special hardware and software)
would perform true (competitive) multitasking.

Around the same time, Microsoft also released Windows NT, a 32-bit, networked OS.
Aside from being faster because of its 32-bit nature, Windows NT was designed for client–
server networks. It was also the first version of Windows to support competitive multitask-
ing. Windows NT went on to make a significant impact for organizations.

operating systems History ◾ 229

The next development in Windows history came with the release of Windows 95.
Windows 95 was the first with built-in Internet capabilities, combining some of the fea-
tures of Windows 3.1 with Windows NT. As with Windows NT, Windows 95 also had
competitive multitasking. Another innovation in Windows 95 was plug and play capa-
bilities. Plug and play means that the user can easily install new hardware on the fly. This
means that the computer can recognize devices as they are added. Windows 95 was devel-
oped for the Intel Pentium processor.

In quick succession, several new versions of Windows were released in 1998 (Windows
98), 2000 [Windows 2000 and Windows Millennium Edition (Windows ME)], 2001
Windows XP (a version based on NT), and 2003 (Windows Server). In addition, in 1996,
Microsoft released Windows CE, a version of Windows for mobile phones and other
“scaled down” devices (e.g., navigation systems). In 2007, Microsoft released their next-
generation windowing system, Vista. Although Vista contained a number of new security
features, it was plagued with problems and poor performance. Finally, in 2009, Windows
7 was released.

In an interesting twist of fate, because of Microsoft’s large portion of the marketplace,
Apple struggled to stay in business. In 1997, Microsoft made a $150 million investment
in Apple. The result has had a major impact on Apple Computers. First, by 2005, Apple
Macintosh had switched from the RISC-based Power PC process to Intel processors.
Second, because of the change, it permitted Macintosh computers to run most of the soft-
ware that could run in Windows. Macintosh retained their windows-based OS, known
as Mac OS, now in version X. Unlike Windows, which was originally based on MS-DOS,
Mac OS X is built on top of the Unix OS. If one desires, one can open up a Unix shell and
work with a command line prompt. Windows still contains MS-DOS, so that one can open
a DOS prompt.

furTHer readInG
Aside from texts describing the hardware evolution as covered in Chapter 7, here are
additional books that spotlight either the rise of personal computer-based OSs (e.g., Fire
in the Valley) or the open source movement in Linux/Unix. Of particular note are both
Fire in the Valley, which provides a dramatic telling of the rise of Microsoft, and the
Cathedral and the Bazaar, which differentiates the open source movement from the free
software foundation.

•	 Freiberg, P. and Swaine, M. Fire in the Valley: The Making of the Personal Computer.
New York: McGraw Hill, 2000.

•	 Gancarz, M. Linux and the Unix Philosophy. Florida: Digital Press, 2003.

•	 Gay, J., Stallman, R., and Lessig, L. Free Software, Free Society: Selected Essays of
Richard M. Stallman. Washington: CreateSpace, 2009.

•	 Lewis, T. Microsoft Rising: . . . and Other Tales of Silicon Valley. New Jersey: Wiley and
Sons, 2000.

230 ◾ Information Technology

•	 Moody, G. Rebel Code: Linux and the Open Source Revolution. New York: Basic
Books, 2002.

•	 Raymond, E. The Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary. Cambridge, MA: O’Reilly, 2001.

•	 St. Laurent, A. Understanding Open Source and Free Software Licensing. Cambridge,
MA: O’Reilly, 2004.

•	 Watson, J. A History of Computer Operating Systems: Unix, Dos, Lisa, Macintosh,
Windows, Linux. Ann Arbor, MI: Nimble Books, 2008.

•	 Williams, S. Free as in Freedom: Richard Stallman’s Crusade for Free Software.
Washington: Create Space, 2009.

The website http://distrowatch.com/ provides a wealth of information on various Linux
distributions. Aside from having information on just about every Linux release, you can
read about how distributions differ from an implementation point of view. If you find
Figure 8.3 difficult to read, see http://futurist.se/gldt/ for a complete and complex timeline
of Linux releases.

revIeW TerMs
Terminology introduced in this chapter:

Debian Linux Open architecture

Free software movement Open source

GNU GPL Open source initiative

GNU project Red Hat Linux

Linux SuSE Linux

Live CD Windows

Macintosh OS Ubuntu Linux

Minix Unix

MS-DOS

Review Questions

 1. What is the difference between a resident monitor and an operating system?

 2. What is the relationship between Windows and MS-DOS?

operating systems History ◾ 231

 3. In which order were these operating systems released: Macintosh OS, Windows,
MS-DOS, Windows 7, Windows 95, Windows NT, Unix, Linux?

 4. What is the difference between the free software movement and the open source
initiative?

 5. What does the GNU general purpose license state?

Discussion Questions

 1. How can the understanding of the rather dramatic history of operating systems
impact your career in IT?

 2. Provide a list of debate points that suggest that proprietary/commercial software is
the best approach in our society.

 3. Provide a list of debate points that suggest that open source software is the best
approach in our society.

 4. Provide a list of debate points that suggest that free software, using Stallman’s move-
ment, is the best approach in our society.

 5. How important is it for an IT person to have experience in more than one operating
system? Which operating system(s) would it make most sense to understand?

This page intentionally left blankThis page intentionally left blank

233

C h a p t e r 9

Bash Shell and Editing

For most computer users, including introductory IT students, using Linux will be a new
experience. In fact, using the command line is unfamiliar territory for most. This chapter
focuses on the Bash shell, which is available in all Linux distributions. Specifically, the
chapter covers a number of features that the Bash shell offers to make command line inter-
action easier. Topics include command line editing, the use of aliases, and the history list.
Additionally, the Bash interpreter is explored. The chapter concludes with an examination
of two text editors, vi and Emacs.

The learning objectives of this chapter are to

•	 Introduce shortcuts in Bash that simplify command line entry.

•	 Describe the role of the Bash interpreter.

•	 Introduce Linux command redirection.

•	 Introduce the mechanisms to personalize a Bash shell.

•	 Discuss the importance of text editors in Linux.

•	 Provide instructions on how to use both the vi and Emacs editors.

In this chapter, we focus on some Linux-specific topics. First, we examine the Bash shell in
detail. We look at command-line entry and editing, variables, aliases, and how to personal-
ize a Bash shell. The features that we look at all support the Linux user in using the com-
mand line rather than the graphical user interface (GUI). We conclude the chapter with a
look at two common text editor programs used in the Unix/Linux world: vi and Emacs.
Although the editor topics may look entirely unrelated to Bash, you will find that some of
the keystrokes that you use in Emacs are the same as those you will use at the command-
line prompt to edit commands.

234 ◾ Information Technology

ShellS
A shell is an interpreted environment. This means that you enter commands and, upon hit-
ting the enter key, those commands are interpreted. Interpreting a command requires that
the command be translated from its input form into an executable form. An interpreted
program is translated and executed line by line, whereas the more traditional compiled
program is translated entirely first, and then executed. Because of the sophistication in
the Linux command line interpreter, we are able to enter complex Linux commands that
include multiple instructions, redirection of input and output, and shortcut operations
that are unfolded into more complex instructions.

The Linux/Unix shell is tailorable. Users can add shortcut operations called aliases,
use shortcut operations such as ~ (which indicates the user’s home directory), define vari-
able values to be used in commands, and even redefine the look of the user prompt itself.
Tailoring the environment can be done from the command line or by editing a variety of
files. There are a number of different things that can be tailored, as we will see in the next
section.

As the shell is text-based, interacting in a shell can be challenging. Most users are not
familiar with the underlying operating system (OS) commands because they only commu-
nicate with the OS through the GUI. On the other hand, interacting at the shell level not
only provides a greater degree of flexibility and control over the OS, it also saves resources
because the shell itself does not require, for example, complicated graphics commands or
mouse tracking. You might think of the shell as a more primitive way to access a computer,
but in reality you are communicating with the computer at a lower level because you are
avoiding the GUI layer.

In Linux/Unix, a shell is automatically opened if you access a computer remotely without
the GUI. This is, for instance, the case when you use telnet or ssh to log into the computer.
You can also open a shell by starting a terminal window program. In CentOS, for instance,
you can open a terminal window when you right click your mouse on the desktop or select
Terminal Window from the Applications menu. You can also start a new terminal window
from the command line prompt, for instance, by issuing the command gnome-terminal
to start a Gnome terminal window, or typing xterm to start an X window. The X window-
ing system is older than Gnome. The Gnome terminal window permits GUI interaction
since it has a number of menus, whereas the Xterm window does not (see Figure 9.1). The
user can open any number of terminal windows—each is its own shell, its own interpreted
environment. You can even run different shells in each window although the default shell
will be the user’s login shell. You can also start a new shell session from inside of a run-
ning shell. In such a case, the new shell (what we might refer to as the inner shell session)
overrides anything previously defined. Upon exiting the inner shell, you resume with your
earlier session.

One of the earliest Unix shells was called the Bourne Shell (sh), first released in 1977.
Later shells included the C shell (csh), the Tenex C shell, also called the T shell (tcsh), the
Korn shell (ksh), and the Almquist shell (ash). There are a number of other, lesser-known
or lesser-used shells such as the Busybox, Hamilton C shell, fish, Perl shell, and zoidberg.

Bash Shell and editing ◾ 235

The names sh, csh, tcsh, ksh, and ash are the actual shell program names. You could, for
instance, start a C shell by typing the command csh from the command line. This creates a
new shell session as discussed in the previous paragraph. The Bash shell (bash) is actually
known as the Bourne Again Shell, based on the Bourne shell. We will refer to it simply as
bash. In the next three sections, we explore the bash shell in detail. It should be noted that
many of the features found in Bash are also available in many of the other shells listed above.

BaSh Shell edITIng FeaTureS
The Bash shell was written as a replacement for the Bourne shell. Bash was written to
accompany the GNU OS, the open source community’s attempt to build a Unix-like OS.
It was later used as the default shell for Linux and Mac OS X. Bash has many of the same
features from the original Bourne shell, but adds features that were created for such shells
as csh and ksh. It also simplifies some of the syntax required in the Bourne shell so that,
although it is a larger shell, it is easier to use.

In this section, we examine several features available in Bash that make entering and
editing commands easier. These are

•	 History

•	 Command-line editing

•	 Tab completion

•	 Aliases

•	 Brace expansion

•	 Tilde expansion

•	 Wildcards

FIgure 9.1 Terminal windows.

236 ◾ Information Technology

In the next section, we will examine other features of the Bash shell.
Every time you enter a command in your current Bash session, it is recorded in what is

called the history list. The history list is available so that you can easily recall a previously
entered command. To view the history list, type the command history. Figure 9.2 illus-
trates an example of a history list. History was first made available in csh but was found to
be so useful and popular that it has been added to most shells since.

There are numerous ways to recall an instruction from the history list. From the com-
mand line, typing the up arrow key or control+p* will retrieve the previous instruction.
Continuing to hit the up arrow key or cntrl+p will continue to step you backward through
the history list. So, for instance, if you have entered the 10 commands shown in Figure 9.2,
pressing cntrl+p three times will leave ‘pwd’ on the command line. Pressing enter then
executes that command. To move forward through the history list once you have stepped
backward, press the down arrow key or cntrl+n (p for previous, n for next).

Another way to recall an instruction from the history list is by typing !number, where
number is the number of the entry in the history list (the exclamation mark is often referred
to as bang). For instance, !2 will execute the “ls /home” instruction from Figure 9.2. To
repeat the most recent command, enter !! (bang bang). You can also use the ! by specifying
!chars, where chars are the first characters of the command you wish to repeat.

Let us assume that instruction 11 on the history list from Figure 9.2 is cp * /home/zap-
paf. If you then enter !c, it will perform the last instruction that starts with a ‘c’, the cp
instruction. If you enter !cd, it will execute the last instruction that starts with ‘cd’, which
would be instruction 5, cd ~. Similarly, !l (lower case ‘L’) repeats instruction 9 (ls –al) as
does !ls and !ls – (i.e., bang followed by ls space hyphen). If we entered !ls /, it will repeat the
second instruction in the list (ls /home).

The use of control+p and control+n are two of the many forms of command line editing
available. The concept of command line editing was first made available in tcsh, where the
commands were similar to the editing commands found in Emacs. Command line editing

* This means to press the control key and while holding it, press the ‘p’ key. This notation will be used throughout this
chapter along with escape+key, which means press the escape key (do not hold it down) and press the ‘key’ key. The dif-
ference between control and escape is that you hold down the control key, but you only press and release the escape key.

 1. df -k
 2. ls /home
 3. su
 4. ls
 5. cd ~
 6. ls
 7. ls -l
 8. pwd
 9. ls -al
 10. more .bashrc

FIgure 9.2 A sample history list in Linux.

Bash Shell and editing ◾ 237

is performed on the text that is currently on the command line. Using a combination of
control or escape and other keys, you can move the cursor along the command line, cut
characters, and/or paste characters. The following is a list of the more useful editing opera-
tions. The notation here is c+char or m+char, where c+char means to hold the control key
and press the character (e.g., c+n means “press the control key and while holding it down,
press n”), and m+char means to press the escape key followed by the character (e.g., m+f
means “press the escape key and then press f”). The reason we use ‘m’ for escape is that
some people refer to the escape key as the “meta” key.

•	 c+n—display the next command from the history list on the command line

•	 c+p—display the previous command from the history list on the command line

•	 c+f—move cursor forward one character

•	 c+b—move cursor backward one character

•	 m+f—move cursor forward one word

•	 m+b—move cursor backward one word

•	 c+a—move cursor to the beginning of the line

•	 c+e—move cursor to the end of the line

•	 c+d—delete the character where the cursor is at

•	 c+k—kill (delete) the contents from the cursor to the end of the line

•	 c+w—delete all characters before the cursor to the beginning of the word

•	 c+y— take whatever was most recently deleted (using c+w or c+k) and yank it back,
placed at the current cursor position (this is a paste operation)

•	 c+_—undo the last editing operation (delete or paste)

And, of course, you can use the backspace to delete the preceding character, del to delete
the current character, the left and right arrow keys to move backward and forward, and the
home and end keys to move to the beginning and ending of the line.

Once you learn these editing shortcuts, entering commands from the command line
becomes at least a little easier. For instance, imagine that you wanted to copy five files from
the current directory to the directory /home/zappaf, changing each file name. The five files
are named file1.txt, file2.txt, etc., and you want to rename them to zappa1.txt, zappa2.txt,
etc. The first command will be entered without the use of editing:

cp file1.txt /home/zappaf/zappa1.txt <enter>

The remaining four commands can be easily entered by editing this line. Press c+p to
retrieve the instruction. Type c+a to move to the beginning of the line. Press m+f twice to

238 ◾ Information Technology

move forward two words. The cursor is now at the period between file1 and txt. Press back-
space to delete 1 and type 2 to insert a 2. Now, type c+e to get to the end of the line. Type
m+b to move you to the beginning of ‘txt’ in zappa1.txt. Type c+b to move to the period,
backspace to delete the 1 and 2 to insert 2. The command is now:

cp file2.txt /home/zappaf/zappa2.txt

Now, press the <enter> key to enter this revamped command. You would then repeat the
steps above to repeat this instruction for the other files.

Another very useful Bash editing feature is called tab completion. As you enter a direc-
tory name or filename, if you reach a portion of that name that is unique, pressing the tab
key will cause the interpreter to complete the name for you. Consider, for instance, that you
are in a working directory that has the following files:

forgotten.txt frank.txt fresh.txt functions.txt funny.txt
other_stuff.txt

You want to view one of these files using less.* If you type less fo<tab>, the Bash interpreter
will discover that only forgotten.txt starts with “fo” and therefore completes it for you. If
instead you type less fr<tab>, Bash cannot complete this because it is unclear whether you
want frank.txt or fresh.txt. In such a case, the interpreter emits a beep to let you know that
the filename is not unique. If you were to type less fra<tab> then it can be completed to be
frank.txt, or if you typed less fre<tab> it can be completed as fresh.txt. Pressing two tab
keys will cause the Bash interpreter to list all matching filenames (or, if there are more than
a few files, you will get a message that asks if all of the files should be listed). So, entering
less fr<tab><tab> causes Bash to return with the list frank.txt and fresh.txt.

In Linux, an alias is a shortcut command. You define an alias so that when you type in
your alias, it is replaced by the full command. Aliases can be entered any time at the com-
mand line, or they can be defined in other files (we will explore the use of these definition
files in Personalizing Your Bash Shell). The form of an alias definition is

alias name=command

where name is the name of the shortcut and command is the Linux command that will
replace the name. A simple example might be

alias add=/usr/sbin/useradd

* The less command is used to display the contents of the file to the terminal window, one screen at a time. At the end of
each screen, you can move forward one screen, or forward or back by one line, or quit less and return to the command
prompt. The command less, along with more and cat, are convenient ways to view the contents of a file, but less is more
convenient than more or cat.

Bash Shell and editing ◾ 239

The add alias would be used to replace the lengthier instruction. If the Linux command
includes blank spaces, the command must be placed inside of single quote marks (‘’). The
name can be any string of characters (including digits and punctuation marks) as long as
the characters selected are not reserved for other Linux purposes (for instance, %m can be
used as an alias, but –m cannot).

In most cases, you define an alias to simplify typing. The example above allows you to
shorten a command to something easier to type. Another example might be to reduce the
length of an instruction that contains options. For instance, if you prefer that your ls com-
mands always appear as a long listing, you could define the following alias:

alias ls=‘ls –l’

Notice the use of the quote marks because of the space between ls and –l. Also notice that
the alias name can be the name of an already existing command.

An alias can also be useful if you cannot remember how to use the command. For
instance, in the case of useradd, you may forget where it is stored. Or, in the case of a com-
mand that has a number of options, you may forget which ones to use. In the case of rm,
you may forget to use the –i option, but to play safe, it is useful to always use rm with –i.
Therefore, you might define the following alias.

alias rm=‘rm –i’

The ls command itself does not require parameters so that ls unfolds to ls –l. But both rm
and useradd do require parameters. How do the parameters interact with the alias? For
instance, if we wanted to delete foo.txt, we would type rm foo.txt. But now rm is an alias for
‘rm –i’. In fact, the alias replacement works as you might expect. The alias is unfolded from
rm to rm –i with foo.txt completing the instruction. So, rm foo.txt becomes rm –i foo.txt.
Similarly, add –m –G cit130 bearb will unfold into /usr/sbin/useradd –m –G cit130 bearb.
The alias is merely replaced before the command is executed. With the rm alias, you could
specify even additional options. For instance, if you want to do a recursive deletion (rm –r),
the command rm –r /foo unfolds to become rm –i –r /foo.

An alias can also be set up to handle common typos that a user may have. Imagine
that, being a fast but not very careful typist, you often transpose two-letter commands.
So, mv might come out as vm, rm as mr, and cp as pc. The two-letter combinations vm,
mr, and pc are not Linux commands, and typing any of them will result in an error mes-
sage at the command line (command not found). You could define an alias for each of
these:

alias mr=rm
alias pc=cp
alias vm=mv

240 ◾ Information Technology

Notice in this case that no quote marks are required because the command does not
include a space. Combining this idea with the previous example of rm, we could define
these aliases:

alias rm=‘rm –i’
alias mr=‘rm –i’

What follows are a few other interesting ideas for aliases.

alias..=‘cd ..’ A shortcut to move up a level
alias...=‘cd ../..’ A shortcut to move up two levels
alias md=mkdir A shortcut to create a directory
alias egrep=‘grep -E’ Enforcing a common option in grep
alias h=‘history 10’ A shortcut to display a partial history
alias xt=‘xterm -bg black -fg white &’ A shortcut to generate a terminal window

If you define an alias at the command line, the alias exists only in that shell session. It
would not exist in other terminal windows, nor if you started a new shell session (by typing
bash for instance). For this reason, it is common to save aliases. We will discuss how to do
this in Personalizing Your Bash Shell.

In addition to the shortcuts offered by aliases, two other shortcuts are available through
tilde expansion and brace expansion. You have already seen tilde expansion as the tilde
(~) is used to signify the user’s home directory. The bash interpreter replaces ~ with the
user’s home directory, so for instance less ~/foo.txt becomes less /home/foxr/foo.txt. Tilde
expansion can also be used to indicate other users’ home directories with the notation
~username. For instance, you might use less ~zappaf/foo.txt to view a file in zappaf ’s home
directory.

The brace expansion is used when you have a list of items that a command should be
applied to. The braces, {}, will contain a list, where each item in the list is separated by a
comma. As a simple example, imagine that you want to perform ls on several subdirecto-
ries in your home directory. In your home directory are foo1, foo2, and foo3, where foo2
contains two subdirectories, foo2a and foo2b. You could issue five separate ls commands
(one each for foo1, foo2, foo2a, foo2b, foo3). Alternatively, you could list each of these in
a single ls command: ls foo1 foo2 foo2/foo2a foo2/foo2b foo3. However, notice that for
foo2a and foo2b, you have to list them as foo2/foo2a and foo2/foo2b. You could instead use
brace expansion where you list each directory in a list inside of braces. The subdirectories
could similarly be listed in an inner (or nested) set of braces. The command becomes: ls
{foo1,foo2,foo2/{foo2a,foo2b},foo3}, which the Bash interpreter unfolds into five separate ls
commands, ls foo1, ls foo2, ls foo2/foo2a, ls foo2/foo2b, and ls foo3.

Another form of expansion is called filename expansion. This takes place when you use
wildcards among your filenames. A wildcard, much like in poker, can act as anything.
The most common wildcard character is *, which in essence means “match anything”. You
would use the * when performing file system commands, such as ls. For instance, ls *.txt
would list all files that end with the .txt extension, no matter what their name was. If the

Bash Shell and editing ◾ 241

current directory contains the files foo1.txt, foo2.txt, foo3.text, and bar.doc, the *.txt nota-
tion will match foo1.txt and foo2.txt. It will not match foo3.text because txt is not the same
as text, and it will not match bar.doc because doc does not match txt. However, the com-
mand ls *.* will match all four of these. On the other hand, if the directory also contained
the file stuff, ls *.* will not match it because there is no period in stuff. The command ls *
would match all five of the files (the four with a period and stuff).

The use of the wildcard is common for Linux users. There are other wildcard characters,
such as ?, which means “match any single character”. We will explore the wildcard charac-
ters in more detail in the next chapter when we look at regular expressions.

All of the various command line editing techniques provide the user with a powerful
collection of shortcuts so that working with the command line is easier. However, with few
exceptions, they all require practice if for no other reason than to remember that they exist.
Introductory Linux users often forego using these techniques because they are not intuitive
to the student just learning Linux. On the other hand, by learning these early, they allow
users to be more efficient and therefore more effective in Linux.

explorIng The BaSh InTerpreTer
Now that we have learned some of the shortcuts and editing features available in the Bash
shell, we turn to how the Bash interpreter operates. We first introduce three additional
tools available to the user: variables, redirection, and obtaining help.

Variables are available in a Bash shell. A variable is a name given to a storage loca-
tion. By using a variable, you can reference that variable from various commands rather
than having to use the value directly. A simple example might be a variable that stores the
number of licenses available for a software title. As users run the software, this variable is
decremented, and as users terminate the software, the variable is incremented. If a user
wishes to run the software and the value is 0, they are told that there are no free licenses
currently available and that they must wait. In this case, the variable is shared among all
users. In a Bash session, a variable is available to all of the software running in that shell.
There are generally two types of Bash variables. User variables are those defined by the user
and often only used via command line operations. There are also environment variables,
established either by the OS, the Bash interpreter, or by some other running software. Such
variables are usually available to all software. The Bash shell defines its own environment
variables, many of which could be useful for the user. To see what environment variables
have been set, enter the command env. Among the variables defined, you will probably see
such things as HOSTNAME (the name of the computer), SHELL (the current shell, which
for us will be /bin/bash), USER (your username), HOME (the user’s home directory), and
PWD (the current working directory). Notice that all of these environment variables are
fully capitalized. This is a convention so that a user can easily determine if something is an
environment variable or something else (such a user-defined variable or an alias).

To establish your own variable, just type an assignment statement on the command line.
The format of an assignment statement is variable=value, where variable is the variable
name and value is the value. The Bash shell defaults to storing strings, so value should be
strings such as a person’s name. If the string has a blank space, enclose the entire string in

242 ◾ Information Technology

quote marks (“” or ‘’; we will differentiate between them later). The value can be an integer
number; however, Bash will treat any number as a string unless you specify that it should
be a number. This is done by enclosing the value inside of parentheses, as in age = (29).

To obtain the value stored in a variable, you must precede the variable name with a
$. For instance, if first=Frank and last=Zappa, and you want to create a variable, full-
name, you could issue the assignment statement fullname=“$first $last”. The variable
fullname is then established as the value stored in the variable first, followed by a blank
space, followed by the value stored in the variable last. If you were to do fullname=“first
last”, then fullname is literally the name “first last” rather than the values stored in those
variables. Notice that the quote marks are required because of the blank space. If you
did not care about the blank space, you could also do fullname=$first$last as well as
fullname=“$first$last”.

If the value in a variable is a number, and you want to perform some type of arithmetic
operation on it, you have to enclose the entire operation in $((…)). Consider if, after stor-
ing 29 in age as shown above, you do newage=$age+1. Will you get 30 in newage? No; in
fact, you get 29+1. Why? Quite literally, the command concatenates the items, the value
stored in the variable age (29), the +, and the value 1. Concatenation combines strings
together. But here, we want to add 1 to age. This would require the use of the ((...)) so the
proper instruction is newage=$((age+1)). Notice that the $ precedes the ((…)) and does
not appear immediately before the variable age. For those of you who have programmed
before, you will probably be familiar with a reassignment statement—taking the value of
a variable, changing it, and reassigning the variable to the new value. Thus, instead of
newage=$((age+1)), you could also do age=$((age+1)).

If you had two numeric values, say X and Y, you could do Z=$((X+Y)). The arithmetic
operations available are +, –, * (multiplication), / (division), and % (remainder, also known
as mod or modulo).

Aside from assigning variables and using them in assignment statements, you can also
view the contents of variables using the echo command. The echo command expects a list
of items. Whatever is in that list is output. For instance,

echo Hi there, how are you?

will literally output “Hi there, how are you?” on the next line of the terminal window.
Notice that you did not need to place “” around the list. You can also output values stored
in variables as in echo $fullname or echo $age. You can combine literal text with vari-
able values as in echo Hello $fullname. The echo statement permits but does not require
that you place the list of items in quote marks. You can use “” or ‘’, although there is one
large difference. If you use ‘’ and place a variable name inside of the single quote marks,
you get the variable’s name rather than the value. So for instance, echo “Hello $fullname”
outputs Hello Frank Zappa (assuming fullname is storing Frank Zappa), whereas echo
‘Hello $fullname’ outputs Hello $fullname. And, of course, echo “Hello fullname” will just
output Hello fullname because there was no $ before the variable.

Bash Shell and editing ◾ 243

One last comment about the echo statement. Imagine that you wanted to output a greeting
to the user and the current date and time. Linux has the command date. If you were to use

echo “Hello $fullname, today is date”

you would literally get Hello Frank Zappa, today is date. By placing a Linux command
inside of ` ` (backward quote marks), the command will execute before the echo statement.
So,

echo “Hello $fullname, today is `date`”

will output something like Hello Frank Zappa, today is Thu Feb 9 17:54:03 EST 2012 (natu-
rally, depending on the time and date when the command was entered). The command,
placed in ` ` can also appear in this format: $(command). The previous echo command
could instead be

echo “Hello $fullname, today is $(date)”

It is not very common that a user will need to define their own variables for such pur-
poses as storing your name or age. Users can define variables that can be used in software
that they write. More commonly though, variables are defined by software and used by
software. There are several established environment variables in Linux. We saw a few of
them earlier when we talked about the env command. Here are others of note.

•	 DISPLAY—the Linux name for standard output (defaults to :0.0).

•	 HISTSIZE—the number of commands that can be stored in the history list.

•	 PATH—a list of directories that are checked whenever the user enters a command;
this allows the user to execute some programs or find some files without having to
specify the entire path.

•	 PS1—defines the user’s prompt, which might include special characters that represent
the user’s name, or the current directory, or the number of the command as it will be
stored in the history list (see Table 9.1)

•	 PS2, PS3, and PS4 may be used to define other prompts that are used in various
programs.

Of the variables listed above, you would most likely only alter PATH. The PATH variable
stores a list of directories. Whenever you enter a Linux command or file name, if the item is
not found in the current working directory, then the Linux interpreter checks for the item
in every directory listed in the PATH variable. Only if it is not found in the current work-
ing directory or any of the PATH directories does it return an error message.

244 ◾ Information Technology

In the Bash shell, the PATH variable is established initially by the system administra-
tor, typical storing /usr/kerberos/bin:/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin. The “:”
is used to separate each path. You should recognize many of these paths (e.g., /usr/local/
bin, /usr/bin, /bin). Kerberos is used for network authentication and programs found in its
bin directory are common network programs (e.g., ftp, telnet, rlogin). The X11R6 directory
stores X11 (windowing) files.

If you wanted to add to your PATH variable, you could issue a reassignment statement
as follows:

PATH=$PATH:newdirectory and

Here, you are setting PATH to be equal to what is currently in the PATH variable followed
by a : and the new directory. So, PATH=$PATH:/home/foxr would add /home/foxr’s home
directory onto your path. You might do this with your own home directory so that, no
matter where you are working in the Linux file system, your home directory will be tested
along with the rest of the PATH directories for a file. You would, of course, substitute your
own username for foxr’s.

The PS1 variable stores how your prompt looks. By changing PS1, you change your
prompt’s appearance. Unless you know what you are doing, it is best to leave PS1 alone.
Similarly, there is little need to change other environment variables.

The Bash interpreter will typically take input from the keyboard and send output to
the terminal window. However, there are times when you want to redirect either input or
output. For instance, you might want to change the input for a program to come from a file
rather than the command line. Or, you might want to send the output to a file instead of the

TaBle 9.1 Characters for the PS1 Variable to Specialize User Prompt

Character Meaning
\d Current date
\D{format} Current date using the given format where format matches the format expected by the strftime

command
\t Current time in military format
\@ Current time in 12-hour format (am/pm)
\H, \h Full computer host name or first part of host name
\s Shell name
\u User name
\w Current working directory
\! Current command number (as it would appear in the history list)
$ Default user specifier (prompt)
@ Default separator, for instance \d@\u $
\$? Status of the last command
\e[… \e[m Change color of the prompt, the … is the color code in the form #;##, where the first # is either

0 (light) or 1 (dark) and the second ## is the color (30 for black, 31 for red, 32 for green, 33 for
brown, 34 for blue, 35 for purple, 36 for cyan)

Bash Shell and editing ◾ 245

display. A third possibility is that you might want to take the output of one command and
use it as the input to another command. These are all forms of redirection.

Redirection is performed using one of the following five sets of characters:

•	 < redirect the input to come from an input file

•	 > redirect the output to go to an output file, overwriting the file if it already exists

•	 >> redirect the output to be appended to an already existing file, or create the file if
it does not exist

•	 << redirect the input to come from keyboard where the input will terminate with a
special keyword that you specify after <<

•	 | redirect the output of one command to be the input of another—this is known as a
pipe

The first four instances of file redirection merely override the standard input and/or out-
put. For instance, the standard output for cat is the screen. Typing cat foo1.txt will output
the contents of foo1.txt to your monitor. This is similar to the instructions more and less,
but the output appears all at once, scrolling down and beyond the screen so that you only
wind up seeing the last screen’s worth. In more and less, the output pauses at the end of
each screen. In using cat, you may decide to take the output and sent it to another file. You
would do this using redirection as

cat foo1.txt > foo2.txt

The above instruction gives you the same result as if you did cp foo1.txt foo2.txt. However,
imagine that you wanted to take the output of several files and copy them to another file.
The cp command does not do this. Therefore, you could use cat and redirection as in

cat file1.txt file2.txt file3.txt > file4.txt

The file file4.txt would then be the concatenation of file1.txt, file2.txt, and file3.txt. If file4.
txt already exists, this command overwrites it. If you were to use >> instead of >, then either
the three files would be copied into the new file file4.txt if file4.txt did not previously exist,
or they would be appended to the end of file4.txt if file4.txt did exist.

The input redirection < is easy to use. In essence, you want to replace input from the
keyboard to come from a file instead. This is only useful if the expected input is coming
from keyboard rather than file. So for instance, the wc (word count) program does not
require < as the typical form of the instruction is wc filename. The most common use of
the input redirection will be when you write your own shell scripts. This will be discussed
in Chapter 14. For now, we will ignore using <.

The other form of input redirection, <<, in some ways is the opposite of <. Where <
says “accept input from this file rather than standard input”, << says “accept input from

246 ◾ Information Technology

standard input rather than a file”. The << is of use when you want to force a program that
accepts its input from file to accept your keyboard input instead. When using <<, the pro-
gram will pause to let you enter items. How does the program know when your input is
done? It is not merely pressing the <enter> key because you may want to have line breaks
in your input. Instead, after the << symbols, you place a keyword. It is this keyword that
will terminate input. The common example for using << is to create a file using cat. The
notation for cat is generally cat filename(s). However, if you do cat << keyword, then input
comes from the keyboard until you type in the keyword. Consider the following:

cat << done

This will result in a prompt appearing, >. At the prompt, you begin typing. You can type
whatever you wish, including pressing the <enter> key. The cat program continues to accept
your input until you type in done. At that point, cat has received all of its input and now it
executes, which results in displaying the contents of the input to standard output, that is,
what you have just typed in now appears on the screen. This is not very useful. However,
you can also redirect the output. If you were to do:

cat << done > shoppinglist.txt

and you type in a shopping list, ending with the word “done”, then whatever you have typed in
now is stored in the file shoppinglist.txt. Thus, from cat, and using redirection, you can create
your own textfiles. Try the following, where the > marks are displayed in your terminal window:

cat << done > shoppinglist.txt
 > bananas
 > apples
 > bread
 > milk
 > aspirin
 > done

You should find a file, shoppinglist.txt, that contains the text bananas, apples, bread, milk,
aspirin, each on a separate line, but not the word done.

The most common use of redirection will be to send output to a file. For example, if you
want to save file information, you could do one of the following:

ls –l > directory_listing.txt
ls –l >> directory_listing.txt

In the latter case, if the file already exists, rather than overwriting it, the command will
append to the file.

The last form of redirection is called a pipe. The pipe redirects the output of one program
to be the input to another program. As a simple example, you use ls to view the contents

Bash Shell and editing ◾ 247

of the current directory. However, there are too many files, so many of them scroll past the
screen too quickly for you to see. You want to force ls to pause in between screens. You can
do this using the more or less command. So you use a pipe as in

ls | more
or ls | less.

The instruction first executes ls, but instead of displaying the output, it redirects the output
to the next program, more (or less).

You could also tackle this problem in a far more roundabout fashion by entering

ls > directory_listing.txt

and then entering

less directory_listing.txt

The pipe saves you from having to do two separate commands and saves you from creating
a file that you really do not need.

In Linux, a pipe can be used as often as is needed. This could potentially lead to lengthy
and very complicated instructions. Consider the following operation:

ls –l|sort –fr| less

RediRection in MS-doS

redirection is a very useful tool for users of an oS. MS-doS has its own versions of redirec-
tion that are similar although not exactly like those of linux.

To move the contents of a command to a file, use > as with linux. The >> redirection
performs append. In both cases, the notation is to place > or >> immediately before the file
name with no blank space. So, for instance, sending the contents of a directory listing to a
file dir.txt would be done by

dir >dir.txt

MS-doS also permits redirection from file rather than keyboard by using <filename. There
is no equivalent of <<.

MS-doS also has a pipe, of sorts. Some people refer to it as a fake pipe. like linux, the
pipe is noted with the | symbol, which appears between two instructions. however, in linux,
the two instructions surrounding a pipe execute simultaneously with the output of the first
being channeled into the input for the second (the term simultaneous means that both pro-
grams begin at the same time although their execution is sequential). But in MS-doS, the first
instruction executes and the output is saved to a temporary file. Then, the second instruction
is executed with input redirected to come from the temporary file rather than keyboard. So,
the MS-doS version of a pipe is, in essence, two separate instructions, connected through
redirection. This is far less efficient.

248 ◾ Information Technology

In this case, you are obtaining a long listing of the current directory, sorting the list of items
in reverse alphabetical order and ignoring case (it will not differentiate between upper and
lower case letters) and then displaying the result using less. We will see other uses of the
pipe in the next two chapters.

We wrap up this section by considering help features available in Bash. In fact, these
features will be found in any Linux shell. The help described here relates to how to use
various Linux commands. The most common form of help is the manual pages (man) for
an instruction. To view a manual page, use the man command, which takes on the form
man command, as in man sort or man find. There are manual pages for most but not every
Linux command. The man pages contain a number of different types of information that
help explain how to use the command. They include:

 A synopsis of its usage (the syntax)

 A description of the instruction

 The options (parameters) available for the instruction

 The authors of the program

 Files related to the command and other commands related to or similar to this one

Let us take a look at some examples. First, we look at the rm instruction. When we do a
man rm, we initially see the screen shown in Figure 9.3.

The first screen of the rm man page lists the instruction’s name, a synopsis of its usage,
a description, and the first two options. The bottom of the window shows “:” with the cur-
sor following it. To control movement in the man page, we will use the space bar to move
forward, screen by screen. But like the less command, we can also move backward and

FIgure 9.3 First screen of the rm man page.

Bash Shell and editing ◾ 249

forward one line at a time using the up and down arrow keys. The letter ‘q’ quits (exits) the
man page. The options (only a portion of which are shown in Figure 9.3) continue onto the
next two screens. Figure 9.4 shows what the remainder looks like.

In examining the man page for rm, we can see that the options are –f, -i, -r or –R, and –v.
We can also use --interactive in place of –i, or --force in place of –f. There are also options
for --help and --version, and so forth.

The rm command is simple. A more complex man page occurs with the instruction
find. In fact, the find man page is 50 screens long. One notable difference in the two com-
mands’ man pages is that find includes a list of examples to help illustrate how to use the
command. Although examples are not common in man pages, you will find them when
the command is challenging enough.

Another variation in man pages can be found with the man page for mount. Whereas
rm and find only have one usage under synopsis, mount has four. They are as follows:

mount [-lhV]
mount –a [-fFnrsvw] [-t vfstype] [-o optlist]
mount [-fnrsvw] [-o options [,…]] device | dir
mount [-fnrsvw] [-t vfstype] [-o options] device dir

These four lines indicate that mount can be used with four different types of parameters.
First, mount can be followed by one or more of l, h, or V as options. Second, mount –a
can be followed by a list of options, a virtual file system type, and any additional options
for this command. Third, mount can be followed by a list of options, additional options,
and a device or directory (the | indicates that either a device or a directory should be pro-
vided). Finally, mount can be followed by a list of options, a virtual file system type, a list of
options, a device, and a directory. Many instructions have multiple entries under synopsis.
Another, but simpler, example can be found with the useradd command.

FIgure 9.4 Second screen of the rm man page.

250 ◾ Information Technology

The second form of help available is the help command. The help command’s syntax is
help commandname. However, very few of the Linux commands have help pages, so it is
best to use man.

The final form of help is not necessarily help for how to use a command. Instead, it
might help you find a command. One problem with Linux is remembering all of the com-
mands by name. If you knew the command’s name, then the man page can help you learn
how to use it. But what if you know what you want to accomplish but do not know the name
of the command? This is where apropos comes in. The command’s syntax is apropos string
where string is the string that you are searching for. The apropos command lists all of the
commands that have the associated string found in the command’s description.

For instance, there is a command that reports on the current usage of virtual memory.
You cannot remember the name of the command. You type

apropos “virtual memory”

The apropos command returns the following:

mremap (2) - re-map a virtual memory address
vfork (3p) - create a new process; share virtual memory
vmstat (8) - Report virtual memory statistics

Bingo, the last item is what we were looking for! Although the quote marks around virtual
memory are not necessary, without them, apropos will return anything that matches either
virtual or memory. This would give us a lengthier list to examine. However, with the quote
marks, apropos will only return exact matches. If we wanted to find commands whose
descriptions had both words virtual and memory, but not necessarily in that order, we
would not want to use the quote marks.

As another example, you want to find a command to delete a file. You type apropos
delete file, which returns a lengthy list of commands. So you try apropos “delete file”. This
time, apropos returns:

delete file: nothing appropriate

indicating that apropos could not find a match to “delete file”. Using apropos can be tricky
but it is a valuable resource.

Now that we have seen the various features available in the Bash shell, we conclude this
section with a brief look at how the interpreter works. You have entered a command on the
command line. What happens now? The following steps are taken:

•	 The interpreter reads the input.

•	 The interpreter breaks the input into words and operators

 – operators being symbols such as <, >, |, ~, *

Bash Shell and editing ◾ 251

•	 If the instruction has any quotes, those quotes are handled.

•	 The instructions are parsed for any defined aliases, and if any aliases are found, alias
expansion (replacement) takes place.

•	 The various words and operators are now broken up into individual commands (for
instance, if there are redirection operators present then the commands are separated
from these operators).

•	 Shell expansions take place if any are called for

 – Brace expansion

 – Tilde expansion

 – Variable values are assigned

•	 If any of the commands appears either in ` ` or $(), execute the command.

•	 Execute any called for arithmetic operations.

•	 Perform any redirections (including pipes).

•	 Perform file name expansion, that is, match wildcard characters.

•	 The command is executed and, upon completion, the exit status of the command (if
necessary) is displayed to the terminal window (if no output redirection was called
for).

That sounds like a lot but it happens very quickly. You can now see why using the com-
mand line in Linux can give you a great deal of flexibility and power over using a GUI.

perSonalIzIng Your BaSh Shell
As stated in both Bash Shell Editing Features and Exploring the Bash Interpreter, you are
able to enter alias commands and define variables from the command line. Unfortunately,
any such aliases or variables would only be known within that given shell session. What if
you want to have a given alias or variable known in every shell session? There are a number
of files available to the user that are loaded whenever a new shell session is started. If you
place your alias or variable definitions in one of these files, then the alias or variable would
be known in every shell session. So here, we look at the use of these files. Before we examine
how to use these files, let us consider what happens when a shell session starts.

When a shell starts, it goes through an initialization process. The Bash interpreter
executes several shell scripts. These are, in order, /etc/profile, /etc/bashrc, .bash_profile,
.bash_login, .profile, and .bashrc. The first two scripts are set up by the system administra-
tor. They provide defaults for all users, for instance, by establishing aliases that all users
should have and PATH variables that all users should start with. The profile script is exe-
cuted whenever any type of shell starts, whereas the bashrc script is executed only if a Bash
shell is being started. The last four scripts are defined by the user in their home directory.

252 ◾ Information Technology

The .bash_profile script is commonly used to override anything established in the system
scripts as well as personalize items (aliases, variables) for the user. The .bash_login file is
only executed if the user is first logging in (remotely) as opposed to opening a new shell.
The .profile script is executed whenever any type of shell is opened, not just Bash. The
.bashrc script is executed when a new Bash shell is started in a new window. For simplicity,
it is probably best to just modify the .bash_profile script as it is used whenever any Bash
session starts.

If you examine these files, you will find a variety of entries. There are predefined aliases
and variables. But there are also shell script operations. Since we will examine shell script-
ing in Chapter 14, we will ignore the contents here. The .bash_profile script contains the
following two operations:

source ~./bashrc
source ~./bash_login

The source instruction is used to execute a script. The ~ indicates that the script is in your
home directory. The notation ./ means “execute this script”. Therefore, these two instruc-
tions will execute the two scripts, .bashrc and .bash_login. If these two instructions are
found in your .bash_profile script, then in fact you are free to edit any of these three files,
and they will all execute when a new Bash shell is started.

Let us consider what you might put into one of these files, say the .bashrc file. Already
present will be the following two instructions:

export PS1 = “…” // whatever prompt you want goes inside the quote
marks

export PATH = “$PATH:~/:~/bin:~/scripts:/usr/sbin”

The word “export” signifies that the variable being defined should be known throughout
the shell’s environment and not just inside of this script. The PS1 variable, already defined,
is being reset to a prompt of your own liking. For instance, you might use \d to specify the
date or \w to specify the current working directory. The latter assignment statement takes
the PATH variable, defined by the system administrator in the /etc/profile file, and appends
additional directories to it. To see what your PATH variable is storing, you can type echo
$PATH. If you wish to define further variables, you can do so, but you should make sure
that any variables have the word export preceding them so that they are known in your
Bash shell environment.

You may also find some aliases already defined. You may edit or add to these aliases
as you desire. For instance, you might specify aliases that correct common typos, or you
might specify aliases that will help you reduce the amount of typing, as described earlier
in this chapter.

One last comment. If you ever edit one of or more of these files and you later discovered
that you have made mistakes or do not like what you have done, you can copy new versions
of each of these files. They can be found in the directory /etc/skel.

Bash Shell and editing ◾ 253

TexT edITorS
As a Linux user, you will often use a text editor instead of a word processor. This is cer-
tainly true of a system administrator who will often have to edit configuration files or write
shell script files, all of which should be stored as normal text files. As shown in the previous
section, you may also wish to edit one of your Bash initialization scripts such as .bashrc.
Being a text file, you should use a text editor. Therefore, it is worth learning about the text
editors available in Linux.

The problem with using word processors is that word processors, by default, store docu-
ments in a formatted way. For instance, using Word will result in a Word doc file (.doc or
.docx) and using OpenOffice’s word processor will result in an .odt file. You can override
the file type by using “save as” and changing the file type to text, but that can be a hassle.
In addition, to start up a word process such as Word takes a greater amount of time when
compared to starting a simple text editor. When you have a small editing task that you
want to do quickly, you will want to forego the use of a full-blown word processor and
settle for a text editor instead.

In Linux, there are three common text editors. First, there is a GUI editor often called
Text Editor, or gedit. Then there are two older, text-based editors: vi and Emacs. The vi
editor is the older of the two editors and comes with all Linux installations. Emacs may or
may not be part of your Linux although it is easy enough to install. Although gedit con-
tains a GUI interface so that you can move the cursor with the mouse and use the mouse
for highlighting text and selecting menu operations, you may find that gedit is not available
or desirable. For instance, if you have logged into a Linux computer using a remote login
program such as telnet or ssh, you will not have access to gedit. Also, both vi and Emacs
load faster and therefore, if you want to do a quick edit, it may not be worth the time to run
gedit. So, here, we examine both vi and Emacs. An interesting side note is that Linux (and
Unix) users who learn vi first will love vi and hate Emacs, whereas those who learn Emacs
first tend to love Emacs and hate vi. Nevertheless, all Linux users should learn both, and
use their preferred editor whenever they need to perform quick text editing.

The vi editor

The vi editor is the default Linux text editor. A newer version of vi is called vim (vi
improved). The following description applies to both vi and vim.

Because it is text-based, the commands that you would find as menus in a GUI-based edi-
tor are performed as keystrokes. The editor uses three different modes—command mode,
insert mode, and replace mode—so that keystrokes differ by mode, as will be discussed
below. It is important to remember that the keystrokes that are used as commands are case-
sensitive. For instance, ‘o’ and ‘O’ are both forms of insert, but insert at different locations.

Command mode is the default mode. Keystrokes are interpreted as commands. Many
keystrokes can be preceded by a number such that the command is performed that many
times. For instance, the dd command deletes the current line. 5dd deletes five consecutive
lines. Insert mode is the mode that is most similar to a word processor; as you type, the
characters are entered into your document at the point of the cursor. With each keypress,

254 ◾ Information Technology

the cursor advances to the next position. The only keystroke command in this mode is the
escape key, which exits this mode, returning you to command mode. Replace mode is simi-
lar to insert mode; however, as you enter keystrokes, the characters overwrite the characters
already present. As with the insert mode, the escape key returns you to the command mode.

In order to know which mode you are in, look at the bottom of the editor where you will
either see “--INSERT--”, “--REPLACE--”, or nothing (command mode). There are numerous
commands to enter either insert or replace mode. These are listed in Table 9.2. The reason for
the different commands is that each will position the cursor in a different location. For instance,
‘i’ positions the insert cursor at the current cursor location, ‘o’ inserts a blank line in the line
following the cursor and inserts the cursor at the beginning of the blank line, and ‘O’ inserts a
blank line in the line preceding the cursor. To toggle command mode to insert or replace, use
one of the letters in Table 9.2, and to return to command mode, press the escape key.

Aside from positioning the cursor when switching to insert mode, there are numerous
other ways to move the cursor. These are listed in Table 9.3. Notice that the keystrokes to
move the cursor one position (down, up, left, right) should be done through the j, k, h, and
l keystrokes rather than the arrow keys, which may or may not be mapped in vi/vim. Using
G or #G (where # is a number) moves you to a new point in the file quickly; however, #G
requires that you know the line number. The search command can be more useful.

TaBle 9.2 Mode Commands

Keystroke Description
i Enter insert mode at the immediate left of the cursor
a Enter insert mode at the immediate right of the cursor
o Insert a blank line after the current line and enter insert mode
O Insert a blank line before the current line and enter insert mode
I Enter insert mode at the beginning of the current line
A Enter insert mode at the end of the current line
r Replace one character with the next character entered
R Enter replace mode and continue to replace (overwrite) characters (until escape is pressed)

TaBle 9.3 Cursor Movement and Search Commands

j, k, h, l Move the cursor down/up/left/right one position (the arrow keys may not work)
w, b Move the cursor forward/backward by one word
G Move to the last line of the file
1G Move to the first line of the file
*G Move to line * (where * is a number, such as 5G or 50G)
H, L Move to the top/bottom line of the screen
0, $ Move to the first/last character of the line
/text <enter> Search forward for text (the text can include regular expressions)
/<enter> Search for the next occurrence of the most recent search
?text <enter> Search backward for text
? <enter> Search for the previous occurrence of the most recent search
<pg up> or cntrl+f,
<pg down> or ctrl+b

Move the file up or down one screen’s worth in the window

Bash Shell and editing ◾ 255

You can mark text and then jump to marked text. This is useful for editing large docu-
ments. For instance, if a file contains a book, you might mark the beginning of each chap-
ter. There are 36 marks available in vi. They are denoted using either a letter from a to z or
digit from 0 to 9 (26 letters and 10 digits provides 36 distinct marks). Inserting a mark is
done by typing mchar in command mode, where char is one of a letter from a to z or digit
from 0 to 9. Jumping to a marked position is done using ‘char. You can also jump to the
previous mark by typing ‘’char. For instance, if you place the mark ‘z’ at the beginning of
Chapter 2 and you are midway through Chapter 5, pressing ‘z moves you to the beginning
of Chapter 2 and ‘’z returns you to the point midway through Chapter 5 of where you were
before typing ‘z.

If the cursor is on a delimiter as used in the C/C++ or Java programming language, such
as {,}, (,), [or], pressing % will move you to the other delimiter. For instance, if you are on
a { that starts a function, pressing % moves you to the } that closes that function. This is
useful if you are editing a program.

Table 9.4 displays various repeat and undo options. Many commands can be executed
multiple times by preceding the keystroke with a number. 5j, for instance, will perform
the ‘j’ keystroke five times, that is, it will move the cursor down five lines. The exception
is when the number precedes the letter G, in which case the cursor is repositioned at the
beginning of that line number; for instance, 5G moves the cursor to the beginning of line 5.

Obviously any text editor/word processor requires the ability to cut-and-paste or copy-
and-paste. As with a GUI-based word processor, the idea is to select a sequence of char-
acters and then cut or copy them into a buffer. From the buffer, they can be retrieved. In
text-based word processors, the expression to paste is often referred to as yank (yanking
text back from the buffer). Table 9.5 provides the commands for cutting, copying, and
pasting.

When you start vi, you can either specify a file or open a new buffer. Once you are
editing a vi session, you will need file commands. The file commands all begin with a ‘:’,
as listed in Table 9.6. Notice that some of these require a filename, which you would type
after the command, as in :w name to save the contents of the buffer to the file named name.
There will be a blank space between the command and the name.

Table 9.7 provides a few leftover, miscellaneous vi commands.
Of course, the only way to really familiarize yourself with vi is through practice. Given the

somewhat bizarre keystrokes needed to control vi, you might question whether you would
or should ever use it. However, as a system administrator or shell script writer, you would
probably need to use vi (or Emacs) often. As stated earlier, those Linux users who learn vi
first tend to use vi. You will see in the Emacs editor that many of the commands are perhaps
a little easier to remember because many commands start with the letter of the command.

TaBle 9.4 Repeat and Undo Commands

u Undo the previous command (may be used multiple times to undo several commands)
. Repeat the last edit command
n. Repeat the last edit command n times where n is a number, such as 5.
nk Repeat command k n times, where k is a keystroke and n is a number, such as 5j or 5dd

256 ◾ Information Technology

The emacs editor

Emacs (which stands for Editor MACroS) is a text editor like vi. However, whereas vi has
three modes (insert, replace, and command), Emacs only has one mode (insert). Commands
are issued by using either control or escape in conjunction with other keys. For instance, to
move one line forward, you would type control+n (‘n’ for next). Many of the commands use
a letter that is the first letter of the command, and thus Emacs can be easier to learn than
vi. Emacs is often a preferred choice of programmers because the Emacs environment can,
if set up properly, execute program instructions. For instance, the Lisp language is often

TaBle 9.6 File Commands

:w <enter> Save the file
:w name <enter> Save the file as name
:w! name <enter> Overwrite the file name with the contents of the current session
:n,m name <enter> Save lines n through m of the current session to the file name
:q <enter> Exit vi
:q! <enter> Exit vi without saving
:wq <enter> or
:x <enter>

Save file and exit vi

:r name <enter> Insert the file name into the current position of the current file
(open a file if the vi session is empty)

TaBle 9.7 Miscellaneous Commands

:h View the vi help file
Ctrl+T Return to your file from the help file
:!command <enter> Execute command (this is useful if you know a command by name but cannot

remember the keystroke(s))
:. = Display current line number bottom of screen
: = Display total line numbers at bottom of screen
^g Displays current line number and total line numbers at bottom of screen

TaBle 9.5 Delete, Copy, Paste, and Change Commands

x Delete the next character
nx Delete the next n characters where n is a number
dw Delete the next word
ndw Delete the next n words where n is a number
dd Delete this line
ndd Delete the next n lines starting with the current line where n is a number (also dnd)
D Delete from the cursor to the end of this line
yy Copy the current line into a buffer
nyy Copy the next n lines starting with the current line where n is a number (also yny)
p Put (paste) any lines stored in the buffer below the current line
J Join the next line to the end of the current line (remove the end-of-line)
cw Change current word by replacing text as you type until user presses escape key
C Change all words in current line until user pressers escape key

Bash Shell and editing ◾ 257

installed in Emacs and so a programmer can edit Lisp code and then execute it all from
within Emacs.

Starting Emacs brings up an initial “splash” window (Figure 9.5a). As soon as you begin
editing (typing characters or moving the cursor), the image in Emacs is replaced with a
blank page (except for three lines of text; see Figure 9.5b). You will notice in Figure 9.5 that
there are GUI commands. If you start Emacs inside of a GUI OS, you are able to control
Emacs through the mouse (as well as through keystrokes). However, if you open Emacs
from a text-based session (such as if you ssh into a Linux computer), then you can only use
the keystrokes.

In Emacs, you edit a buffer. A buffer is an area of memory containing text—this is the
session that you are currently editing. In Emacs, you can have many buffers open. This
allows you to edit multiple documents at one time and cut/copy and paste between them.
There are generally two buffers visible at any one time: the main buffer (the large window
in either part of Figure 9.5) and the minibuffer (the bottom portion of the window in either
part of Figure 9.5). The minibuffer is a location where you will enter commands, file names,
and responses to questions (such as “Save file?”). You can actually open two buffers at a
time (in which case, the large window is split in half), and in any single buffer, you can
continue to split it into two buffers. We will discuss this later.

Emacs wraps characters onto the next line once you reach the right side of the buffer,
like any word processor; however, you can see that the line is extended because the end of
the line is denoted with a \ character. If you were on such a line and used the command to
move to the end of the line, the cursor moves to the end of the extended line.

For instance, if you have:

Desperate nerds in high offices all over the world have been known to enact the m\
ost disgusting pieces of legislation in order to win votes (or, in places where they d\
on’t get to vote, to control unwanted forms of mass behavior).

(a) (b)

FIgure 9.5 Emacs upon loading (a) and upon editing (b).

258 ◾ Information Technology

and the cursor is in the first line, then moving to the end of the line actually moves the
cursor to the end of behavior). And not to the “m\”.

When you enter any keystrokes, they are added to your current Emacs buffer at the
position of the cursor, unless you are entering a command. To enter a command, you will
either hold the control key down and type one or more characters (this will be denoted as
c+key), or you will press and release the escape key and follow it with one or more charac-
ters (this will be denoted as m+key, m stands for meta, a term that some users use for the
escape key). We begin with a look at the cursor movement commands, similar to what we
saw in vi. However, in Emacs, most of these commands are denoted by their first letter, so,
for instance, c+b moves the cursor backward one space. You may recognize some of these
commands from the discussion on command line editing in bash covered in Bash Shell
Editing Features. Table 9.8 provides the cursor movement commands.

Notice that you can mark a position, as with vi. However, you do not label marked loca-
tions (in vi you could label up to 36 of them). Here, Emacs will record up to 16 marks. But
you can only return either to the most recent marked position (c+x c+x) or you can cycle
through all marked positions by pressing c+u c+space, once per mark. If you continue to
mark locations beyond the 16th, the earliest ones are forgotten.

Aside from using c+u to move through marks, the command c+u is used to mean “repeat
the next movement 4 times”. So, for instance, c+u c+n will move you ahead four times.
Interestingly, c+u c+u repeats the next command 16 times. You can also use c+u n, where
n is a number, which means “repeat the next command n times”. You can also specify mul-
tidigit times (for instance, 15, 35, 200) by using m+digit m+digit. For instance, m+1 m+0

TaBle 9.8 Cursor Movement Commands

c+n Move cursor one line down (next)
c+p Move cursor one line up (previous)
c+f Move cursor one position forward
c+b Move cursor one position backward
c+a Move cursor to the beginning of the line
c+e Move cursor to the end of the line
c+v Move cursor down one screen
m+v Move cursor up one screen
m+f Move cursor forward one word (to next blank)
m+b Move cursor backward to beginning of word (or previous word)
m+a Move cursor to beginning of previous sentence
m+e Move cursor to beginning of next sentence
m+< Move cursor to beginning of document
m+> Move cursor to end of document
m+g n Move to line number n where n is a number
c+space Mark the current position
c+x c+x Move to marked position (this also moves the mark to the position where you were just at)
c+s Bring up minibuffer to enter search term, search forward (each c+s) afterward will search

for next instance until you do another command
c+r Search backward

Bash Shell and editing ◾ 259

c+f will move the cursor ahead 10 spaces, and m+3 m+2 c+n will move the cursor ahead 32
lines. If you reach the bottom of the file, the cursor will not advance any further, nor does
it wrap around to the beginning.

As you type, the characters are inserted at the current cursor position. So Emacs is
always in insert mode. The editing commands for deletion/cut and paste are provided in
Table 9.9. Notice that the undo command will undo the most recent editing operation,
but not a movement operation. So, for instance, if you delete a character, undo restores
the character. If you delete a character, move the cursor, and select undo, then the deleted
character is restored rather than being moved back to your previous location.

Note that text is appended to the yank buffer until you issue another command. For
instance, if you were to delete five lines in a row, all five lines would be copied to the yank
buffer. If you were to delete a line, type c+n to go to the next line, and delete that line, only
the latest line is saved in the yank buffer because in between the two deletions, you per-
formed another command. Successive deletions though append to the yank buffer.

For instance, consider the line:

The brown cow jumped over the silver spoon.

Assume the cursor is currently in the ‘v’ in the word “over”. If you do a m+d, it deletes
“ver”. If you do another m+d, it deletes “the”. If you do a c+y, “ver the” reappears. If the cur-
sor is in the same place and you do m+<backspace> twice, it deletes “jumped ov” but not
the “er”. If you were to now do c+f followed by m+d, this deletes the “r” in “er”. If you follow
this with c+y, all that is yanked is “r” since the earlier “jumped ov” is now out of the buffer.

The file operations are shown in Table 9.10. The minibuffer is used to prompt the user
for a name when using save as, open, and when you wish to exit Emacs with an unsaved

TaBle 9.9 Editing Commands

c+x u Undo (you can also use c+_ and c+/)
c+d Delete the next character (also the delete key)
m+d Delete the next word (from the cursor on)
c+k Delete the entire line (from the cursor on) (also m+k)
<backspace> Delete previous character
m+<backspace> Delete from the cursor backward to beginning of word
m+w Save entire region from last marked spot to cursor (copy)
c+w Delete entire region from last marked spot to cursor (cut)
c+y Yank (paste) from the yank buffer (all of the above inserts characters into the yank

buffer except for undo and c+d)
m+y Same as c+y except that it replaces text with what is in the yank buffer rather than

inserts text at the position of the cursor
c+t Transposes current and previous character
m+u, m+l Upper/lower cases all letters from cursor to end of word
m+c Capitalizes current letter
m+% Search and replace—you are prompted for both the search string and the replacement,

and then for each match, you are asked whether to replace (y), skip (n), exit (q),
replace all remaining instances (!) or replace once, and exit (.)

260 ◾ Information Technology

document. Note that if you have never saved the buffer’s contents, Emacs will exit without
saving. If you have saved the buffer’s contents to a file, but have made changes and not
saved those changes, you are then prompted as whether to save the file under the existing
name or a new name, or exit without saving.

The command m+x brings up a prompt in the minibuffer. From here, you can type
a command and press the enter key. There are a large number of commands. If you are
unsure of a command name, you can use Emacs’ version of tab completion. Begin to type
in the name of the command press the space bar. This will list in a buffer in the lower half
of your window all commands that match. See Table 9.11, which discusses opening, clos-
ing, and movement between buffers. Note that the space bar for completion can also be
used for file name completion. For instance, if you wish to open a file, you would tape c+x
c+f. You are then prompted in the minibuffer to type the file name. You type the path /
home/foxr/cit130/ but do not remember the file’s name. Pressing the space bar would gen-
erate a list of all matching items, in this case, all files in that directory. Here are just some
of the commands that you might enter into the minibuffer:

•	 append-to-file

•	 auto-save-mode

•	 calculator

•	 calendar

•	 capitalize-region, capitalize-word

•	 check-parens

•	 copy-file

•	 count-lines-page, count-lines-region

TaBle 9.10 File Commands

c+x c+s Save file under current name
c+x c+w Save as (you are prompted for a new name)
c+x c+f Open a new file in a new buffer
c+x c+c Exit Emacs (if the contents have not been saved but a filename exists, you are asked

whether to save the contents before exiting)

TaBle 9.11 Buffer Operations

c+x k Close the current buffer (if unsaved material exists, you will be prompted to save it first)
c+x b Switch to the most recent buffer other than the current buffer
c+x 2 Open a second window (under the current window) that takes up half the window’s size to see a

second buffer (note: doing this inside a halved window gives you two quarter sized windows, etc.)
c+x 1 Close the second window to a single window
c+x o Switch from one buffer to another, including the minibuffer

Bash Shell and editing ◾ 261

•	 goto-line

•	 insert-file

•	 save-buffer

•	 shell (opens a Linux shell)

•	 undo

There are a number of programs that can be run from inside of Emacs. These include
doctor (an artificial intelligence program), hanoi (Towers of Hanoi), phases-of-moon (to
show you upcoming phases of the moon), and tetris. You would execute a program by
using m+x name as in m+x doctor <enter> to run the doctor program. Inside of Emacs, you
can execute Linux commands.

There are several built-in spell checking modes available using either the aspell or ispell
programs. Flyspell (using aspell) highlights all misspelled words in the buffer. You can also
use flyspell programming mode, which only highlights misspelled words in comments (for
instance, finding all misspellings in the comments of a Java program). Ispell is used for the
remainder of the modes. Ispell can check the highlighted word, or can complete the cur-
rent word, or can spell check the current buffer or the current region. In ispell, the window
splits into two buffers with lists of words to replace errors appearing in the lower buffer.
You can also add words to the Ispell dictionary if desired. To run either spell checker, use
M+x <command>, where <command> is one of the following:

•	 flyspell-mode

•	 flyspell-prog-mode

•	 ispell

•	 ispell-buffer

•	 ispell-region

•	 ispell-message

•	 ispell-change-dictionary (allows you to change your Ispell dictionary)

You can also use M+$ to check the spelling of the current word and M+x<tab> <esc>
<tab> to complete the current word. When using ispell, if a word is selected as misspelled,
you can do any of these actions:

•	 <space>—to skip the word (it is still considered misspelled, just ignored for now)

•	 r word <return>—will replace the highlighted word with the word you have entered

•	 digit—replace the word with the word selected by the digit entered from a list provided

262 ◾ Information Technology

•	 a—accept the word as is

•	 i—insert this word into your dictionary

•	 ?—show the entire list of options that can be used in Ispell

One last feature of Emacs is the ability to define and recall macros (this is also available
in vi, although not discussed earlier). A macro is a program that you define as a series of
keystrokes, to be executed more than once. You define the macro and then call upon it
whenever you need it. To start a macro, type c+x (followed by the macro keystrokes fol-
lowed by c+x). To execute the entered macro, type c+x e.

Let us consider an example. Imagine that you have a group of text and you want to
place this text into an html table. The text currently is specified as # Ch. # p. #, where
each # is a number. You want to place this in an html table where each row of the html
table matches a row in the text table. The first # will be placed in one column, the Ch. #
in a second column, and the p. # in a third column. An html table begins with <table>
and ends with </table> and each row consists of: <tr><td>column 1</td><td>column
2</td><td>column 3</td></tr>. So we need to add to each row the <tr><td> before the
first #, </td><td> before Ch. #, </td><td> before p. #, and </td></tr> to the end of the row.
In order to accomplish our task above, we would do the following:

•	 Move the cursor to the first line of the table, type <table> <enter> and type c+x (

•	 Type c+a <tr><td>—this moves the cursor to the beginning of a line and adds the
text <tr><td> to the beginning

•	 Type m+f—this moves the cursor passed the first word (in this case, the first number)

•	 Type </td><td>—to end the first column and start the second

•	 Type c+s . c+s . c+b c+b—this moves the cursor to immediately before p.

•	 Type </td><td>—to end the second column and start the third

•	 Type c+e </td></tr>—to move to the end of the row and end the column and row

•	 Type c+n—to move to the next line

•	 Type c+x)—to end the macro

If there were 15 rows for the table, we now do c+u 14 c+x e (execute the macro 14 more
times) and finally type </table>. You can save macros and give them names so that you can
define many macros and recall the macro you need. You can later edit the named macro
and add to it or make changes.

Finally, Emacs can be confusing. If you are lost, you can bring up the help file in a new
buffer. To bring up help, type c+h c+h, or if you want help on a specific command, type c+h
command. If you are unsure of the command, type in the first letter or letters of the com-
mand. As with vi, the best way to learn Emacs is to practice!

Bash Shell and editing ◾ 263

FurTher readIng
Bash is only one of many shells available in Linux, although it is arguably the most popular
today. There are numerous texts that provide details on the Bash shell and others. The fol-
lowing list spotlights command-line interaction with Linux (or Unix). You will find other
texts describing shell programming listed in Chapter 14, and still other texts that contain
material on various shells in the texts listed in the Further Reading section of Chapter 4.

•	 DuBois, P. Using CSH & Tcsh. Cambridge, MA: O’Reilly, 1995.

•	 Garrels, M. Bash Guide for Beginners. Palo Alto, CA: Fultus Corporation, 2004.

•	 Kiddle, O., Stephenson, P., and Peek, J. From Bash to Z Shell: Conquering the Command
Line. New Jersey: Apress Media LLC, 2004.

•	 Myer, T. MAC OS X UNIX Toolbox: 1000+ Commands for the Mac OS X UNIX.
Hoboken, NJ: Wiley and Sons, 2009.

•	 Newham, C. Learning the Bash Shell. Cambridge, MA: O’Reilly, 2005.

•	 Quigley, E. UNIX Shells by Example with CDROM. Upper Saddle River, NJ: Prentice
Hall, 1999.

•	 Robbins, A. Bash Pocket Reference. Massachusetts: O’Reilly, 2010.

•	 Robbins, A. and Rosenblatt, B. Learning the Korn Shell. Massachusetts: O’Reilly, 2002.

•	 Shotts Jr., W. The Linux Command Line: A Complete Introduction. San Francisco, CA:
No Starch Press, 2012.

•	 Sobell, M. Practical Guide to Linux Commands, Editors and Shell Programming.
Upper Saddle River, NJ: Prentice Hall, 2009.

Although the best way to learn vi and Emacs is through practice and through help avail-
able from both the software and websites, there are also a few texts available.

•	 Artymiak, J. Vi(1) Tips,: Essential vi/vim Editor Skills, devGuide.net (self-published,
see http://devguide.net/), 2008.

•	 Ayers, L. GNU Emacs and XEmacs (With CD-ROM) (Linux). Massachusetts: Muska
& Lipman/Premier-Trade, 2001.

•	 Cameron, D., Elliot, J., Loy, M., Raymond, E., and Rosenblatt, B. Learning GNU
Emacs. Massachusetts: O’Reilly, 2004.

•	 Oualline, S. Vi iMproved (VIM). Indianapolis, IN: Sams, 2001.

•	 Robbins, A., Hannah, E., and Lamb, L. Learning the vi and Vim Editors. Massachusetts:
O’Reilly, 2008.

•	 Stallman, R. GNU Emacs Manual V 23.3. Massachusetts: Free Software Foundation, 2011.

264 ◾ Information Technology

revIew TerMS
Terminology introduced in this chapter

Alias Macro (Emacs)

Apropos Man page

Bang (!) Minibuffer (Emacs)

Brace expansion PATH variable

Command line PS1 variable

Command line editing Pipe

Command mode (vi) Replace mode (vi)

Environment variable Redirection

Expansion Shell

History Tab completion

Insert mode (vi) Tilde expansion

Interpreter Wildcard

Review Questions

 1. Provide a definition for an interpreter.

 2. What does the Bash interpreter do?

 3. How do you reexecute the last instruction from the history list? How do you reex-
ecute instruction 21 from the history list? How do you reexecute the last instruction
that started with a ‘c’ from the history list?

 4. How do you move successively backward through the history list so each instruction
appears on the command line?

 5. You have typed less abc<tab>. What does the <tab> key do? What would happen if
you pressed <tab><tab> instead of a single <tab>?

 6. Consider the following list of file names in the current directory:

forgotten.txt frank.txt fresh.txt functions.txt funny.txt other_
stuff.txt other_funny_stuff.txt

 What would happen if you typed in “less fun<tab>”? What would happen if you typed
in “less fun<tab><tab>”? What would happen if you typed in “less funn<tab>”?

Bash Shell and editing ◾ 265

 7. From the command line, if you are in the middle of an instruction that you are edit-
ing, what does control+b do? What does control+f do? What does control+a do? What
does control+e do? What does control+k do?

 8. Define an alias so that the command del is equal to rm.

 9. Define an alias so that rmall recursively deletes all files and subdirectories in the cur-
rent directory.

 10. Why might you define an alias rm for ‘rm –i’?

 11. How will the following instruction be interpreted? That is, what specific command(s)
is(are) executed?

ls ~/{foo1,foo2/{foo3,foo4},foo5}

 12. What does the * mean if you do ls *.txt? How about ls *.*? How about ls *? What is the
difference between using * and ? in the ls command?

 13. What does the $ do when placed in front of a variable?

 14. What is the difference between NAME = Frank and NAME = $Frank?

 15. Write an assignment statement to add the directories /usr/local/share/bin, /sbin, and
/home/zappaf to your PATH variable.

 16. Write an assignment statement to change your user prompt (PS1) to output your user
name, an @ symbol, the current date, a space, the time in 12-hour format, a colon, the
current command number, and then the $. For instance, it might look like this:

foxr@Mon Feb 13 2:03 EST 2012 pm:16$

 17. The cat command will output the contents of a file to the screen. You can cat multiple
files. Write a Linux command which will take the content of files foo1.txt, foo2.txt,
and foo3.txt, and sort the lines in alphabetical order (using the sort command). This
will require a pipe.

 18. Repeat #17 but send the output to the text file sorted.txt.

 19. Repeat #18 but append the output to the text file sorted.txt.

 20. What does the command cat << foo do?

 21. What does it mean if the man page for a command has multiple items listed under synopsis?

 22. In what order are these files interpreted when you open a bash shell from inside of
your Linux GUI? /etc/profile, /etc/bashrc, .profile, .bashrc, and .bash_profile?

 23. If, as a user, you want to define an alias or a variable to be used in every bash session,
where would you define it?

266 ◾ Information Technology

 24. If, as a user, you want to define an alias or a variable for only the current bash session,
where would you define it?

 25. If, as a system administrator, you want to define an alias or a variable to be used in all
users’ bash sessions, where would you define it?

 26. Why might you use vi or Emacs instead of a word processor or a GUI-based text editor?

 27. What are the modes that vi uses? How do you switch from one mode to another?

DisCussion Questions

 1. Explain the importance of being able to master the command line in Linux rather
than relying on the GUI.

 2. Following up on #1, list several duties of a system administrator that you would pre-
fer to accomplish through the command line because it is either easier or because it
provides you with greater flexibility and power.

 3. It is common that students just learning to use Linux (or Unix) will avoid using com-
mand line editing, history, defining aliases, and other shortcuts available in the Bash
shell. What are some motivating techniques that you might suggest so that students
not only learn these shortcuts but choose to apply them consistently?

 4. Similar to #3, students often forget how to, or refuse to, apply redirection commands
instead writing several individual commands and even creating temporary files so
that the output of one command can be used later. Describe some example problems
that have helped motivate you to use and learn redirection.

 5. Provide several reasons why you would use a text editor in Linux/Unix. Do similar
situations exist in Windows?

 6. What do you find to be the biggest challenge behind learning vi?

 7. What do you find to be the biggest challenge behind learning Emacs?

 8. The vi editor is a standard part of any Linux or Unix OS, but in many cases, Emacs
must be installed separately. Why do you suppose Emacs is not a standard part of
Linux/Unix? If you were a system administrator, would you install it if it were not
specifically requested? Why or why not?

 9. Run Emacs. Type m+x doctor <enter>. This starts the “Doctor” program (which orig-
inally was called Eliza). The program pretends to be a Rogerian psychotherapist. It
is programmed to respond to your natural language (English) inputs with its own
natural language comments or questions. It waits for you to enter a sentence and
then press the enter key twice, and then it will respond to you. The program relies
on a number of patterns that it searches for and if found, has built-in responses. For

Bash Shell and editing ◾ 267

instance, if it finds text such as “I like to listen to music”, it identifies the word “like”
and response by rearranging your statement into a question such as “why do you like
to listen to music”. The pattern found is “I like X”, which is rearranged to become
“why do you like X?” While running this program, first respond with reasonable
statements that attempt to converse with Doctor. After you have played with it for a
while, see if you can fool the program by entering nonsensical statements or ungram-
matical statements. To exit the program, enter the text “bye” at the end.

This page intentionally left blankThis page intentionally left blank

269

C h a p t e r 10

Regular Expressions

Chapter 9 focused on Linux. Chapter 10 also focuses on a Linux-related topic, that of regu-
lar expressions. Regular expressions provide a powerful tool for Linux users and admin-
istrators. With regular expressions, a user can search through text files not for specific
strings but for strings that fit a particular pattern of interest. Linux offers the grep pro-
gram, which performs such a search task given a regular expression. In this chapter, regu-
lar expressions are introduced along with numerous examples and an examination of grep.
Because of the challenging nature in learning regular expressions, the reader should be
aware that mastery of them only comes with an extensive experience and that this can be
a difficult chapter to read and understand. It is recommended that the reader try out many
of these examples. The chapter also examines the use of Bash wildcards.

The learning objectives of this chapter are to

•	 Describe regular expressions and why they are useful.

•	 Illustrate the use of each regular expression metacharacter.

•	 Provide numerous examples of regular expressions.

•	 Examine the grep program.

•	 Describe the use of wildcards in Bash and show how they differ from regular
expressions.

•	 Combine ls and grep through redirection.

Consider a string of characters that contains only 1s followed by 0s, for instance, 111000,
100, and 10000. A regular expression can be used to specify such a pattern. Once writ-
ten, a regular expression can be compared to a collection of strings and return those that
match the pattern. A regular expression is a string that combines literal characters (such as
0 or 1) with metacharacters, symbols that represent options. With metacharacters, you can
specify, for instance, that a given character or set of characters can match “any number of”
or “at least one” time, or specify a list of characters so that “any one character” matches.

270 ◾ Information Technology

Regular expressions can be highly useful to either a user or system administrator when
it comes to searching for files or items stored in files. In this chapter, we examine how to
define regular expressions and how to use them in Linux. The regular expression is con-
sidered so useful that Linux has a built-in program called grep (global regular expression
print), which is an essential tool for Linux users. Wildcards, a form of regular expressions,
are available in Linux as well, although these are interpreted differently from their usage
in regular expressions. Regular expressions have been built into some programming lan-
guages used extensively in Linux such as perl.

Let us consider two simple examples to motivate why we want to explore regular expres-
sions. First, you, as a user, have access to a directory of images. Among the images are
jpg, gif, png, and tiff formatted images. You want to list all of those under the tiff for-
mat. However, you are unsure whether other users will have named the files with a .tiff,
.tif, .TIFF, .TIF, .Tiff, or .Tif extension. Rather than writing six different ls statements, or
even one ls statement that lists each possible extension, you can use a regular expression.
Second, as a system administrator, you need to search a directory (say /etc) for all files that
contain IP addresses as you are looking to change some hardcoded IP addresses, but you
do not remember which files to examine. A regular expression can be defined to match
strings of the form #.#.#.#, where each # is a value between 0 and 255. In creating such a
regular expression and using grep, you can see all of the matches using one command
rather than having to examine dozens or hundreds of files.

In this chapter, we first examine the metacharacters for regular expressions. We look at
dozens of examples of regular expressions and what they might match against. Then, we
look at how some of the characters are used as wildcards by the Bash interpreter. This can
lead to confusion because * has a different meaning when used as a regular expression in a
program such as grep versus how the Bash interpreter uses it in an instruction such as ls.
Finally, we look at the grep program and how to use it. Regular expressions can be a chal-
lenge to apply correctly. Although in many cases, their meaning may be apparent, they can
often confound users who are not familiar with them. Have patience when using them and
eventually you might even enjoy them.

MeTacharacTers
There is a set of characters that people use to describe options in a pattern. These are known
as metacharacters. Any regular expression will comprise literal characters and metacha-
racters (although a regular expression does not require metacharacters). The metacharacter
* means “match the preceding character 0 or more times”; so, for instance, a* means “zero
or more a’s”. The regular expression 1010 matches only 1010 as it has no metacharacters.
Since we will usually want our regular expressions to match more than one specific string,
we will almost always use metacharacters. Table 10.1 provides the list of metacharacters.
We will explore each of these in turn as we continue in this section.

We will start with the most basic of the symbols: * and +. To use either of these, first
specify a character to match against. Then place the metacharacter * or + after the char-
acter to indicate that we expect to see that character 0 or more times (*) or 1 or more
times (+).

regular expressions ◾ 271

For instance, 0*1* matches any string of zero or more 0s followed by zero or more 1s. This
regular expression would match against these strings: 01, 000111111, 1, 00000, 0000000001,
and the empty string. The empty string is a string of no characters. This expression matches
the empty string because the * can be used for 0 matches, so 0*1* matches a string of no
0s and no 1s. This example regular expression would not match any of the following: 10,
00001110, 0001112, 00a000, or abc. In the first and second cases, a 0 follows a 1. In the other
three cases, there are characters in the string other than 0 and 1.

The regular expression 0+1+ specifies that there must be at least one 0 and one 1. Thus,
this regular expression would not match the empty string; neither would it match any
string that does not contain one of the two digits (e.g., it would not match 0000 or 1).
This expression would match 01, 00011111, and 000000001. Like 0*1*, it would not match a
string that had characters other than 0 or 1 (e.g., 0001112), nor would it match a string in
which a 0 followed a 1 (e.g., 00001110).

We can, of course, combine the use of * and + in a regular expression, as in 0*1+ or
0+1*. We can also specify literal characters without the * or +. For instance, 01* will match
against a 0 followed by zero or more 1s—so, for instance, 0, 01, 01111, but not 1, 111, 1110,
or 01a. Although * and + are the easiest to understand, their usefulness is limited when just
specified after a character. We will find that * and + are more useful when we can combine
them with [] to indicate a combination of repeated characters.

TaBLe 10.1 Regular Expression Metacharacters

Metacharacter Explanation
* Match the preceding character if it appears 0 or more times
+ Match the preceding character if it appears 1 or more times
? Match the preceding character if it appears 0 or 1 time
. Match any one character
^ Match if this expression begins a string
$ Match if this expression ends a string
[chars] Match if the expression contains any of the chars in []
[chari-charj] Match if the expression contains any characters in the range from chari to charj

(e.g., a–z, 0–9)
[[:class:]] An alternative form of [] where the :class: can be one of several categories such as alpha

(alphabetic), digit, alnum (alphabetic or numeric), punct, space, upper, lower
[^chars] Match if the expression does not contain any of the chars in []
\ The next character should be interpreted literally, used to escape the meaning of a

metacharacter, for instance \$ means “match a $”
{n} Match if the string contains n consecutive occurrences of the preceding character
{n,m} Match if the string contains between n and m consecutive occurrences of the preceding

character
{n,} Match if the string contains at least n consecutive occurrences of the preceding character
{,m} Match if the string contains no more than m consecutive occurrences of the preceding

character
| Match any of these strings (an “OR”)
(…) The items in … are treated as a group, match the entire sequence

272 ◾ Information Technology

The ? is a variant, like * or +, but in the case of ?, it will only match the preceding char-
acter 0 or 1 time. This allows you to specify a situation where a character might or might
not be expected. It does not, however, match repeatedly (for that, you would use * or +).
Recall the .tiff/tif example. We could specify a regular expression to match either tiff or tif
as follows: tiff?. In this case, the first three characters, tif, are expected literally. However,
the last character, f, may appear 0 or 1 time. Although this regular expression does not
satisfy strings such as TIFF (i.e., all upper-case letters), it is a start. Now, with ?, *, and +,
we can control how often we expect to see a character, 0 or 1 time, 0 or more times, 1 or
more times.

Unlike * and +, the ? places a limit on the number of times we expect to see a character.
Therefore, with ?, we could actually enumerate all of the combinations that we expect to
match against. For instance, 0?1? would match against only four possible strings: 0, 1, 01,
and the empty string. In the case of 0*1*, there are an infinite number of strings that could
match since “0 or more” has no upper limit.

Note that both the * and ? are used in Linux commands like ls as wildcards. In Bash and
Wildcards, we will learn that in such commands, their meaning differs from the meanings
presented here.

The . (period) can be used to match any single character. For instance, b.t could match
any of these strings bat, bet, bit, but, bot, bbt, b2t. It would not match bt, boot, or b123t.
The . metacharacter can be combined with *, +, and ?. For instance, b.*t will match any
string that starts with a b, is followed by any number of other characters (including no
characters) and ending with t. So, b.*t matches bat, bet, bit, but, bot, bbt, b2t, bt, boot,
b123t, and so forth. The expression b.+t is the same except that there must be at least one
character between the b and the t, so it would match all of the same strings except for bt.
The regular expression b.?t would match bt or anything that b.t matches. The question
mark applies to the . (period). Therefore, . is applied 0 or 1 time; so this gives us a regular
expression to match either bt or b.t. It would not match any string that contains more than
one character between the b and the t.

The next metacharacter is used to specify a collection or a list. It starts with [, contains a
list, and ends with]. For example, [aeiou] or [123]. The idea is that such a pattern will match
any string that contains any one of the items in the list. We could, for instance, specify
b[aeiou]t, which would match any of bat, bet, bit, bot, and but. Or, we could use the [] to
indicate upper versus lower case spelling. For instance, [tT] would match either a lower
case t or an upper case T.

Now we have the tools needed to match any form of tif/tiff. The following regular expres-
sion will match any form of tif or tiff using any combination of lower- and upper-case let-
ters: [tT][iI][fF][fF]?. The ? only applies to the fourth [] list. Thus, it will match either an
upper- or lower-case t, followed by an upper- or lower-case i, followed by an upper- or
lower-case f, followed by zero or one lower- or upper-case f.

The list specified in the brackets does not have to be a completely enumerated list. It
could instead be a range such as the letters a through g. A range is represented by the first
character in the range, a hyphen (-), and the last character in the range. Permissible char-
acters for ranges are digits, lower-case letters, and upper-case letters. For instance, [0-9]

regular expressions ◾ 273

would mean any digit, whereas [a-g] would mean any lower-case letter from a to g. That
is, [a-g] is equivalent to [abcdefg]. You can combine an enumerated list of characters and a
range, for instance [b-df-hj-np-tv-z] would be the list of lower-case consonants.

As an alternative to an enumerated list or range, you can also use the double brackets
and a class. For instance, instead of [a-zA-Z], you could use [[:alpha:]], which represents the
class of alphabetic characters. There are 12 standard classes available in the Linux regular
expression set, as shown in Table 10.2. A nonstandard class is [[:word:]], which consists of
all of the alphanumeric characters plus the underscore.

The list, as specified using [] or [[]], will match any single character if found in the
string. If you wanted to match some combination of characters in a range, you could add *,
+, ., or ? after the brackets. For instance, [a-z]+ means one or more lower-case letters.

Imagine that you wanted to match someone’s name. We do not know if the first letter
of the person’s name will be capitalized but we expect all of the remaining letters to be
in lower case. To match the first letter, we would use [A-Za-z]. That is, we expect a letter,
whether upper or lower case. We then expect some number of lower-case letters, which
would be [a-z]+. Our regular expression is then [A-Za-z][a-z]+. Should we use * instead of
+ for the lower-case letters? That depends on whether we expect someone’s name to be a
single letter. Since we expect a name and not an initial, we usually would think that a name
would be multiple letters. However, we could also use [A-Za-z][a-z]* if we think a name
might be say J.

What would [A-Za-z0-9]* match? This expression will match zero or more instances
of any letter or digit. This includes the empty string (as * includes zero occurrences), any
single letter (upper or lower case) or digit, or any combination of letters and digits. So each
of these would match:

abc ABC aBc a12 1B2 12c 123456789 aaaaaa 1a2b3C4D5e

So what would not match? Any string that contained characters other than the letters and
digits. For instance, a_b_c, 123!, a b c (i.e., letters and blank spaces), and a1#2B%3c*fg45.

TaBLe 10.2 Regular Expression Classes

Class Meaning
[[:alnum:]] Alphanumeric—alphabetic character (letter) or digit
[[:alpha:]] Alphabetic—letter (upper or lower case)
[[:blank:]] Space or tab
[[:cntrl:]] Any control character
[[:digit:]] Digit
[[:graph:]] Any visible character
[[:lower:]] Lower-case letter
[[:print:]] Any visible character plus the space
[[:punct:]] Any punctuation character
[[:space:]] Any whitespace (tab, return key, space, backspace)
[[:upper:]] Upper-case letter
[[:xdigit:]] Hexadecimal digit

274 ◾ Information Technology

Notice with the [] that we can control what characters can match, but not the order that
they should appear. If we, for instance, require that an ‘a’ precede a ‘b’, we would have to
write them in sequence using two sets of brackets, such as [aA][bB] to indicate an upper- or
lower-case ‘a’ followed by an upper- or lower-case ‘b’. We could also allow any number of
them using [aA]+[bB]+ (or use * instead of +). This can become complicated if we want to
enforce some combination followed by another combination. Consider that we want to cre-
ate a regular expression to match any string of letters such that there is some consonant(s)
followed by some vowel(s) followed by consonant(s). We could use the following regular
expression:

[b-df-hj-np-tv-z]+[aeiou]+[b-df-hj-np-tv-z]+

Can we enforce a greater control on “1 or more”? The * and + are fine when we do not
care about how many instances might occur, but we might want to have a restriction. For
instance, there must be no more than five, or there must be at least two. Could we accom-
plish this using some combination of the ? metacharacter? For instance, to indicate “no
more than five”, could we use “?????”? Unfortunately, we cannot combine question marks
in this way. The first question mark applies to a character, but the rest of the question marks
apply to the preceding question mark.

We could, however, place a character (the period for “any character”) followed by a ques-
tion, and repeat this five times as in:

.?.?.?.?.?

This regular expression applies each question mark to a period. And since the question
mark means “0 or 1”, this is the same as saying any one, two, three, four, or five characters.
But how do we force the characters to be the same character? Instead, what about [[:visib
le:]]?[[:visible:]]?[[:visible:]]?[[:visible:]]?[[:visible:]]? Unfortunately, as with the period, the
character in each [[:visible:]] can be any visible character, but not necessarily the same
character.

Our solution instead is to use another metacharacter, in this case, {n,m}. Here, n and m
are both positive integers with n less than m. This notation states that the preceding char-
acter will match between n and m occurrences. That is, it is saying “match at least n but no
more than m of the preceding character.” You can omit either bound to enforce “at least”
and “no more than”, or you can specify a single value to enforce “exactly”.

For instance, 0{1,5}1* would mean “between one and five 0s followed by any number of
1s whereas [01]{1,5} means “between one and five combinations of 0 and 1”. In this latter
case, we would not care what order the 0s and 1s occur in. Therefore, this latter expression
will match 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, up to five total characters.

We would use {2,} to indicate “at least two” and {,5} to indicate “no more than five”. With
the use of {n,m}, we can now restrict the number of matches to a finite number. Consider
0{5}1{5}. This would match only 0000011111. However, [01]{5} would match any combina-
tion of five 0s and 1s.

regular expressions ◾ 275

It should be noted that the use of { } is only available when you are using the extended
regular expression set. The program grep, by default, does not use the extended set of
metacharacters. To use { } in grep, you would have to use extended grep. This is either egrep
or grep –E. We will see this in more detail in The grep Program.

Let us combine all of the ideas we have seen to this point to write a regular expression
that will match a social security number. The social security number is of the form ###-##-
####, where each # is a digit. A regular expression to match such a number is given below:

[0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]

This regular expression requires a digit, a digit, a digit, a hyphen, a digit, a digit, a hyphen,
a digit, a digit, a digit, and a digit. Using {n}, we can shorten the expression to:

[0-9]{3}-[0-9]{2}-[0-9]{4}

What would a phone number look like? That depends on whether we want an expression
that will match a phone number with an area code, without an area code, or one that could
match a phone number whether there is an area code or not. We will hold off on answering
this question for now and revisit it at the end of this section.

Let us try something else. How would we match an IP address? An IP address is of the
form 0-255.0-255.0-255.0-255. The following regular expression is not correct. Can you
figure out why?

[0-255].[0-255].[0-255].[0-255]

The IP address regular expression has two flaws; the first one might be obvious, the second
is a bit more obscure. What does [0-255] mean? In a regular expression, you use the [] to
indicate a list of choices. Choices can either be an enumerated list, such as [abc], or a range,
such as [a-c]. The bracketed lists for this regular expression contain both a range and an
enumerated list. First, there is the range 0–2, which will match 0, 1, or 2. Second, there is
an enumerated list 5, 5. Thus, each of the bracketed items will match any of 0, 1, 2, 5, or 5.
So the above regular expression would match 0.1.2.5 or 5.5.5.5 or 0.5.1.2. What it would not
match are either 0.1.2.3 (no. 3 in the brackets) or 10.11.12.13 (all of the brackets indicate a
digit, not a multicharacter value such as 13).

So how do we specify the proper enumerated list? Could we enumerate every number
from 0 to 255? Not easily, and we would not want to, the list would contain 256 numbers!
How about the following: [0-9]{1,3}. This expression can match any single digit from 0 to
9, any two digit numbers from 00 to 99, and any three-digit numbers from 000 to 999.
Unfortunately, we do not have an easy way to limit the three-digit numbers to being 255
or less, so this would match a string such as 299.388.477.566. But for now, we will use this
notation. So, let us rewrite our expression as

[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}

276 ◾ Information Technology

The second flaw in our original regular expression is the use of the . (period). Recall that
. means “match any one character”. If we use a period in our regular expression, it could
match anything. So, our new regular expression could match 1.2.3.4 or 10.20.30.40 or
100.101.201.225, but it could also match 1a2b3c4 or 1122334 or 1-2-3-4, and many other
sequences that are not IP addresses. Our problem is that we do not want the period to be
considered a metacharacter; we want the period to be treated literally.

How do we specify a literal character? For most characters, to treat it literally, we just
list it. For instance, abc is considered the literal string “abc”. But if the character itself is a
metacharacter, we have to do something special to it. There are two possibilities, the first is
to place it in []. This is fine, although it is not common to place a single character in [], so
[0-9]{1,3}[.][0-9]{1,3}[.][0-9]{1,3}[.][0-9]{1,3} would work. Instead, when we want to specify
a character that so happens to be one of the metacharacters, we have to “escape” its mean-
ing. This is done by preceding the character with a \, as in \. or \+ or \{ or \$. So, our final
answer (for now) is

[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}

We will try to fix the flaw that permits three-digit numbers greater than 255 in a little
while.

There are other uses of the escape character, these are called escape sequences. Table 10.3
provides a listing of common escape sequences. For instance, if you want to find four con-
secutive white spaces, you might use \s{4}. Or if you want to match any sequence of 1 to 10
non-digits, you could specify \D{1,10}.

The [] has another usage, although it can be a challenge to apply correctly. If you place
a ^ before the enumerated list in the [], the list is now interpreted as meaning “match if
none of these characters are present”. You might use [̂ 0-9]* to match against a string that
contains no digits or [̂ A-Z]* to match a string that contains no upper-case letters. The
expression [A-Z][a-z]+[̂ A-Z]* states that a string is expected to have an upper-case let-
ter, some number of lower-case letters but no additional upper-case letters. This might be
the case if we expect a person’s name, as we would not expect, for instance, to see a name
spelled as ZaPPa.

Why is [̂ …] challenging to use? To explain this, we must first reexamine what regular
expressions match. Remember that a regular expression is a string used to match against

TaBLe 10.3 Common Escape Sequences

\d Match any digit
\D Match any non-digit
\s Match any white space
\S Match any non-white space
\w Match any letter (a-z, A-Z) or digit
\W Match any non-letter/non-digit
\b Match a word boundary
\B Match any non-word boundary

regular expressions ◾ 277

another string. In fact, what the regular expression will match is a substring of a larger
string. A substring is merely a portion of a string. For instance, if the string is “Frank
Zappa”, any of the following would be considered a substring: “Frank”, “ank”, “Zappa”, “k
Z”, “ppa”, “Frank Zappa”, and even “” (the empty string).

Consider the expression 0{1,2}[a-zA-Z0-9]+. This regular expression will match any
string that consists of one or two 0s followed by any combination of letters and digits. Now
consider the following string:

0000abcd0000

As we have defined regular expressions earlier, this string should not match the expres-
sion because it does not have “one or two 0s”, it literally has four 0s. However, the expres-
sion is only looking to match any substring of the string that has “one or two 0s followed
by letters and digits”. Since the string contains “0a”, it matches. The regular expression does
not need to match every character in the string; it only has to find some substring that does
match.

Returning to the usage of [̂ …], let us look at an example. Consider [̂ A-Z]+. The mean-
ing of this expression seems clear: match anything that does not contain capital letters.
Now consider a string abCDefg. It would appear that the regular expression should not
match this string. But the regular expression in fact says “do not match upper-case letters”
but the string also contains lower-case letters. Therefore, the regular expression provided
will match ab and efg from the string, so the string is found to match. What use is [̂ A-
Z]+ then if it matches a string that contains upper-case letters? The one type of string this
regular expression will not match is any string that only consists of upper-case letters. So,
although it matches abCDefg, it would not match ABCDEFG. To make full use of [̂ …], we
have to be very careful.

With this in mind, consider 0+1+. This will match 0001, 01111, 01, but it will also match
0101, and 000111aaa because these two strings do contain a sequence that matches 0+1+. So
how can we enforce that the match should only precisely match the expression? For this,
we need two additional metacharacters, ^ and $. The ^, as seen above, can be used inside
of [] to mean “match if these are not found”. But outside of the [], the ^ means to “match
at the start of the string” and $ means to “match at the end of the string”. If our regular
expression is of the form ^expression$, it means to match only if the string is precisely of
this format.

We might want to match any strings that start with numbers. This could be accom-
plished through the regular expression ^[0-9]+. We use + instead of *, because * could
match “none of these”, so it would match strings that do or do not start with digits. We
might want to match any strings that end with a state abbreviation. All state abbreviations
are two upper-case letters, so this would look like [A-Z][A-Z]$, or alternatively [A-Z]{2}$. If
we wanted the state abbreviation to end with a period, we could use [A-Z][A-Z]\.$ and if we
wanted to make the period optional, we could use [A-Z][A-Z]\.?$ Notice that using [A-Z]
[A-Z], we are also matching any two uppercase letters, so for instance AB and ZZ, which
are not legal state abbreviations.

278 ◾ Information Technology

In general, we do not want to use both ^ and $ in an expression because it would overly
restrict matching. To demonstrate the concepts covered so far, let us consider a file con-
taining employee information. The information is, row by row, each employee’s last name,
first name, position, year of hire, office number, and home address.

Let us write a regular expression to find all employees hired in a specific year, say 2010.
Our regular expression could just be 2010. However, just using 2010 could lead to errone-
ous matches because the string 2010 could appear as a person’s office number or as part of
an address (street address, zip code).

What if we want to find employees hired since 2000? A regular expression for this could
be 20[01][0-9]. Again, this could match as part of an office number or address. If we use
^20[01][0-9]$ as our solution, we restrict matches to lines that consist solely of four-digit
numbers between 2000 and 2019. No lines will match because no lines contain only a four-
digit number. We must be more clever than this.

Notice that the year hired follows a last name, first name, and position. We could represent
last name as [A-Z][a-z]+. We could represent first name as [A-Z][a-z]* (assuming that we permit
a letter such as ‘J’ for a first name). We could represent a position as [A-Za-z]+, that is, any com-
bination of letters. Finally, we would expect the year of hire, which in this case should be 20[01]
[0-9]. If each of the pieces of information about the employee is separated by commas, we can
then construct our expression so that each part ends with a comma. See Figure 10.1. Notice that
year of hire, as shown here, includes years in the future (up through 2019).

We could also solve this search problem from the other end of the row. The year hired will
occur before an office number and an address. If we assume an office number will only be
digits, and that an address will be a street address, city, state, and zip code, then to end the
line, we would expect to see 20[01][0-9], [0-9]+, and an address. The address is tricky because
it consists of several different components, a street address, a city, a state abbreviation (two let-
ters), and a zip code. The street address itself might be digits followed by letters and spaces (e.g.,
901 Pine Street) or it might be more involved. For instance, there may be periods appearing in
the address (e.g., 4315 E. Magnolia Road), or it might include digits in the street name (e.g., 50
N. 10th Street). It could also have an apartment number that uses the # symbol (such as 242
Olive Blvd, #6). We could attempt to tackle all of these by placing every potential letter, digit,
symbol, and space in one enumerated list, as in [A-Za-z0-9.#]+. The city name should just be
letters (although it could also include spaces and periods) but we will assume just letters. The
state is a two-letter abbreviation in upper-case letters, and the zip code should be a five-digit
number (although it could also be in the form 12345-6789). Figure 10.2 represents the entire
regular expression that could be used to end a string that starts with a year of hire of at least
2000, but only with a five-digit zip code (we see how to handle the nine-digit zip code below).

Match at the start of the line

Last name First name Position Year of hire
(2000-2019)

[A-Z][a-z]+, [A-Z][a-z]*, [A-Za-z]+, 20[01][0-9]

FIGUre 10.1 Representing “Year Hired Since 2000.”

regular expressions ◾ 279

The last metacharacters are | and (). The use of these metacharacters is to provide
sequences of characters where any single sequence can match. That is, we can enumerate
a list of OR items. Unlike the enumerated list in [], here, we are enumerating sequences.
Consider that we want to match any of these three 2-letter abbreviations: IN, KY, OH. If
we used [IKO][NYH], it would match IN, KY, and OH, but it would also match IY, IH, KN,
KH, ON, and OY. We enumerate sequences inside () and places | between the options. So,
(IN|KY|OH) literally will only match one of these three sequences.

With the use of () and |, we can provide an expression to match both five-digit and nine-
digit zip codes. The five-digit expression is [0-9]{5}. The nine-digit expression is [0-9]{5}-
[0-9]{4}. We combine them using | and place them both in (). This gives us ([0-9]{5}|[0-9]
{5}-[0-9]{4}).

Similarly, we can use () and | to solve the IP address problem from earlier. Recall that
our solution using [0-9]{1,3} would match three-digit numbers greater than 255, and thus
would match things that were not IP addresses. We would not want to enumerate all 256
possible values, as in (0|1|2|3|…|254|255), but we could use () and | in another way. Consider
that [0-9] would match any one-digit number, and IP addresses can include any one-digit
number. We could also use [0-9][0-9] because any sequence of 00-99 is a legitimate IP
address, although we would not typically use a leading zero. So, we could simplify this as
[0-9]{1,2}. However, this does not include the sequence 100–255. We could express 100–255
as several different possibilities:

1[0-9][0-9]—this covers 100–199
2[0-4][0-9]—this covers 200–249
25[0-5]—this covers 250–255

Figure 10.3 puts these options together into one lengthy regular expression (blank spaces
are inserted around the “|” symbols to make it slightly more readable).

Year of hire
(2000–2019)

Office
number

Street number
(number, name, apt)

City State
(2 letters)

Zip code
(5 digits)

Match at the end of the line

20[01][0-9], [0-9]+, [A-Za-z0-9#.]+, [A-Z][a-z]+, [A-Z][A-Z], [0-9] {5} $

FIGUre 10.2 A possible regular expression to match a street address.

�ree IP addresses
followed by periods
(repeat 3 times)

�e fourth octet without
an ending period

(([0-9]{1,2} | 1[0-9][0-9] | 2[0-4][0-9] | 25[0-5]) \.) {3} ([0-9]{1,2} | 1[0-9][0-9] | 2[0-4][0-9] | 25[0-9])

IP of 0-9
or 10-99

IP of
100-199

IP of
200-249

IP of
250-255

A period

FIGUre 10.3 A solution to match legal IP addresses.

280 ◾ Information Technology

Let us wrap up this section with a number of examples. First, we will describe some
strings that we want to match and come up with the regular expressions to match them.
Second, we will have some regular expressions and try to explain what they match. Assume
that we have a text file that lists student information of the following form:

Student ID (a 16 digit number), last name, first name, major,
minor, address.

Majors and minors will be three-letter codes (e.g., CSC, CIT, BIS, MIN) all in capital let-
ters. A minor is required, but minors can include three blank spaces to indicate “no minor
selected”. The address will be street address, city, state, zip code.

We want to find all students who have majors of either computer science (CSC) or com-
puter information technology (CIT). The obvious answer is to just search for (CSC|CIT).
However, this does not differentiate between major and minor, we only want majors. Notice
that the major follows the 16-digit number and the name. So, for instance, we might expect
to see 0123456789012345, Zappa, Frank, CSC, … We could then write the regular expres-
sion starting at the beginning of the line:

^[0-9]{16}, [A-Z][a-z]+, [A-Z][a-z]+, (CSC|CIT)

We could shorten this. Since the minor is always preceded by a major, which is a capital-
ized three-letter block, what we expect to see before the major, but not the minor, is a first
name, which is not fully capitalized. So we could reduce the expression as follows:

[A-Z][a-z]+, (CSC|CIT)

Here, we are requiring a sequence of an upper-case letter followed by lower-case letters
(a name) followed by a comma followed by one of CSC or CIT. If the CSC or CIT matched
the minor, the string preceding it would not include lower-case letters, and if the upper-
case letter followed by lower-case letters matched a last name or street address, it would not
be followed by either CSC or CIT.

We want to find all students who live in apartments. We make the assumption that
apartments are listed in the address portion using either apt, apt., #, or apartment. We can
use [.]? (or \.?) to indicate that the period after apt is optional. We can enumerate these as
follows:

([Aa]pt[.]?|[Aa]partment|#)

We want to find all students who live in either Kentucky or Ohio. We will assume the state
portion of the address is abbreviated. That would allow us to simply specify:

(KY|OH)

regular expressions ◾ 281

We would not expect KY or OH to appear anywhere else in an address. However, it is pos-
sible that a major or minor might use KY or OH as part of the three-letter abbreviation.
If we wanted to play safe about this, we would assume that the state appears immediately
before a zip code, which ends the string. For this, we could specify:

(KY|OH), [0-9]{5}$

or if we believe there will be a five-digit zip code and a four-digit extension, we could use:

(KY|OH), ([0-9]{5}|[0-9]{5}-[0-9]{4})$

Alternatively, since the state abbreviation will appear after a blank, and if it ends with a
period, we could add the blank and period so that three-letter majors and minors will not
match:

(KY\.| OH\.)

If we had a major, say SKY or OHM, it would not match these state abbreviations because
of the space and period that surround the two letters.

Spam FilterS and regular expreSSionS

so you want to build a spam filter to filter out unwanted e-mail. It is a simple task to write a
program that will search through an e-mail (text file) for certain words: “cash”, “act Now!”,
“Lose Weight”, “Viagra”, “Work at home”, “You’ve been selected”, and so forth. But spam-
mers have fought back by attempting to disguise keywords.

consider a spam e-mail advertising cheap and available Viagra tablets. The e-mail may
attempt to disguise the word Viagra under a number of different forms: V1agra, V.i.a.g.r.a,
Vi@ gra, V!agra, ViaseXYgra, and so forth. But regular expressions can come to our rescue here.

If we are only worried about letter replacements, we could try to enumerate all possible
replacements in our regular expression, as in

[Vv][iI!][Aa@][gG9][Rr][aA@]

What about a version where, rather than a common replacement (for instance, 3 for ‘e’ or 1
or ! for ‘i’), the replacement character is unexpected? For instance, V##gra or Viag^^? here,
we have to be more careful with our regular expression. We could, for instance, try [Vv].{2}
gra, [Vv]iag.{2}, and other variants, but now we have to be careful not to block legitimate
words. For instance, [Vv]ia.{3} could match viable.

What about a version of the word in which additional characters are inserted, like
V.i.a.g.r.a., ViaseXYgra, or Via##gra? To tackle this problem, we can insert the notation .* in
between letters. recall that . means “any character” and * means “0 or more of them”. so,
V.*i.*a.*g.*r.*a.* would match a string that contains the letters ‘V’, ‘i’, ‘a’, ‘g’, ‘r’, ‘a’ no matter
what might appear between them. Because of the *, we can also match strings where there
is nothing between those letters.

Without regular expressions, spam filters would be far less successful. But, as you can see,
defining the regular expressions for your filter can be challenging!

282 ◾ Information Technology

We want to find all students whose zip codes start with 41. This one is simple:

41[0-9]{3}

However, this could also match part of a student number (for instance, 01234123456789012),
or it is possible that it could match someone’s street address. Since we expect the zip code
to end the string, we can remedy this with

41[0-9]{3}$

Or if we might expect the four-digit extension

(41[0-9]{3}|41[0-9]{3}-[0-9]{4})$

We want to find any student whose ID ends in an even number. We could not just use
[02468] because that would match any string that contains any of those digits anywhere
(in the ID number, in the street address, in the zip code). But student numbers are always
16 digits, so we want only the 16th digit to be one of those numbers.

[0-9]{15}[02468]

We could precede the expression with ^ to ensure that we are only going to match against
student IDs (in the unlikely event that a student’s street address has 16 or more digits in it!)

One final example. We want to find students whose last name is Zappa. This seems
simple:

Zappa

However, what if Zappa appears in the person’s first name or address? Unlikely, but pos-
sible. The last name always appears after the student ID. So we can ensure this matching
the student ID as well: ^[0-9]{16}, Zappa

Let us look at this from the other side. Here are some regular expressions. What will
they match against?

([^O][^H], [0-9]{5}$|[^O][^H], [0-9]{5}-[0-9]{4}$)

We match anything that does not have an OH, followed by a five- or nine-digit number to
end the string. That is, we match any student who is not from OH.

[A-Z]{3},[]{4},

This string will find three upper-case letters followed by a comma followed by four blanks
(the blank after the comma, and then no minor, so three additional blanks), followed by a

regular expressions ◾ 283

comma. We only expect to see three upper-case letters for a major or a minor. So here, we
are looking for students who have a major but no minor.

^0{15}[0-9]

Here, we are looking for a string that starts with 15 zeroes followed by any other digit. If
student ID numbers were assigned in order, this would identify the first 10 students.

Bash aNd WILdcards
Recall from Chapter 9 that the Bash interpreter performs multiple steps when executing an
instruction. Among these steps are a variety of expansions. One of note is filename expan-
sion. If a user specifies a wildcard in the filename (or pathname), Bash unfolds the wildcard
into a list of matching files or directories. This list is then passed along to the program. For
instance, with ls *.txt, the ls command does not perform the unfolding, but instead Bash
unfolds *.txt into the list of all files that match and then provides the entire list to ls. The ls
command, like many Linux commands, can operate on a single item or a list equally.

Unfortunately, the characters used to denote the wildcards in Bash are the same as some
of the regular expression metacharacters. This can lead to confusion especially since most
users learn the wildcards before they learn regular expressions. Since you learned the wild-
cards first, you would probably interpret the * in ls *.txt as “match anything”. Therefore, ls
*.txt would list all files that end with the .txt extension. The idea of collecting matches of
a wildcard is called globbing. Recall that expansion takes place in a Bash command before
the command’s execution. Thus, ls *.txt first requires that the * be unfolded. The unfolding
action causes the Bash interpreter to enumerate all matches. With *.txt, the matches are
all files whose names end with the characters “.txt”. Note that the period here is literally a
period (because the period is not used in Bash as a wildcard). Therefore, the ls command
literally receives a list of all filenames that match the pattern.

As discussed in Metacharacters, the * metacharacter means “match the preceding
character(s) zero or more times.” In the case of ls *.txt, the preceding character is a blank
space. That would be the wrong interpretation. Therefore, as a Linux user or administrator,
you must be able to distinguish the usage of wildcard characters as used in Bash to perform
globbing from how they are used as regular expressions in a program such as grep.

The wildcard characters used in Bash are *, ?, +, @, !, \, [], [̂ …], and [[…]]. Some of
these are included in the regular expression metacharacter set and some are not. We will
examine the usage of the common wildcards in this section. Table 10.4 provides an expla-
nation for each. Note that those marked with an a in the table are wildcards that are only
available if you have set Bash up to use the extended set of pattern matching symbols. As
we will assume this has not been set up in your Bash environment, we will not look at those
symbols although their meanings should be clear.

We finish this section with some examples that use several of the wildcard symbols from
Table 10.4. We will omit the wildcards that are from the extended set. For this example,
assume that we have the following files and subdirectories in the current working direc-
tory. Subdirectories are indicated with a / before their name.

284 ◾ Information Technology

foo foo.txt foo1.txt foo2.dat foo11.txt /foo3 /fox /foreign
/foxr FOO FOO.txt FOO1.dat FOO11.txt foo5?.txt /FOO4

See Table 10.5, which contains each example. The table shows the Linux ls command and
the items from the directory that would be returned.

The Grep proGraM
The grep program searches one or more text files for strings that match a given regular
expression. It prints out the lines where such strings are found. In this way, a user or admin-
istrator can quickly obtain lines from text files that match a desired pattern. We hinted at

TaBLe 10.4 Bash Wildcard Characters

* Matches any string, including the null string
** Matches all files and directories
**/ Matches directories
? Matches any single character (note: does not match 0 characters)
+ Matches one or more occurrences (similar to how it is used in regular expressions)a

@ Matches any one of the listed patternsa

! Matches anything except one of the list patternsa

\ Used to escape the meaning of the given character as with regular expressions, for instance *
means to match against an *

[…] Matches any of the enclosed characters, ranges are permitted when using a hyphen, if the first
character after the [is either a – or ^, it matches any character that is not enclosed in the
brackets

{…} As with brace expansion in Bash, lists can be placed in { } to indicate “collect all”, as in ls {c,h}*
.txt, which would find all txt files starting with a c or h

[[:class:]] As with regular expressions, matches any character in the specified class
a Only available if you have set Bash up to use the extended set of pattern matching symbols.

TaBLe 10.5 Examples

ls Command Items Returned
ls *.txt foo.txt, foo1.txt, foo11.txt, FOO.txt, FOO11.txt, foo5?.txt
ls *.* foo.txt, foo1.txt, foo2.dat, foo11.txt, FOO.txt, FOO1.dat, FOO11.txt, foo5?.txt
ls * Will list all items in the directory
ls foo?.* foo1.txt, foo2.dat
ls foo??.* foo11.txt, foo5?.txt
ls *\?.* foo5?.txt
ls *.{dat,txt} Will list all items in the directory that end with either.txt or.dat
ls foo[0-2].* foo1.txt, foo2.dat
ls *[[:upper:]]*.txt FOO11.txt, FOO.txt
ls *[[:upper:]]* FOO, FOO11.txt, FOO1.dat, FOO.txt,/FOO4
ls *[[:digit:]]* Will list every item that contains a digit
ls foo[[:digit:]].* foo1.txt, foo2.dat (it does not list foo11.txt because we are only seeking 1 digit, and it

does not list foo5?.txt because we do not provide for the ? after the digit and before the
period)

regular expressions ◾ 285

this back at the end of the section on Metacharacters when we looked at regular expressions
as used to identify specific student records in a file. As grep can operate on multiple files
at once, grep returns two things for each match, the file name and the line that contained
the match. With the –n option, you can also obtain the line number for each match. When
you use grep, depending on your regular expression and the strings in the file, the program
could return the entire file if every line matches, a few lines of the file, or no lines at all.

The grep program uses the regular metacharacters as covered in Metacharacters. It does
not include what are called the extended regular expression set, which include {, }, |. However,
grep has an option, grep –E (or the program egrep), which does use the extended set. So, for
the sake of this section, we will use egrep throughout (egrep and grep –E do the same thing).

The grep/egrep program works like this:

grep pattern filename(s)

If you want to use multiple files, you can either use * or ? as noted above in part 2, or you
can list multiple file names separated by spaces. If your pattern includes a blank, you must
enclose the pattern in ‘’ or “” marks. It is a good habit to always use ‘’ or “” in your regular
expressions as a precaution.

In fact, the use of ‘’ is most preferred. This is because the Bash interpreter already
interprets several characters in ways that grep may not. Consider the statement grep !!
filename. This statement seems straightforward, search filename for the characters !!.
Unfortunately though, !! signals to the Bash interpreter that the last instruction should be
recalled. Imagine that instruction was cd ~. Since the Bash interpreter unfolds such items
as !! before executing the instruction, the instruction changes to grep cd ~ filename. Thus,
grep will search filename for the sequence of characters cd ~.

Another example occurs with the $. You might recall that the $ precedes variable names
in Bash. As with !!, the Bash interpreter will replace variables with their values before
executing a command. So the command grep $HOME filename will be replaced with grep
/home/username filename. To get around these problems, single quoting will cause the
Bash interpreter to avoid any unfolding or interpretation. Double quoting will not prevent
this problem because “$HOME” is still converted to the value stored in $HOME.

Grep attempts to match a regular expression to each line of the given file. This is perhaps
not how we initially envisioned the use of regular expressions since we described a regular
expression as matching to strings, not lines. In essence, grep treats each line of a file as a
string, and looks to match the regular expression to any substring of the string. Either the
pattern matches something on that line or it does not. The grep program will not search
each individual string of a file (assuming strings are separated by white space). So, for
instance, if a file had the line:

bat bait beat beet bet bit bite boot bout but

and we used the regular expression b.t, since b.t matches at least one item on the line, grep
returns the entire line. Had we wanted to match each individual string on the line so that

286 ◾ Information Technology

we only received as a response bat, bet, bit, but, we would have to resort to some other
tactic.

One approach to using grep on each individual string of a file rather than each individ-
ual line would be to run a string tokenizer and pipe the results to grep. A string tokenizer is
a program that separates every pair of items that have white space between them. Imagine
that we have such a program called tokenizer. We could do

tokenizer filename | grep b.t

Notice in such a case, grep does not receive a filename(s), but instead the file information
is piped directly to it.

Another thing to keep in mind is the need to use \ to escape the meaning of a character.
We covered this earlier (Metacharacters) when we needed to literally look for a character
in a string where the character was a metacharacter.

For instance, $ means “end of string”, but if we were looking for a $, we would indicate
this as \$. This is true in grep as it is in when specifying regular expressions in other set-
tings. However, there are exceptions to the requirement for escaping the meaning (needing
the \) in grep. For instance, if a hyphen is sought as one of a list of items, it might look like
this: [!@#%&-=<>]. But recall that a hyphen inside of the [] is used to indicate a range; so
instead we would have to specify this list as [!@#%&\-=<>]. The \- is used to indicate that
the hyphen is sought literally, not to be used as a range. But there is an exception to this
requirement. If the hyphen appears at the end of the list, there is no need to use \, so the
list could be [!@#%&=<>-].

There are other instances where the escape character (\) is not needed. One is of a list of
characters that include a $, but the $ is not at the end of the list of characters. If we intend
to use $ to mean “end of string”, grep does not expect to see any characters following it.
Therefore, if we have $[0-9]+ (to indicate a dollar amount), grep treats the $ as a true dollar
sign and not as the “end of string matching” metacharacter. The same is true of ^ if char-
acters precede it. Finally, most characters lose their metacharacter meaning if found inside
of [], so for instance we would not need to do [\$] or [\?] if we were searching for a $ or ?;
instead, we could just use [$] or [?].

Let us examine grep (egrep) now. Figure 10.4 illustrates a portion of the results of applying
the command egrep –n [0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3} /etc/*. The regular expres-
sion here is the one we developed earlier to obtain four numbers separated by dots, that
is, our four octets to obtain IP addresses. This regular expression could potentially return
items that are not IP addresses (such as a match to the string 999.999.999.999), but no such
strings are found in the /etc directory. Figure 10.4 is not the entire result because the grep
instruction returns too many matches. You could pipe the result to less so that you can step
through them all, or you could redirect the output to a file to print out or examine over time.

Notice that in the output we see the filename for each match, the line number of the
match, and the line itself. You might notice that the /etc/Muttrc file does not actually con-
tain IP addresses; instead, the matches are version numbers for the software (mutt-1.4.2.2).
Even if we had used our “correct” regular expression to match IP addresses (from Figure

regular expressions ◾ 287

10.3), we would still have matched the entries in the Muttrc file. We could avoid this by
adding a blank space before the IP address regular expression so that the – before 1.4.2.2
would cause those lines to not match.

The command whose results are shown in Figure 10.4 had to be submitted by root. This
is because many of the /etc files are not readable by an end user. Had an end user submit-
ted the grep command, many of the same items would be returned, but the following error
messages would also be returned:

egrep: securetty: Permission denied
egrep: shadow: Permission denied
egrep: shadow-: Permission denied
egrep: sudoers: Permission denied
egrep: tcsd.conf: Permission denied

among others.
You might also notice a peculiar line before the /etc/resolv.conf lines. It reads “Binary

file /etc/prelink.cache matches”. This is informing us that a binary file contained matches.
However, because we did not want to see any binary output, we are not shown the actual
matches from within that file. We can force grep to output information from binary files
(see Table 10.6). The grep program has a number of useful options; some common ones
are listed in Table 10.6. Of particular note are –c, -E, -i, -n, and –v. We will discuss –v later.

Let us work out some examples. We will use a file of faculty office information to search
for different matches. This file, offices.txt, stores for each faculty, their office location (build-
ing abbreviation and office number), their last name, and then the platform of computer(s)

FIGUre 10.4 A result from grep.

288 ◾ Information Technology

that they use. Each item is separated by a comma and the platform of computer might be
multiple items. The options for platform are PC, Mac, Linux, Unix. Office locations are a
two- or three-letter building designator, such as ST, MEP, or GH, followed by a space, fol-
lowed by an office number, which is a three-digit number.

Write a grep command to find all entries on the third floor of their building (assuming
their three-digit office number will be 3xx).

egrep ‘3[0-9][0-9]’ offices.txt

Write a grep command that will find all entries of faculty who have PC computers.

egrep ‘PC’ offices.txt

What if there is a building with PC as part of its three -letter abbreviation? This would
match. We could try this instead.

egrep ‘PC$’ offices.txt

This expression will only match lines where PC appears at the end of the line. However, if a
faculty member has multiple computers and PC is not listed last, this will miss that person.
Consider that a line will look like this: 123 ABC, Fox, PC, Mac. If we want to match PC, it
should match after a comma and a space. This will avoid matching a building, for instance,
456 PCA or 789 APC. So our new grep command is

egrep ‘, PC’ offices.txt

TaBLe 10.6 grep Options

-a Process a binary file as if it were a text file (this lets you search binary files for specific strings of
binary numbers)

-c Count the number of matches and output the total, do not output any matches found
-d read Used to handle all files of a given directory, use recurse in place of read to read all files of a given

directory, and recursively for all subdirectories
-E Use egrep (allow the extended regular expression set)
-e regex The regular expression is placed after –e rather than where it normally is positioned in the

instruction; this is used to protect the regular expression if it starts with an unusual character, for
instance, the hyphen

-h Suppress the filename from the output
-i Ignore case (e.g., [a-z] would match any letter whether upper or lower case)
-L Output only filenames that have no matches, do not output matches
-m NUM Stop reading a file after NUM matches
-n Output line numbers
-o Only output the portion of the line that matched the regular expression
-R, -r Recursive search (this is the same as –d recurse)
-v Invert the match, that is, print all lines that do not match the given regular expression

regular expressions ◾ 289

Notice that if the faculty member has multiple computers, each is listed as computer, com-
puter, computer, and so forth. Therefore, if we have PC anywhere in the list, it will occur
after a comma and a space. But if PC appears in a building, it will either appear after a digit
and a space (as in 456 PCA) or after an upper-case letter (as in 789 APC).

Write a grep command that will find all entries of faculty who have more than one com-
puter. Is there any way to include a “counter” in the egrep command? In a way, yes. Recall
that we could control the number of matches expected by using {n, m}. But what do we
want to actually count? Let us look at two example lines, a faculty with one computer and
a faculty with more than one.

123 MEP, Newman, Mac
444 GH, Fox, PC, Linux

With one computer, the first entry only has two commas. With two computers, the sec-
ond entry has three commas. This tells us that we should search for lines that have at least
three commas. However, ‘,{3}’ is not an adequate regular expression because that would
only match a line in which there were at least three consecutive commas (such as 456 PCA,
Zappa, PC,,,Mac). We should permit any characters to appear before each comma. In fact,
in looking at our example lines, all we care about is whether there are spaces and letters
before the comma (not digits since the only digits occur at the beginning of the line). Our
regular expression then is

egrep ‘([A-Za-z]+,){3,}’

Notice the use of the (). This is required so that the {3,} applies to the entire regular expres-
sion (rather than just the preceding character, which is the comma). We could actually
simplify this by using the . metacharacter. Recall that . can match any single character. We
can add + to indicate one or more of any type of character. Since all we are interested in are
finding at least three commas, we can use either ‘.+, .+, .+,’ or we could use (.+,){3,}.

Write a grep command that will find all entries of faculty who have either a Linux or
Unix machine. Here, we can use the OR option, as in (Linux|Unix). We could also try to
spell this out using [] options. This would look like this: [L]?[iU]n[ui]x. The two grep com-
mands are:

egrep ‘(Linux|Unix)’ offices.txt
egrep ‘[L]?[iU]n[ui]x’ offices.txt

Write a grep command that will find all entries of faculty who do not have a PC in their
office. The obvious solution would be to use [̂ P][̂ C] in the expression. That is, find a string
that does not have a P followed by C. Sadly, this expression, in egrep would return every
line of the file. Why? Because the regular expression asks for any string that does not have
PC. However, the way that grep works is that it literally compares a line for PC, and if the
line is not exactly PC, then the line contains a match. If the line was 444 GH, Fox, PC,

290 ◾ Information Technology

Linux, this will match because there are characters on the line that are not PC, for instance,
the ‘44’ that starts the string. What we really want to have is a regular expression that reads
“some stuff followed by no P followed by no C followed by some other stuff.” Creating such
a regular expression is challenging. Instead, we could simply use the regular expression PC
and add the –v option to our grep command. That is,

egrep –v ‘PC’ offices.txt

This command looks for every line that matches ‘PC’ and then return the other lines of the
file. Unfortunately, if we have an entry with an office of PCA or APC, that line would not
be returned whether they have a PC or not. Therefore, we adjust the regular expression to
be ‘, PC,’ to avoid matching PC in the building name, so that the egrep command becomes

egrep –v ‘, PC’ offices.txt

oTher Uses oF reGULar eXpressIoNs
With grep/egrep, we are allowed to use the full range of regular expression metacharacters.
But in ls, we are limited to just using the wildcards. What if we wanted to search a directory
(or a collection of directories) for certain files that fit a pattern that could be established by
regular expression but not by wildcards? For instance, what if you wanted to list all files
whose permissions were read-only? Recall from Chapter 6 that permissions are shown
when you use the command ls –l. A read-only file would have permissions that contained
r-- somewhere in the permissions list (we do not really care if the file is set as rwxrwxr-- or
r-------- or some other variant just as long as r-- is somewhere in the permissions).

For ls, * has the meaning of “anything”. So literally we want “anything” followed by
r-- followed by “anything”. Would ls –l *r--* accomplish this task for us? No. Let’s see
how this instruction would work. First, the Bash interpreter unfolds the notation *r-- *.
This means that the Bash interpreter obtains all names in the current directory that has
anything followed by r followed by two hyphens followed by anything. For instance,
foxr--text would match this pattern because of the r-- in the title. Once a list of files is
obtained, they would be passed to the ls command, and a long listing would be displayed.
Unfortunately, we have done this in the wrong order, we want the long listing first, and
then we want to apply *r--*.

Our solution is quite easy. To obtain the long listing first, we do ls –l. We then pipe the
result to egrep. Our instruction then becomes ls –l * | egrep ‘r--’ so that we obtain a long
listing of all items in the current directory, and then we pass that listing (a series of lines)
to egrep, which searches for any lines with r-- and returns only those. This command will
return any line that contains r-- in the long listing. If there is a file called foxr--text, it is
returned even if its permissions do not match r--. How can we avoid this? Well, notice that
permissions are the first thing in the long listing and the filename is the last thing. We can
write a more precise regular expression and include ^ to force it to match at the beginning
of the line.

regular expressions ◾ 291

Permissions start with the file type. For this, we do not care what character we obtain,
but it should only be a single character. We can obtain any single character using the
period. We then expect nine more characters that will be r, w, x, or -. Of these nine char-
acters, we will match on any r--. So we might use a regular expression (r--|[rwx-]{3}). This
will match either r-- precisely or any combination of r, w, x, and – over three characters.
Unfortunately, this will not work for us because it might match rwx or rw- or even ---. We
could instead write this expression as (r--[rwx-]{6}|[rwx-]{3}r--[rwx-]{3}|[rwx-]{6}r--). Here,
we require r-- to be seen somewhere in the expression. Now our command is rather more
elaborate, but it prevents matches where r-- is found in the filename (or in the username or
groupname). Figure 10.5 illustrates the solution; blank spaces are added around the “|” to
help with readability.

You can combine ls –l and egrep to search for a variety of things such as files whose size
is greater than 0, files that are owned by a specific user, or files created this year or this date.
Can you think of a way to obtain the long listing of files whose size is greater than 0 using
ls –l and egrep? This question is asked in this chapter’s review problems (see questions 22
and 23).

There are a variety of other programs that use regular expressions beyond grep. The sed
program is a stream editor. This program can be used to edit the contents of a file without
having to directly manipulate the file through an editor. For instance, imagine that you
want to capitalize the first word of every line of a textfile. You could open the file in vi or
Emacs and do the editing by hand. Or, you could use the sed program. In sed, you specify a
regular expression and a replacement string. The regular expression describes what string
you are searching for. The replacement string is used in place of the string found. You can
specify a replacement literally, or you can apply commands such as “upper case” or “lower
case”. You can remove an item as well.

The sed tool is very useful for making large substitutions quickly to a file. However, it
requires a firm grasp of regular expressions. One simple example is to remove all html tags
from an html file. One could define a regular expression as ‘<.*>’ and replace it with noth-
ing (or a blank space). Since anything in < > marks is an html tag, a single sed command
could find and remove all of them. Another usage for sed is to reformat a file. Consider a
file where information is stored not line by line, but simply with commas to delimit each
item. You could replace commas with tab characters (\t) and/or new line characters (\n).

Obtain
a long
listing of
everything
in this
directory

Starting
at the
beginning
of the line,
acccept any
1 character

Match r--
followed
by any 6
characters
of r, w, x, -

Match any 3
of r, w, x, -,
followed by
r-- followed
by any 3 of
r, w, x, -

Match any 6
of r, w, x, -
followed by
r--

Match any one of these three

1s -1 * | egrep ‘^. (r--[rwx-]{6} | [rwx-]{3}r--[rwx-]{3} | [rwx-]{6}r--)’

FIGUre 10.5 Solution to finding read only files in a directory using ls and egrep.

292 ◾ Information Technology

Another program of note is awk. The name of the program is the initials of the three
programmers who wrote awk. Whereas sed searches for strings to replace, awk searches
for strings to process. With awk, you specify pairs of regular expressions and actions. If
a line matches a regular expression, that line is processed via the actions specified. One
simple example of awk’s use is to output specific elements of a line that matches a regular
expression. In egrep, when a match is found, the entire line is output, but awk allows you to
specify what you want to be output. In this way, awk is somewhat like a database program
and yet it is far more powerful than a database because the matching condition is based on
a regular expression.

Another example of using awk is to do mathematical operations on the matched items.
For instance, imagine that a text file contains payroll information for employees. Among
the information are the employees’ names, hours worked this week, wages, and tax infor-
mation. With awk, we can match all employees who worked overtime and compute the
amount of overtime pay that we will have to pay. Or, we might match every entry and
compute the average number of hours worked.

Regular expressions have been incorporated into both vi and Emacs. When searching
for a string, you can specify a literal string, but you can also specify a regular expression.
As with sed, this allows you to identify specific strings of interest so that you can edit or
format them.

Finally, regular expressions have been incorporated into numerous programming
languages. A form of regular expression was first introduced in the language SNOBOL
(StriNg Oriented and SymBOlic Language) in the early 1960s. However, it was not until
1987 that regular expressions made a significant appearance in a programming language,
and that language was Perl. Perl’s power was primarily centered around defining regular
expressions and storing them in variables. Perl was found to be so useful that it became a
language that was used to support numerous Internet applications including web server
scripting. Since then, regular expressions have been incorporated into newer languages
including PHP, Java, JavaScript, the .Net platform, Python, Ruby, and Visual Basic.

We end this chapter with two very bad regular expression jokes.
“If you have a problem, and you think the solution is using regular expressions, then
you have two problems.”

Q: What did one regular expression say to the other?
A: .*

FUrTher readING
Regular expressions are commonly applied in a number of settings whether you are a Linux
user, a system administrator, a mathematician, a programmer, or even an end user using vi
or Emacs. Books tackle the topic from different perspectives including a theoretical point
of view, an applied point of view, and in support of programming. This list contains texts
that offer practical uses of regular expressions rather than theoretical/mathematical uses.

regular expressions ◾ 293

•	 Friedl, J. Mastering Regular Expressions. Cambridge, MA: O’Reilly, 2006.

•	 Goyvaerts, J. and Levithan, S. Regular Expressions Cookbook. Cambridge MA:
O’Reilly, 2009.

•	 Habibi, M. Java Regular Expressions: Taming the java.util.regex Engine. New York:
Apress, 2003.

•	 Stubblebine, T. Regular Expressions for Perl, Ruby, PHP, Python, C, Java and.NET.
Cambridge, MA: O’Reilly, 2007.

•	 Watt, A. Beginning Regular Expressions (Programmer to Programmer). Hoboken, NJ:
Wrox, 2005.

Two additional texts are useful if you want to delve more deeply into grep, awk, and sed.

•	 Bambenek, J. and Klus, A. Grep Pocket Reference. Massachusetts: O’Reilly, 2009.

•	 Dougherty, D. and Robbins, A. sed & awk. Cambridge, MA: O’Reilly, 1997.

reVIeW TerMs
Terminology introduced in this chapter

Enumerated list Regular expressions

Escape sequence String tokenizer

Filename expansion White space

Globbing Wildcard

Metacharacters

REvIEw QuEstIons

 1. What is a regular expression?

 2. What does a regular expression convey?

 3. What do you match regular expressions against?

 4. What is the difference between a literal character and a metacharacter in a regular
expression?

 5. What is the difference between * and + in a regular expression?

 6. What is the difference between * and ? in a regular expression?

 7. What is the meaning behind a :class: when used in a regular expression? What does
the class alnum represent? What does the class punct represent?

294 ◾ Information Technology

 8. Why does the regular expression [0-255] not mean “any number from 0 to 255”?

 9. How does the regular expression . differ from the regular expression [A-Za-z0-9]?

 10. What does the notation {2,3} mean in a regular expression? What does the notation
{2,} mean in a regular expression?

 11. What does the escape sequence \d mean? What does the escape sequence \D mean?

 12. What does the escape sequence \w mean? What does the escape sequence \W mean?

 13. Does ^… have the same meaning as [̂ …] in a regular expression?

 14. How does * differ between ls and grep?

 15. Why does * differ when used in ls than in grep?

 16. Which of the regular expression metacharacters are also used by the Bash interpreter
as wildcard characters?

 17. What is the difference between grep and egrep?

 18. Provide some examples of how you might use regular expressions as a Linux user.

 19. Provide some examples of how you might use regular expressions as a Linux system
administrator.

REvIEw PRoblEMs

 1. Write a regular expression that will match any number of the letters a, b, c in any
order, and any number of them.

 2. Repeat #1 except that we want the letters to be either upper or lower case.

 3. Repeat #2 except that we want the a’s to be first, the b’s to be second, and the c’s to be last.

 4. Repeat #3 except that we only want to permit between 1 and 3 a’s, 2 and 4 b’s, and any
number of c’s.

 5. Repeat #1 except that we want the letters to be either all upper case or all lower case.

 6. Write a regular expression to match the letter A followed by either B or b followed by
either c, d, e, or f in lower case, followed by any character, followed by one or more
letter G/g (any combination of upper and lower case).

 7. What does the following regular expression match against?

[a-z]+[0-9]*[a-z]*

 8. What does the following regular expression match against? [A-Za-z0-9]+[̂ 0-9]+

regular expressions ◾ 295

 9. What does the following regular expression match against?

^[a-z]*$

 10. Write a regular expression that will match a phone number with area code in () as in
(859) 572-5334 (note the blank space after the close paren).

 11. Repeat #10 except that the regular expression will also match against a phone number
without the area code (it will start with a digit, not a blank space).

 12. Write a Linux ls command that will list all files in the current directory whose name
includes two consecutive a’s as in labaa.txt or aa1.c.

 13. Write a Linux ls command that will list all files that contain a digit somewhere in
their name.

 14. Write a Linux ls command that will list all files whose name starts with the word file,
is followed by a character and ends in .txt, for instance, file1.txt, file2.txt, filea.txt.

 15. Repeat #14 so that file.txt will also be listed, that is, list all files that starts with the
word file followed by 0 or 1 character, followed by .txt.

 16. Write a grep command to find all words in the file dictionary.dat that have two con-
secutive vowels.

 17. Repeat #16 to find all words that have a q (or Q) that is not followed by a u.

 18. Repeat #16 to find all five-letter words that start with the letter c (or C).

 19. Repeat #18 to find all five-letter words.

 20. Using a pipe, combine a Linux ls and grep command to obtain a list of files in the
current directory whose name includes two consecutive vowels (in any combination,
such as ai, eo, uu).

 21. Using a pipe, combine a Linux ls –l and grep command to obtain a list of files in the cur-
rent directory whose permissions have at least three consecutive hyphens. For instance,
it would find a file whose permissions are –rwxr----- or –rwxrwx--- but not –rwxr-xr--.

 22. Using a pipe, combine a Linux ls –l and grep command to obtain a list of files in the
current directory whose file size is 0.

 23. Repeat #22 except that the file size should be greater than 0.

296 ◾ Information Technology

DIsCussIon QuEstIons

 1. As a Linux user, provide some examples of how you might apply regular expressions.
HINT: consider the examples we saw when combining grep with ls commands. Also
consider the use of regular expressions in vi and Emacs searches.

 2. As a system administrator, provide some examples of how you might apply regular
expressions.

 3. Explore various programming languages and create a list of the more popular lan-
guages in use today, and indicate which of those have capabilities of using regular
expressions and which do not.

 4. One of the keys to being a successful system administrator is learning all of the tools
that are available to you. In Linux, for instance, mastering vi and learning how to
use history and command line editing are very useful. As you responded in #2, using
regular expressions is another powerful tool. How do regular expressions compare to
vi, history, command line editing with respect to being a successful system adminis-
trator? Explain.

297

C h a p t e r 11

Processes and Services

The process and process management were introduced in Chapter 4. In this chapter, the
user’s control of the process is covered from the perspectives of a Windows 7 user and a
Red Hat Linux user. Starting processes, monitoring processes, scheduling processes, and
terminating processes are all covered. The chapter then examines the role of the service
as a component of the operating system. Common services are examined followed by
configuring services in Linux. Finally, automating service startup at system initialization
is covered for both Windows 7 and Red Hat Linux.

The learning objectives of this chapter are to

•	 Describe the steps in starting, controlling/managing, and terminating processes in
Windows 7 and Red Hat Linux.

•	 Introduce process scheduling through the Windows Task Scheduler and the Linux
commands at, batch, and crontab.

•	 Discuss the role of the service in support of operating systems.

•	 Describe the process of configuring Linux services.

•	 Discuss how to control service startup in both Windows 7 and Linux.

The process was introduced in Chapter 4. In this chapter, we examine how users and sys-
tem administrators control their processes. We also look at operating system (OS) services,
which are background processes that can also be controlled by the system administrator.

Starting a ProceSS
To run a program, the program must be an executable—that is, the program must be avail-
able in the computer’s machine language. As most programs are written in a high level
language (e.g., Java, C++), the programmer must translate the program from the high level
language version into machine language. This is typically accomplished by using a pro-
gram called a compiler. The compiler provides an executable version of the program as

298 ◾ information technology

its output. You must compile the program for each platform that the program is intended
to run on (e.g., a separate compilation is needed for a Macintosh, a Windows machine, a
Linux machine, a mainframe).*

The first step in starting any process is to have the executable version of the program
available. The executable program is stored somewhere in the file system (usually on hard
disk, but it is also possible to run programs that are stored on optical disk, flash drive, etc.).
When the user wishes to run a program, the OS must locate the executable program. In
most OSs, the user indicates that a program should run through one of several possible
approaches.

First, there may be shortcut icons. The shortcut icon is a graphical representation of a
link to the program (recall soft links in Chapter 5). Double clicking on the shortcut causes
the OS to start the program. Link’s properties include the file’s location in the file system.
In Windows, you can view the properties of a shortcut by right clicking on the shortcut
icon and selecting Properties.

See Figure 11.1 for an example of a shortcut to the program Gimp (an open source
graphical editor). There are several tabs in the shortcut’s properties window. The General

* Some programming languages are interpreted. This means that programs of these languages run in an interpreted envi-
ronment. The interpreter itself is the running program, and it must be an executable. The program that you are entering
is entered in source code. The interpreter’s job is to translate each entered instruction into machine language and execute
it. Ruby, Python, Lisp, and the Bash shell scripting language are all examples of interpreted languages.

FigUre 11.1 Two of the shortcut icon’s property tabs.

Processes and Services ◾ 299

tab contains the location of the shortcut icon itself, whereas the Shortcut tab contains the
location of the file’s executable program in a box called Target. The shortcut itself is stored
in the current user’s Desktop, whereas the executable is located under the Program Files
directory in a Gimp\bin subdirectory. Double clicking on the shortcut icon causes the OS
to launch the program as stored in the Target location. Notice that the Target box is edit-
able so that you can change the location of the executable if desired. The Security tab also
contains useful information; it has the file permissions for the shortcut icon (these permis-
sions should match the permissions of the executable itself).

To start a program, you can also double click on a data file created by that program.
Usually, name extensions (e.g., .docx, .pdf, .mp3) are mapped to applications. Double click-
ing on the data file causes the OS to follow this mapping to the appropriate application soft-
ware. That application software is started and the file is opened in the application software.

Most OSs also provide a program menu. Much like the shortcut icons, the program
menu items store the target location of the executable program. In Windows, right clicking
on the program name in the program menu and selecting properties brings up the same
window as shown in Figure 11.1.

Linux has program menus and shortcut icons, just as in Windows. However, from Linux
(as well as DOS) you can start a process from the command line. In reality, whether starting
a program from a desktop icon, a program menu, or the command line, they all accomplish
the same task in the same way. From the command line, however, you can provide optional
and additional parameters. In most cases, the target location for the shortcut does not include
parameters (although it could if desired). For instance, in Linux, you might specify vi –l
someprogram.lsp. The –l option starts vi in “Lisp mode” to support editing Lisp programs.
Additionally, by providing the filename in the command, vi opens with file already loaded.

Once you have issued your command to start a program, the OS takes over. First, it
must locate the executable code stored in the file system. The directory listing will contain
a pointer to the starting location of the program (disk block). Next, the OS must load the
executable code into swap space, and copy a portion of the executable code (usually the
first few pages) into memory. If memory has no free frames, the OS selects some frames to
remove. The OS generates a page table for the process, and creates a process ID (PID) and
a data structure that describes the process status and inserts it into a queue (ready or wait-
ing, depending on processor load and process priority). The processor will eventually get to
the process and begin executing it. This may be immediate or may take a few milliseconds
depending on what other processes are being executed at the time.

In Linux (and Unix), processes are either parent processes or child processes (or both).
A process that starts another process is known as the parent process. A process started by
another process is known as a child process. As an example, if you are in a terminal win-
dow and you enter a command to start a process, say vi, then the terminal window process
is the parent, and the process started, vi in this case, is the child. In Linux, only process
1, the process created when the system boots, is not a child process. All other process are
child processes but may also be parent processes. The sidebar on the next page and the
sidebar in Process Execution provide more detail on child and parent processes, and how
they relate to each other.

300 ◾ information technology

In Windows, processes are not thought of as parents and children, although there may
be a relationship if one process spawns another. In such a case, the spawned process is
in the original process’s process tree. We will use this to control how to kill off processes
(covered later in this chapter).

ProceSS execUtion
During execution, the user is largely uninvolved with controlling the process’ execution.
The user can suspend a process, kill a process, move a process from foreground to back-
ground (or background to foreground), and change the process’ priority. Otherwise, the
process’ execution is in the hands (or control) of the OS.

You might recall from Chapter 4 that a foreground process is one that can receive
interaction with the user. The foreground actually represents two different notions. First,
the foreground process is the process that is receiving interaction with the user. In both
Windows and the graphical user interface (GUI) of a Linux OS, the foreground process is
the process whose window is “on top” of other processes. This window is sometimes noted
by having a different colored title bar. In Windows 7, you can tell the difference because the
tab in the task bar for the process is somewhat illuminated, and the process’ window itself
has a red “X” in the upper right hand corner. Figure 11.2 compares the foreground versus
background processes showing both the task bar and the windows (look in the upper right-
hand corner of the Word document).

The other notion of foreground processes is more accurate. The foreground processes are
those that are in the ready queue. That is, the foreground processes are those that the CPU
is multitasking through. The background processes then are those that are of low enough

Parents, Children, OrPhans, and ZOmbies

as described in chapter 4, there are processes and threads. However, we can also classify
these entities under additional names. a process or thread may spawn another process or
thread. the child is commonly a copy of the parent in that it is the same process, but it has
its own data and its own goals. the parent and child may share resources, or the parent may
limit the child’s resources. the parent will spawn a child to have the child perform some sub-
task while the parent monitors the child. in fact, the parent may spawn numerous children
and wait for them to finish their tasks, consolidating their efforts in the end.

as an example, the apache webserver starts as a single parent process. it spawns children,
each of which is tasked with handling incoming HttP requests. if the parent finds that all of
the children become busy with requests, it can spawn more children. alternatively, if some
children become idle, it may kill those children off.

in Unix and Linux, an orphan process is a child that still exists even after its parent has been
killed. this may be a mistake, or it may be by design. Whichever is the case, an orphaned
process is immediately adopted by a special process called init (a system process).

on the other hand, a child that has completed its task and has no reason to still exist
may become a zombie process. in this case, the process is defunct—it no longer executes.
However, because the parent has yet to obtain its results, the process remains in the process
table until the parent can read the child’s exit status.

Processes and Services ◾ 301

priority that they wait until the CPU is freed of foreground processes before the CPU exe-
cutes them. Here, we will primarily concentrate on the former notion of foreground.

To move a background process to the foreground in a GUI, select its tab, or if the win-
dow is visible on your desktop, click in the window. To move a foreground process to the
background, click on the minimize button in its window, or select another process to move
to the foreground.

Now, consider running multiple processes in a terminal window in Linux rather than
in the GUI. Since you are using the terminal window, there are no tabs to select; there is
no way to minimize a process. This would seem to indicate that in a terminal window, you
can only run one process at a time. This, however, is fortunately not the case. The idea of
foreground and background in a terminal window is controlled by a few simple operations.

First, you can launch a process in the foreground by just entering the command’s name,
as we have seen throughout the textbook. For instance, vi <enter> or grep … <enter> or
top <enter> all launch the given program into the foreground for this terminal window.
To start a process in the background, issue the command followed by an ampersand (&).
For instance, if you feel that your grep command might take a lot of system resources and
so you do not want it to interfere with the performance of the system, you might issue it as
grep … & <enter>. The & forces the process to run in the background.

You can also force a process to switch from foreground to background or background to
foreground. The commands are fg and bg, respectively. However, if a process is currently
running a terminal window, you may not have access to the command line in order to
issue the fg or bg command. To gain access to the command line prompt while a process
is running in that window, type control+z. This suspends the running process and returns
control of the shell to you.

For example, you issue the command top (top is explored in the next section). This is
an interactive program. It fills the window with a display and updates itself so that you do
not have access to the command line. Now, imagine that you press control+z. At this point,
you would see:

[1]+ Stopped top

Foreground
process
in desktop

Foreground
process in
taskbar

FigUre 11.2 Foreground versus background in Windows 7.

302 ◾ information technology

This is telling you that job 1, top, is in a stopped state. At the command line, if you type jobs,
you will see a list of all running and suspended jobs. If there is only one job, typing fg will
resume that job in the foreground and typing bg will resume that job in the background.

Imagine that when you typed jobs, you instead saw the following:

> jobs
[1]– Stopped top
[2]+ Stopped vi

Here, there are two suspended jobs. If you type fg (or bg), the job selected is the one with
the +, which indicates the most recently executing job. However, with the two numbers,
you can also specify which job to move to the foreground or background by using fg n or
bg n, where n is the job number. Both of these processes are interactive, so it makes little
sense to move either to the background. However, you could easily resume one, suspend it,
resume the other, suspend it, and resume the first, if for instance you were editing a docu-
ment but wanted to, from time to time, see how the system was performing.

Consider, as another example, that you have two time-intensive jobs, and an editing job.
You issue a find command that will search the entire file system, and a grep process that
will have to search thousands of files. Both could take seconds or minutes. So you also want
to edit a document in vi. You issue the following three commands:

> find …
 control+z
> bg 1
> egrep …
 control+z
> bg 2
> vi

Now you are editing in vi while both find and egrep run in the background. The steps here
accomplish your task, but you could also more simply enter

> find … &
> egrep … &
> vi

Note that later in this chapter, we will examine another way to control a process—through
its PID. The job number as used here is a different value. You obtain job numbers through
the jobs command. You obtain PIDs through the ps or top command (covered in the next
section).

In Linux, you can control a process’ priority using a command called nice. The nice
command refers to a process’ niceness. Niceness, in Linux, is defined as how nice a process
is toward other processes. The nicer a process is, the more it is willing to give up control of
the CPU for other processes. In other words, a nicer process has a lower priority than a less

Processes and Services ◾ 303

nice process. The nice value ranges from –20 (least nice, or highest priority) to +19 (most
nice, or lowest priority).

The nice command is issued when you launch a process from the command line, using
the following format:

nice process-name –n value

This executes process-name establishing its initial nice value to value. If you do not issue
a command using nice, it is given the default nice value of +10. Once a process is running,
you can change its nice value using the exact same command.

For instance, if we launch some process foo issuing the command

nice foo –n 0

we can later adjust foo by issuing the command

nice foo –n 19

If you issue the nice command with no process or value, nice responds with the default
nice value.

ProceSS StatUS
A process’ status is information about the process. It will include its state, the resources
granted to it, and its PID. Both Windows and Linux allow you to investigate your pro-
cesses. You can find, for instance, how much CPU time each process uses, how busy your
processor is, and how much main memory and virtual memory are currently in use. You
can also control your process’ priority, adjusting the time the CPU will focus on the pro-
cess during multitasking. Here, we look at the approaches used to probe the processor for
process information.

FOrk, exeC, PrOCess

in Linux, we use terms such as Fork and exec. What do these mean? these are programs used
to start child processes, that is, a process will call upon one of these programs when it must
generate a child process. the difference is in how the commands react.

the fork command duplicates the parent and spawns the new process as a child. the child
has a unique PiD, has a parent PiD of its parent, and its own resources including cPU time.
it obtains its own memory, copying the parent’s memory for its own initially. the child also
has access to files opened by the parent. once the fork command has generated the child,
the parent can either continue executing, or enter a waiting state. in the latter case, the parent
waits until the child (or children) terminate before resuming.

the exec command is similar to the fork except that the spawned child takes the place of
the parent. in this case, the child takes on the parent’s PiD and all resources. the parent is
terminated when the child takes over since the two processes cannot share the same PiD.

304 ◾ information technology

In Windows, system performance and process status information is all available through
the Windows Task Manager. The typical view is to look at the running applications (as
opposed to the processes themselves). In Figure 11.3, we see that there are seven user appli-
cations currently running but 74 total processes (many of the processes are either system
processes or were launched in support of the user applications). The CPU usage is 0% at the
moment and physical memory is 28% (i.e., only 28% of memory is being used).

Under the Applications tab, there is little you can do other than start a new process,
kill a process (End Task), or force the OS to switch from one process to another. In fact,
by using “Switch To”, you are merely moving a process from the background to the fore-
ground while the current foreground process is moved to the background. If you select
New Task…, a pop-up window appears. In this window, you enter the name of the com-
mand you wish to execute. The command must include the full path to the executable file,
for instance “C:\Program Files\Internet Explorer\iexplore.exe”. If you execute a process in
this way, the process executes under administrator privileges.

The most important use of the Applications tab of the task manager is to kill a task that
has stopped responding. Windows uses the expression “stopped responding” as a polite
way to say that a process is deadlocked or otherwise has died but the OS cannot kill it off
itself. To kill the process, highlight it in the list of processes and select End Task. If the
application has unsaved data, you will be asked if you wish to save the data first.

The Processes tab provides far greater information than the applications tab. First, all
of the processes are listed. Second, you see each process’ current CPU and memory usage.
You also see who owns the process (who started it). In Windows, you will commonly see
one of four users: SYSTEM, LOCAL SERVICE, NETWORK SERVICE, or your own user

FigUre 11.3 Windows Task Manager.

Processes and Services ◾ 305

name. The first three indicate that either the OS started the process or that the process was
spawned in support of other software (see Figure 11.4).

If you select any of the processes in the Processes tab, you can then right click on it
and set the process’ priority (raise or lower it) and affinity (which processors or cores are
allowed to run the process). Priorities are limited to one of six values: low, below normal,
normal, above normal, high, and real time. The default for a process is normal. Real time
signifies that the process is so important that it must complete its task as it is presented,
that is, that it should never be postponed. You can also end the process, end the process
as well as all processes that it may have spawned (end process tree), debug the process,
or bring up the process’ properties. An example process properties window is shown in
Figure 11.5. Here, you can see general information (type of file, description, location in the
file system, size), change the process’ security, obtain details about the process, or find out
the process’ compatibility.

The Services tab of the Task Manager is similar to the Processes tab except that it lists
only services. The services are listed by PID, description, status, and group. If you click on
any service, you can start or stop it. You can also obtain a list of all system services. We
will explore services in detail in Services, Configuring Services, and Establishing Services
at Boot Time.

The next two tabs of the Task Manager, Performance and Networking, provide system-
specific information about resource utilization. Performance specifically covers CPU
usage, main memory usage, virtual memory usage, and the current number of threads,
processes, and handles running. A handle is a type of resource and might include open
files, variables in memory, and pipe operations. Essentially, a handle is a pointer in a table

FigUre 11.4 Processes in the Windows Task Manager.

306 ◾ information technology

to the actual entity that the handle represents. The Networking tab displays the current
wireless and LAN connection usage (if any).

From the Performance tab, there is also a button to bring up Resource Monitor, which
provides more details on CPU, Memory, Disk, and Network usage. Figure 11.6 displays
both the Performance tab and the Resource Monitor window, displaying overall resource
usage (notice the Resource Monitor has other tabs to isolate the usage of just CPU, mem-
ory, disk, or network). The final tab, Users, displays all users who are running processes.
Typically, this will just be yourself, but it can show you if anyone else has remotely con-
nected to your machine and is running any processes.

Using the resource monitor, you can select specific processes. This highlights their usage
in the bottom-left portion of the window. In Figure 11.6, for instance, both firefox.exe
(Mozilla Firefox web browser) and WINWORD.EXE (Microsoft Word) are highlighted
and their memory usage is being displayed. Additional information is provided in this fil-
ter window, for instance, the amount of working memory, amount of memory in use that
can be shared with other processes, and the amount of memory in use that is private to this
process. Also being displayed in this filter window is the number of hard faults (page faults)
that are occurring per second. You can similarly select the Disk or Network utilization for
the selected processes.

FigUre 11.5 Process properties for svchost.exe.

Processes and Services ◾ 307

There are a number of different tools for obtaining performance information in Linux.
The more traditional means of obtaining information about a process is through the ps
(process status) program, executed at the command line. The ps command has a number of
options that might be confusing, so we will look at the more common options here.

Using ps by itself shows you the active processes in the current window owned by you.
This may not be of sufficient value to a user as there are many processes that would not be
shown to you, those owned by other users (including root), and those started outside of the
given window. Table 11.1 provides a list of the more common options. Notice that in many
cases, you do not use the – symbol when providing the options in the ps command. This is
a departure from Unix where the – symbol was required.

FigUre 11.6 Performance tab and resource monitor window.

taBLe 11.1 Linux ps Command Options

a Show all processes
c Show true command name
e Show environment after command
f Show processes organized by parent/child relationship (this is displayed in

ASCII-art as a hierarchy)
l Display long format
m Show all threads
o Display in a user-defined format
p Select by process ID
r Output only currently running processes
S Include dead child process data (summarized with parent)
t Select by terminal window (tty)
T Select processes on this terminal
U Select processes of a specified user
u Display user-oriented format
x Select processes irrelevant of terminal (tty)

308 ◾ information technology

Perhaps the most common usages of ps are ps by itself and ps aux. The ps aux version gives
you all processes of all users. This may be too much information, however. You can pipe the
result to grep to obtain only those processes that match a given string. For instance, ps aux
| grep foxr would display only those processes owned by foxr, but would show all processes,
not just those limited to the given terminal window. A variation of the options aux is axf,
which gives you the processes in the shape of a tree to show you which processes spawned
other processes. For instance, from bash you might type xterm to open a terminal window,
and from that terminal window, you might issue another command (say to compile the cur-
rent file); thus, bash is the parent of xterm, which is the parent of the compile command.

The ps command, when supplied with the parameter u, gives a long listing of infor-
mation that includes for each process, the process’s owner, the PID, CPU usage, memory
usage, terminal from which the command was issued, current process status, start time,
and amount of CPU time that has elapsed. Note that obtaining the PID is particularly use-
ful when you are faced with issuing other commands that impact a process. For instance,
the kill command (covered in Terminating Processes) requires the PID for the process to
be killed (terminated). Figure 11.7 demonstrates the ps command (top of figure) versus a

FigUre 11.7 ps versus ps aux.

Processes and Services ◾ 309

portion of the output from the ps aux command (bottom of figure). As the ps aux com-
mand will display dozens of processes, it cannot be fully shown in one screen’s worth.

Another command to obtain status information is top. While ps provides a snapshot of
what is going on at the time you issue the command, top is interactive in that it updates
itself and displays the most recent information, usually every 3 seconds. Because top is
interactive, it remains in the window and you do not have access to the command line
prompt while it is executing. The ps command is not interactive—it runs, displaying
all active processes and then returns the user to the command line. Another difference
between ps and top is that top only lists the processes that are most active at the moment.
There are a number of parameters that can allow you to change what top displays. For the
most part, unless you are trying to work with the efficiency of your system, you will find ps
to be easier and more helpful to use. To exit from top, type ctrl+c. Figure 11.8 demonstrates
the top command’s output.

As with Windows, Linux also provides GUI tools for monitoring system performance.
First, the System Monitor tool is akin to the Task Manager in Windows. The System
Monitor has three tabs: to display processes, resource utilization, and the file system.
Under the Processes tab, all processes are listed along with their status, CPU utilization,
niceness, UID, and memory utilization. From here, you can stop or continue (wake up
sleeping) processes, kill processes, or change their priority. The resources tab displays the
CPU, memory, swap space, and network usage, both current and recent. The file systems
tab displays the current mounted file system, similar to the df –k command. Figure 11.9
shows the processes and resources tabs.

FigUre 11.8 The top command’s output.

310 ◾ information technology

In addition to the Resource Monitor, you can also view the background and on-demand
services through the Service Configuration GUI. There is also a System Log Viewer GUI
available. Although this does not provide direct information about running processes,
many processes provide run-time information in log files. Log files are discussed later in
the chapter along with services. Both the Service Configuration Manager and the System
Log Viewer tools require that you log in as root to use them. This is not true for the System
Monitor.

ScHeDULing ProceSSeS
The OS performs scheduling for us. There are a variety of forms of scheduling. In batch
systems, scheduling was required to determine the order that the CPU would execute pro-
grams. As we tend not to use batch processing much today, this form of scheduling is one
we can largely ignore. In multitasking, round-robin scheduling is the common approach
to execute those processes in the ready queue. However, as discussed above, users can alter
the behavior of round-robin scheduling by explicitly changing process priorities and/or
moving processes to the background. Yet another form of scheduling that the OS performs
is scheduling when processes are moved from a waiting queue to the ready queue. In per-
sonal computers, this is not typically relevant because all processes are moved to the ready
queue. However, users may launch processes that place them into a waiting queue. Here,
we focus on how to schedule processes in both Windows and Linux that indicate when a
process should move to the ready queue.

Windows 7 provides the Task Scheduler program. See Figure 11.10. You are able to cre-
ate scheduled actions to execute. Tasks can be scheduled for daily, weekly, or monthly
activity, or a one-time occurrence. In any of these cases, you specify the starting time. You
can also specify that a task should occur when the computer is next booted, when a specific
user logs in, or when a type of event is logged. The action is one of starting a program or
script, sending an e-mail, or displaying a message. As an example, you may set up a task to
run your antiviral software each time your computer is booted, or every night at 3 am. You

FigUre 11.9 Two views of the System Monitor in Linux.

Processes and Services ◾ 311

might similarly write a program to perform a complete backup and schedule that program
to execute once per week.

In Linux, there are three scheduling programs of note. All three of these run processes
in the background; therefore, the processes require input from files or sources other than
the keyboard. This might require that the command(s) be issued with proper redirection.
The three processes are crontab, at, and batch. The batch command allows you to schedule
processes that will execute once the CPU load drops below 80%. The at command allows
you to schedule processes to run at specific times. The at and batch commands perform
one-time execution of the scheduled processes. The crontab command instead is used for
recurring scheduling. As the at and batch commands are related, we discuss them together,
but keep in mind that batch will cause the processes to run when CPU load permits execu-
tion, and at will run the processes only at the scheduled time.

FigUre 11.10 Windows Task Scheduler.

312 ◾ information technology

Both at and batch can accept the command(s) to execute from the command line or
from a file. The format of batch is merely batch or batch –f filename. The format for at
is at TIME or at –f filename TIME. TIME formats are discussed later. If you use the –f
option, the file must list, one line at a time, the process(es) to run. Each process should be
a Linux command, including any necessary redirection—for instance, cat foo1.txt foo2.txt
foo3.txt | sort >> foo4.txt. If you do not use the –f option, then the program (both at and
batch) will drop you into a prompt that reads at >. From this prompt, you enter commands,
one line at a time, pressing <enter> after each command. You end the input with control+d.
When done, you are given a message such as

job 5 at 2012-03-01 12:38

which indicates the job number and the time it was entered (not the time when it will run
or the PID it will run under).

The TIME indicator for at can take one of several formats. First, you can enter the time
using a simple HH:MM format, such as 12:35 to run the process at 12:35. Without specify-
ing am or pm, the time is assumed to be military time*; thus 12:35 would be pm, whereas
00:35 would be am, or alternatively 1:35 would be am and 13:35 would be pm. You may
include or omit the minutes, so you might specify 1:00 pm, 1 pm, 13:00 but not 13. There are
also three special times reserved, midnight, noon, and teatime (4 pm).

The at command schedules the process(es) to run the next time the specified time is
reached. For instance, if you specify noon and it is already 1:35 pm, the process(es) will run
the next day at noon. You can also specify the date if it is not within the next 24 hours.
Dates are provided using one of three notations, MMDDYY, MM/DD/YY, or DD.MM.YY,
where MM is a two-digit month (as in 1 or 01 for January and 12 for December), DD is a
two-digit date, and YY is a two-digit year. You can also specify either today or tomorrow
in place of a date, as in 1:35 pm tomorrow.

An alternative to specifying a time and date is to use now + value. With now, you are
able to specify how far into the future the process(es) should run. The value will consist of
a count (an integer) and a time unit. You might specify now + 3 minutes, now + 2 hours,
now + 7 days, now + 2 weeks, or now + 1 month. Notice that you are not allowed to specify
seconds in the TIME value.

Once you have scheduled a task, you can inspect the scheduled task(s) by using atq. The
atq instruction shows you all waiting jobs. The queue lists jobs scheduled by both at and
batch. The atrm command allows you to remove jobs from the scheduling queue. If there is
only a single job, atrm removes it. Otherwise, you must indicate the job number as in atrm
3 to remove the third scheduled job.

Both at and batch are programs to schedule jobs. The atd service (or daemon) monitors
the scheduling queue to see if a process should be executed. It runs in the background, and

* Military time forgoes the am or pm by using just a two-digit number. 00 represents midnight, 01–11 are 1 am through
11 am, 12 is 12 pm (noon). 13–23 represent 1 pm through 11 pm. For instance, 00:30 is 12:30 am and 15:35 is 3:35 pm. To
obtain the proper value, if it is after 12 noon, add 12 to the normal time (so that 3:35 pm becomes 15:35).

Processes and Services ◾ 313

at every minute, compares the current time to the times of the scheduled tasks. Services are
discussed starting in Services.

The other Linux scheduler is called crontab. This program would be used to schedule a
recurring task, such as one that occurs every Monday at 1 am or the first day of every month.
In some ways it is like at, but it is more complicated. First, you must set up a cron file. The
cron file specifies two things: the time/date/recurrence to be scheduled and the process to be
scheduled. The time/date consists of five integer numbers or *. The five values, in order, repre-
sent the minute, hour, day, month, and day of week to be scheduled. Minute will be a number
between 0 and 59, hour between 0 and 23 using military time, day of the month between 1
and 31, month between 1 and 12, and day of week between 0 and 6 (where 0 means Sunday, 6
means Saturday). The * is a wildcard, much as we saw in Bash, meaning “any time”.

Here are some examples specifying the time portion of a crontab file:

15 3 1 * * — the first day of every month,
at 3:15 am

0 14 * * 0 —every Sunday at 2 pm
30 * * * * — every hour at half past

(e.g., 12:30, 1:30, 2:30)
0 0 12 31 * —every December 31, at midnight
0 * * * * —every hour of every day

If you specify both a date (day and month) and day of the week, both are used. So, for instance:

0 0 15 * 0

will schedule for midnight every 15th AND every Sunday.
If you want to schedule multiple time periods other than specific dates and days of the

week, you can list multiple entries for each time category, separating the entries with com-
mas. For instance,

0,30 0,6,12,18 * * *

will schedule the task to occur daily at 12:00 am, 12:30 am, 6:00 am, 6:30 am, 12:00 pm,
12:30 pm, 6:00 pm, 6:30 pm. Another variant is if you want the recurrence to be within a
specific time interval, for instance, every 15 minutes. This is specified using /15, as in

0/15 12 * * *

for 12:00 noon every day, recurring every 15 minutes until 1:00 pm.
You can also specify ranges such as

0 0 1-5 * *

to execute every day from the 1st to the 5th of the month at midnight.

314 ◾ information technology

The second half of the crontab file is the list of commands to be executed. As the com-
mands should fit on a single line in the file, you would either list a single command, or
invoke a shell script. For instance, the entry:

0 0 1 * * ./somescript –a < foo.txt

will schedule the execution of .somescript –a < foo.txt to occur at midnight, the first of
every month. The script somescript is located in the current directory, and it receives an
option (–a) and input from foo.txt.

The reason that you are limited to one line for each scheduled task is that crontab allows
files that contain multiple scheduled entries, one per line. Therefore, you could schedule
numerous processes at different times using a single crontab file. Consider the following
entries in a crontab file.

0 0 * * 0 ./backup_script
0 0 * * 2 ./cleanup_script
0/10 * * * * ./who_report

This requests that a backup program will run every Sunday at midnight, that a cleanup
script will run every Tuesday at midnight, and that a script to report on who is logged in
will run every 10 minutes of every hour of every day.

Writing the crontab file is the first step in scheduling tasks with crontab. The second is
the issuing of the crontab process itself. The crontab process is invoked by the command
crontab –f filename. Without this step, none of the tasks scheduled in the file will actually
be scheduled. An additional option in crontab is –u username. This allows you to run the
processes listed under a different user name; otherwise, the processes default to running
under the user’s account. This is particularly useful if you have switched to root before
issuing crontab. You would not normally want a crontab job to run as root unless you
knew specifically that the processes required root access. Therefore, as root, it is best to use
crontab –u username –f filename, where username is your own account.

As with atq and atrm, you can examine the queue of crontab jobs and remove them. You
would do this using crontab –l and crontab –r to list and remove the waiting jobs, respec-
tively. You can also use crontab –e to edit the most recent crontab job. As the atd daemon
is used to run at and batch jobs, the cron daemon is used to run crontab jobs.

One last note. In order to safeguard the system, you can specify which users are allowed
to use crontab, at, and batch, and which users are not. There are several /etc files to control
this. These are /etc/at.allow, /etc/at.deny, /etc/cron.allow, and /etc/cron.deny.

terminating ProceSSeS
There are multiple ways for a process to terminate. First, it may complete execution.
Second, you may choose to stop it yourself. Third, the program may “die”—that is, abnor-
mally abort its execution. Obviously, if a process terminates on its own once it completes
execution, there is no need for the user to be concerned, nor are there any actions that the

Processes and Services ◾ 315

user must take. In the third case, there will usually be some kind of feedback to the user to
indicate that a terminating error arose. In Windows, for instance, you may receive an error
pop-up window. Or, the program’s output window may just disappear from the screen. In
Linux, programs that abnormally terminate usually leave behind a file called core. The core
file is a “core dump”, which is a snapshot of the process’ working memory when it termi-
nates. A programmer might examine the core file for clues as to the problem.

It is the second possibility that is troubling. The process remains “active” but is no longer
making any progress toward completion. This might be caused by a deadlock situation (see
Chapter 4), or child processes that have stopped responding, or a situation where the OS
itself has lost pointers to the process. In any event, the user must discover that the process
is not responding and decide what to do about it.

In Windows, to stop a process, you can just close the window. For processes that are
not responding, this may not work and so you would invoke the Task Manager and kill
the application or the process through this GUI. If the process is running in a terminal
window (Linux) or DOS prompt window (windows), you can try ctrl+c to stop it. In Linux,
you can also use the resource monitor to select and kill the process. You can also use the
kill command from the command line. First, you must obtain the process’ PID through
the ps command. The kill command is kill level pid. The level determines how hard the OS
should try to kill it. The highest level is –9 and should be used whenever possible. To kill
a process, you must be the process owner or root. The command killall can kill all active
processes. To use killall in this way, you must be root.

You may need to search through the running processes to see what is still running, and
shut down processes that you no longer need. This is true in either Windows or Linux. Just
because there is no icon pinned to the task bar does not mean that a process could not still
be running. In Linux, processes are often difficult to keep track of when launched from a
command line. An interesting historical note is that when MIT shut down their IBM 7094
mainframe in 1973, they found a low-priority process waiting that had been submitted in
1967! Whether this story is true is unknown.

Shutting down the entire system is an important step. You will need to shut down your
computer after installing certain software (especially OS patches). Additionally, Win-
dows 7 requires being shut down and restarted when it performs OS upgrades. Linux can
perform upgrades to its OS without shutting itself down.

Shutting down your system also helps clean up your virtual memory—if you leave your
system running for too long, it is possible that your virtual memory becomes fragmented
causing poor performance. In Windows, it is important to reboot your OS occasionally
(say at least once per week) because of corruption that can occur with the system as stored
in virtual memory and main memory. Since Linux is more stable than Windows, reboots
are less frequently needed.

How do you shut down your computer? Well, what you never want to do is merely shut
it off. Both Windows and Linux have a shutdown sequence. It is important to follow it so
that all processes and services can be shut down appropriately and so that all files will be
closed. If you do not do this correctly, data files and system files can be corrupted resulting
in problems in your OS over time.

316 ◾ information technology

In Windows, the shutdown process is taken care of through the Start button menu.
The options are to shut down the system, reboot the system (restart), log off as current
user, switch user while remaining logged in, or to put your system to sleep in either sleep
mode or hibernate mode. Sleep mode is a power saver mode that allows you to start back
up rapidly. Hibernate is a longer term mode—you would use hibernate when you do not
expect to restart the computer again in the next hour or few hours. The shutdown routine is
straightforward to use, although the process that shutdown will undertake is very complex
in terms of the steps involved in actually shutting down both the OS and the hardware.
Shutting down the machine can also be time consuming.

In Linux, you may use the GUI, or you can shut down the system through the com-
mand line by using the shutdown command. From the command line, shutdown accepts
a parameter, -h, which causes the system to halt. Halting the system actually stops all of
the machinery, whereas shutdown merely places you into a special mode that permits you
to halt the system. In addition to –h, you must specify a time (in minutes) to denote when
shutdown should occur. This gives you a “grace period” so that all users can log off in time.
The command shutdown –h 10 means to shutdown and halt the system in 10 minutes. You
may also wish to send a message to users and processes to warn them of the imminent
shutdown. The message might be something like “warning, system shutdown in 10 min-
utes, kill all processes NOW and log out!” The –r option not only shuts the system down,
but reboots it afterward.

ServiceS
A service is a piece of OS software that provides a particular type of function. This makes it
sound like any other OS component. There are several differences, however. First, a service
may be running or stopped (or suspended) whereas the programs that make up the OS
kernel remain running at all times. Second, a service is set up to work with any number
of other agents—applications software, users, network communications, etc. Thus, a ser-
vice might be thought of as software that can be called upon by unknown clients. The OS
kernel instead handles requests from the user or running software, but not from unknown
or remote clients. Third, services run in the background, without user intervention. Since
services run in the background, services are not necessary for non-multitasking systems.
For instance, consider a single tasking system, where either the OS is executing or the
application software is executing. There is no background. But in a multitasking system, a
service may be called upon from time to time.

Services may be started at boot time, they may be started based on some scheduling
system, or they may be started (and stopped) by system administrators. In Linux, services
are often referred to as daemons (pronounced demons), and their names often end with a
d, for instance, the scheduling command, at, is controlled by a daemon known as atd. In
Windows, they are known as Windows Services but unlike Linux, some Windows Services
can run as a normal process, that is, execute in the foreground.

One advantage to having services in an OS is that a system administrator can tailor
the environment by controlling which services run and which services do not run. For
instance, there may be a need for a mail service if we expect that this computer will receive

Processes and Services ◾ 317

e-mail. However, if this is not the case, the e-mail service can be stopped so that it neither
takes up memory space nor requires any CPU attention.

Additionally, the system administrator can control how the service runs. When a ser-
vice is started, the service will likely read a configuration file. By altering the configuration
file, you can control how that service works. We will explore some of the Linux configura-
tion files in Configuring Services.

Another advantage of having services is that the services, if running, are placed in the
background. Thus, a service only requires system resources when it is called upon to per-
form its service. So, for instance, a service does not wait in the ready queue and use CPU
time. Only when the service must respond will it use the CPU.

In Windows, services have a couple of noteworthy features. First, they run in less privi-
leged modes than the Administrator mode. For instance, they may run under Local Service
or Network Service accounts. This provides the service with additional access rights over a
typical user, but not the full access of the administrator. Also in Windows, services are com-
partmentalized so that they cannot influence other services. A service that has been compro-
mised by virus or other form of intrusion will not impact other services. Finally, services are
not allowed to perform operations on the file system, system registry, or computer network.

In Linux, most services are spawned by the init process, which is the first process started
after Linux boots (see the section Establishing Services at Boot Time). Once the system
has started, the system administrator is able to start (and stop) services on demand at any
time, so those services started later are not spawned by init. Services are disassociated
from terminals so that they run in the background not of a shell but of the entire OS. They
are established as having the root directory as their working directory, and thus are not
impacted by what file systems are mounted.

A service should not be confused with a server, although they are related concepts. We
might say that all servers provide a service, but not all services are servers. One way to
think of the distinction is that a server is a large-scale piece of software (probably many
programs). The server may have a number of roles or accomplish many tasks within the
service it provides. We also tend to think of a server (the software) running on a computer
set aside to accomplish the service. We will discuss servers in more detail in Chapter 13.

There are a great number of services available in both Windows and Linux OSs. In
Windows, one can view the active services, start and stop them, using the Task Manager.
Figure 11.11 shows the Services tab of the Task Manager. Selecting a service allows you to
then start or stop it.

In Figure 11.11, for instance, you can see such services as Netlogon, KeyIso, Power, and
PlugPlay are running while services such as VaultSvc, EPS, and bthserv are stopped. The
description column provides a brief description of the service, and for those running, the
PID indicates which process started those services. In Figure 11.11, for instance, several
processes were started by process 564. This is most likely the program lsass.exe. Process
708, which started the services Power and PlugPlay is svchost.exe. To obtain process PIDs,
click on the process tab, and under view, select Select Columns. From here, you can select
which columns should be viewable. PID is not viewable by default but you can make it
viewable. Notice that services that are stopped do not have a PID listed.

318 ◾ information technology

At the bottom of the Services tab of the Task Manager Window is a Services… button.
Clicking on this button starts the Services window (see Figure 11.12). In the Services win-
dow, you can view information about the service such as its description and whether it is
started automatically or requires manual startup. You can also start the Services window
by right clicking on the Computer desktop icon and selecting Manage, or by starting the
Control Panel, selecting Administrative Tools, and from the list of tools, selecting Services.

From the Services window, right clicking on a service and selecting Properties (or select-
ing Properties from the Action menu or from the button bar) displays the service’s prop-
erties. See Figure 11.13. There are four tabs in this window: General, Log On, Recovery,
Dependencies.

The General tab provides the service’s name, a description, its location in the file system,
how it is started (in the case of DHCP Client, it is started automatically at boot time), its
current status (if started, you can stop it and vice versa), and what parameters are supplied
when it is started. DHCP Client does not start with any parameters.

Under Startup type, there are four options: Automatic (Delayed Start), Automatic,
Manual, Disabled. These are self-explanatory except for the first one, which was intro-
duced in Windows Vista. As not all automatic services are needed immediately upon

FigUre 11.11 Services tab of the Task Manager.

Processes and Services ◾ 319

FigUre 11.12 Windows Services.

FigUre 11.13 DHCP Properties window.

320 ◾ information technology

system boot, services can be categorized by their importance. Lower priority services can
be started automatically upon boot, but postponed until other, more important services
are started. Those denoted by “Delayed Start” do not get started until the initialization
scripts, processes, and services run. The intention here is to provide a faster boot process
for the user. Once booted, as the system has time, the remaining automatic services are
started. As an example, the Windows Search and Windows Update services use this setting
because their immediate service will not be needed.

Services may require access to system or network resources. If this is the case, the ser-
vice requires a log in (account name and password). The log in type is indicated under the
Log On tab (you can also see this in the Services window as the rightmost column, Log
On As). For instance, DHCP will log on under the name Local Service. Other choices are
Network Service and Local System. Local Service and Network Service will most likely
require a log in account and password, whereas Local Service will not.

The Recovery tab indicates how the OS should attempt to recover if the service fails.
In Windows, there are three levels of failure: first failure, second failure, and subsequent
failures. The tab contains choices for each level, the choices being “take no action”, “restart
the service”, “run a program” (in which case you indicate the program and any program
parameters), and “restart the computer”. Failures are counted since the last reset. By
default, resets occur every day. The delay before a service restart may occur is also control-
lable. This value is set in minutes (from 0 upward).

The Dependencies tab lists the services on which this service depends, and the services
that depend on this service. This indicates the services that need to be running for this
service to run successfully, and if this service were to stop running, what other services
would be impacted. For instance, the DHCP Client service relies on the Ancillary Function
Driver for Winsock, NetIO Legacy TDI Support Driver, and Network Store Interface ser-
vices, whereas WinHTTP Web Proxy Auto-Discovery Service relies on DHCP Client.

In Linux, the Service Configuration Tool (see Figure 11.14) lets you view, start, and stop
services. This tool is a graphical means of interfacing with services that can also be con-
trolled via the /etc/rc.d directories and command line instructions. Automatically starting
services is explained in detail in Establishing Services at Boot Time.

When you select a service in this tool, you are given that service’s description and any
services that might rely on the service (i.e., dependencies). For instance, the syslog service
requires that both syslogd and klogd be running, as shown in the figure. You are also given
the “run level” for the service. This is described in Establishing Services at Boot Time as
well. Notice that this tool offers two tabs, Background Services and On Demand Services.
Most Linux services are intended to run in the background. However, you can also estab-
lish on demand services. These services will run when requested and will automatically
end (exit the system) when there is nothing remaining for them to do.

In Linux, you can also view the status of any given service, start, stop, or restart it
from the command line. There are two ways to control services from the command line.
The common way is through the service command, which is under /sbin. The format of
the command is /sbin/service servicename command, where servicename is the name of the
service, for instance, syslog, and the command is one of start, stop, restart, and status. The

Processes and Services ◾ 321

status command merely responds with the service’s status: running, stopped, dead. The
other command line approach to controlling a service is to issue a command directly to the
service itself. The sshd service, for instance, is stored in /etc/init.d. Therefore, you can also
issue the command /etc/init.d/sshd start (or restart, stop, or status).

There are a great number of services in both Windows and Linux, and their roles can
differ widely. There is no easy categorization of all of the services. A general list of types
of services along with some programs that handle these service categories is presented
below.

Logging services. Log files play a critical role in determining the cause of unusual or
erroneous events. Both Windows and Linux have services that regularly log events,
whether generated by the OS or application software or from some other source. Windows
Event Log stores and retrieves event information. Windows uses six levels of events: Audit
Failure, Audit Success, Information, Warning, Error, and Critical. The Event Viewer pro-
gram allows you to view events logged by Windows Event Log. Log entries can arise from
applications, hardware events, Internet Explorer events, Media Center events, Security
issues, System events, and others. Figure 11.15 demonstrates a view of the Event Logger,
with the list of warnings enumerated, and Figure 11.16 shows some of the logged events
from Applications. In Linux, syslogd and klogd share the logging chores, syslogd logs nor-
mal system and application events, whereas klogd logs specific kernel events. The Linux
service auditd collects security-related events and records them in the audit.log files. The
Linux service netconsole logs logging attempts. Other software might create their own log
files, or they might call upon syslogd. The various log files in Linux are stored under /var/
linux unless otherwise specified.

Scheduling services. Users, particularly system administrators, will commonly schedule
processes to execute at certain times. For instance, an antiviral program might be sched-
uled to run every night at midnight, or a backup utility might be scheduled to run once

FigUre 11.14 Linux Services in the Service Configuration window.

322 ◾ information technology

FigUre 11.15 Windows Event Viewer.

FigUre 11.16 Application warnings logged including a specific event.

Processes and Services ◾ 323

per week at a specific time. The Windows scheduler is called Task Scheduler. It is both a
scheduler and a service. Linux has several scheduling programs: at, batch, crontab. The
Linux services that support scheduling are anacron, to execute processes scheduled for
boot time, crond to execute processes scheduled by crontab, and atd to execute processes
scheduled by at and batch.

Network services. There are a number of different tasks involved in communicating over
a computer network, so there are numerous network-related services. In Linux, there is
the network service that configures all network interfaces at boot time. But then there
are ISDN (Integrated Services Digital Network) for communication over the telephone
system, nfsd (Network File System Daemon), nmbd (Network Message Block Daemon),
ntpd (Network Time Protocol Daemon), snmptd (Simple Network Management Protocol
Daemon), as well as services for a web server (httpd), ftp server (ftpd), ssh server (sshd),
mail server (sendmail, fetchmail), and domain name server (named). In Windows, there
are NTDS (Network Authentication Server), BITS (Background Intelligent Transfer
Service), DNSCache and DNS (for DNS clients and servers), and NSIS (Network Store
Interface Service) to collect routing information for active network interfaces, to name a
few. In Windows, Workstation creates and maintains client network connections to remote
servers. Other network services in Windows include Network Access Protection Agent,
Network Connections, and Network Location Awareness.

Firewall and Internet services. In Linux, dnsmasq starts the DNS caching server and
httpd is used to start and stop the default Apache web server. The services iptables and
ip6tables control the default Linux firewall. The Linux nscd service handles password
and group lookup attempts for running programs, caching results for future queries. This
service is needed to support other network-based authentication services such as NIS and
LDAP. In Windows, Base Filtering Engine manages the Windows Firewall and Internet
Protocol security. DHCP Client registers and updates IP addresses and DNS records for the

serviCe PaCks

Service packs are not related to services specifically, but because we are discussing services,
it is useful to look at service packs here. the service pack is used by microsoft to release
updates of oSs. this permits microsoft to fix errors, handle user complaints, and remove
security holes between major releases of oSs.

Starting with nt, microsoft has been releasing service packs for their Windows oSs. in
most cases, service packs supersede previous service packs. For instance, to install service
pack 2 you do not need to have installed service pack 1. However, this approach is not
entirely consistent. xP service pack 3 relied on service pack 1 being previously installed.

Service packs used to be delivered on cD-rom but today, service packs are available
over the internet for download and in fact your Windows 7 system can automatically down-
load and install service packs. one day you may wake up and find that your oS runs a little
differently—new features, tighter security, or a peculiar error no longer arises.

Service packs are not limited to microsoft Windows. other pieces of software now use
this approach.

324 ◾ information technology

computer and DNS Client caches DNS names. If this service is stopped, name services con-
tinue through the DNS, but results are no longer cached for efficiency, and other services
that explicitly depend on the DNS Client will fail. Similar to ncsd, the Windows service
Netlogon maintains a secure channel between a computer and the domain controller for
authenticating users and services.

File system. As with network services, there are many different tasks involved in file
system services. In Linux, these include autofs and amd, which are used to automatically
mount file system partitions; netfs, which mounts and unmounts any network file sys-
tems; and mdmonitor, which manages the software portion of a RAID storage device. In
Windows, Block Level Backup Engine Service provides backup and recovery support on
the file system.

Peripheral devices. Windows has a number of services to support peripheral devices.
These include Audio Service to manage audio jack configurations, Bluetooth Support
Service, and Plug and Play, which allows the computer to recognize newly attached devices
with little or no user input. In Linux, CUPS (common Unix printing system) supports
communication with printers. There are a number of services that all support BlueTooth
management, including bluetooth, hidd, pand, and dund. The conman service performs
console management. The gpm service adds mouse support for text-based Linux applica-
tions, for example, by permitting copy-and-paste actions via the mouse.

Miscellany. The Linux oddjobd service is interesting in that it supports applications that
do not have their own privileges. For instance, if a program requires some operation to
be performed, but does not have the proper privileges to execute the operation, the pro-
gram can request it of the oddjobd service. In Windows, there are a number of diagnos-
tic services available. There are also services to support such actions as parental controls.
Both OSs provide power management services: ampd in Linux and Power in Windows. For
instance, the ampd service monitors battery status and can be used to automatically shut
down a computer when the battery is too low.

conFigUring ServiceS
When a service is started, it will usually read a configuration file. The configuration file
specifies the properties by which the service will execute. For instance, the Linux firewall
service will operate using a number of rules. These rules are specified in the configuration
file. Typically, Windows services use .ini (initialization) files to store these specifications,
although in some cases, they end in .cfg or have other or no extensions. In Linux, configu-
ration files often end with the .conf extension although this is not always the case. Also,
like Linux scripts, the use of # to begin a line in a configuration file indicates that the line
is a comment and should be ignored by the software that reads the file.

To alter the behavior of a service, you must stop the service, edit the configuration file,
and then restart the service. This should not be done lightly as a mistake in a configuration
file might cause the service to malfunction or not function at all. Here, we concentrate on
several Linux.conf files, examining their syntax and some of the changes that you might
make. In Linux, most configuration files can be found in the /etc directory.

Processes and Services ◾ 325

We will start with one of the Linux logging services, syslogd. This service logs events
generated by application software and non-kernel portions of the OS. To be configured,
syslogd needs to know three things:

 1. What types of activity should be logged

 2. What conditions require logging

 3. Where the logging should occur

The file /etc/syslog.conf describes this information. As it is merely a text file, the system
administrator is free to edit the file, which will then impact what gets logged and where.
Each line of this file describes one form of logging event. A logging event will comprise one
or more sources (software), the level of priority that would cause the event to be logged,
and the action to take place should the source provide a message at the given priority level.
Multiple sources can be listed on a single line if the sources would all share the same log
file.

The format for any single entry is source.priority [;source.priority]* action. That is,
each entry will be at least one source.priority, but can be any number of source.prior-
ity pairs as long as they are separated by semicolons. The use of the wildcard (*) in the
syntax above means “0 or more copies” although we will see that we can use the * as the
source, priority, and action. If used for either the source or the priority, the * indicates
“any source” or “any priority level”. For instance, one might use auth.* to indicate any
authorization message, regardless of the priority level. Or, to indicate any message whose
priority level is emergency, we could specify *.emerg. The entry *.* would log any event by
any software.

The action portion of an entry is almost always a file name, indicating where the message
should be logged. In most cases, the logs are saved under the /var/log directory. However,
if the message log is in support of a particular piece of software, it is possible that a differ-
ent location might be desired, such as a log subdirectory under the home directory of the
software. Aside from specifying the location of the log file, an * can be used, which instead
sends the message to all logged in users to an open terminal window. You can also control
the terminal to output to by using /dev/tty1, for instance, to output to only terminal tty1s
instead of any open window. Another alternate action is to pipe the log message to another
piece of software. Such an entry might look like this: |exec /usr/local/bin/filter.

There are several default sources. These include auth (user authentication services),
cron (the cronjob scheduler), daemon (all standard services), kern (the Linux kernel), lpr
(printer server), mail (mail server), syslog (the syslogd service), and user (programs started
by the user). The user programs are denoted as local0–local7, allowing for eight additional
programs that can have customized logging. There are nine levels of priority that range
from generating log messages only when the there is a total system failure to as simple as
generating log messages for every activity of the given piece of software. The nine levels are
shown in Table 11.2.

326 ◾ information technology

Figure 11.17 shows the contents of the syslog.conf file. The first entry specifies that any
kernel message should be sent to /dev/console, which is the console of the host computer
(this message would not be sent to remote login consoles or other windows). The second
entry specifies numerous messages: all informational messages and all mail, authpriv, and
cron messages with no priority. These are all logged to /var/log/messages. The third entry
requires that all other authpriv messages (above the “no priority” priority level) are logged
to /var/log/secure. Can you make sense of the remaining entries? The use of the “–” in an
action preceding a file name, for instance, -/var/log/maillog in the figure, indicates that
messages should not be synchronized.

The Linux firewall requires a configuration file. This file is stored in /etc/sysconfig/ipt-
ables. Modifying this file allows you to add, change, and delete firewall rules. Each row of

taBLe 11.2 Nine Priority Levels Used by syslog.conf

None No priority
Debug Debugging messages, used by programmers while testing their programs
Info Informational messages about what the program is doing
Notice Noteworthy events
Warning Warnings about potential problems
Err Errors that arise during execution
Crit Messages that describe critical errors that will most likely result in the program terminating

abnormally
Alert Messages that will describe errors that not only result in a program terminating abnormally,

but may also impact other running programs
Emerg Messages about errors that may result in a system crash

FigUre 11.17 Logging entries from /etc/syslog.conf.

Processes and Services ◾ 327

this file is a rule that dictates a type of message that should be accepted or rejected by the
firewall software. The rules have a peculiar syntax. They begin with the type of rule, an
append rule (–A) or a flush rule (–F). The flush rule deletes all of the rules in the selected
table, so most or all rules will begin with –A.

The next item in a rule is the name of the stream from which a message might arrive.
Streams have generic names such as INPUT, OUTPUT, or FORWARD, or may be from a
specific location such as fast-input-queue or icmp-queue-out. The examples below indicate
the input stream RH-Firewall-1-INPUT.

Next are the specific conditions that the rule is to match. These may include ports, types of
TCP/IP messages, source or destination IP addresses, or protocols. For instance, --dport 50
indicates a message over port 50, whereas –p udp --dport 5353 indicates a message over udp
destination port 5353 and –d 1.2.3.4 indicates a destination IP address of 1.2.3.4.

The final entry in a rule is typically the action that the rule should apply when the
rule matches a message. The most basic actions are ACCEPT, LOG, DROP, and REJECT.
ACCEPT immediately stops processing the message and passes it on to the OS (i.e., past
the firewall). The LOG action logs the message but continues processing rules in case other
rules might match to specify further actions. DROP causes the message to be blocked,
whereas REJECT blocks the message but also replies to the host sending the packet that
the packet was blocked.

What follows are a few example rules:

-A RH-Firewall-1-INPUT --dport 50 –j ACCEPT
-A RH-Firewall-1-INPUT –p udp --dport 5353 –d 224.0.0.251 –j
ACCEPT
-A RH-Firewall-1-INPUT –p tcp –m tcp --dport 631 –j ACCEPT

Typically, the iptables file will end with a default rule. If previous rules specify messages
to accept or log, then the following rule would be a “backstop” rule to reject all other
messages.

-A RH-Firewall-1-INPUT –j REJECT --reject-with icmp-host-prohibited

The /etc/fstab file stores mount information. This is applied whenever the mount –a (mount
all) command is issued. The configuration information lists each mount partition, mount
point (directory), and specific information about that partition such as whether the par-
tition has a disk quota on individual entries and whether the partition is read-only. For
instance, one entry is

LABEL=/home /home ext3 defaults 1 2

This entry describes that the /home partition should be mounted at the directory /home,
the partition’s type is ext3, the partition uses the default options, and has values 1 and 2,
respectively for the dump frequency (archiving schedule) and pass number (controls the

328 ◾ information technology

order that the fsck program checks partitions). Options can include ro (read only), rw
(read–write), auto or noauto (whether the partition should be automatically mounted at
boot time or not), and usrquota (to establish quotas on each user directory). The ext3 type
is common in Linux systems. However, if the partition is mounted over the network using
the network file system (nfs), an additional option is to include the IP address using addr=
#.#.#.#, where the # signs represent the octets of the IP address.

The /etc/resolv.conf file is one of the simplest configuration files. It stores the IP addresses
of the domain name system servers (DNS) for the computer. Unlike the previous two
example configuration files that comprised a number of rules in some unique syntax, this
file consists of entries that look like:

nameserver 10.11.12.13
nameserver 10.14.15.16

The resolv.conf file is used by numerous Linux programs. We discuss the DNS in Chapter 12.
The mail server in Linux is sendmail. It has a number of configuration files. One, /etc/

aliases, permits e-mail aliases to be established. For instance, addresses such as bin, dae-
mon, adm, halt, and mail are aliased to root so that, if a message is sent to any of those loca-
tions, it is actually sent to root. Another sendmail configuration file is /etc/mail/sendmail.
cf. However, it is advised that you should never directly edit this file. Instead, the file /etc/
mail/sendmail.mc is a macro file. Editing it will allow you to generate a new sendmail.cf
file. As sendmail is a very complex program, we will not examine this configuration file.

One last /etc configuration file worth noting is ldap.conf. LDAP is a server used to per-
form network-based authentication. That is, given a network of computers, an LDAP server
can be used to authenticate a user on any of the network computers. Although LDAP is
far beyond the scope of this text, its configuration file is worth mentioning. The format
of the LDAP configuration file is unlike the previous files where each entry was a rule or
instruction to the program. Instead, the LDAP configuration file contains directives. There
are many forms of directives, each of which accomplishes a different task in initializing the
LDAP server. For instance, the base directive specifies a “distinguished” name for search-
ing. Another directive, uri, declares IP addresses of various types for the domain sockets.
Other directives specify time limits, ports, filters, naming contexts, naming maps, and so
forth. What follows is an example of an ldap.conf file:

uri ldap://127.0.0.1/
ssl no
tls_cacertdir/etc/openldap/cacerts
pam_password md5

Modifying a configuration file of a service does not automatically cause the service to
accept those changes. In most cases, the service must be restarted. You can do this by either
stopping the service and then starting it anew, or by using the restart command instead. In
many cases, it is wise to stop the service before modifying the configuration file.

Processes and Services ◾ 329

eStaBLiSHing ServiceS at Boot time
We end this chapter by considering which services are started automatically at system ini-
tialization time and which are not. As described in Services, Windows services can be
controlled through the Services tool. By selecting any service from this tool, you can start
or stop the service. Through the service’s properties window, you can specify the startup
type. The choices are Automatic (Delayed Start), Automatic, Manual, Disabled. As an
Administrator, you can change the startup type of any or all services as you desire. For
instance, if it is felt that Parental Controls should always be running at boot time, you can
change its startup type from Manual to Automatic. Similarly, Bluetooth Support Service is
something that you might want running. However, as users will not require the Bluetooth
service the instant that the system boots, you might set this to start by Automatic (Delayed
Start). In this way, the service starts shortly after system initialization as time permits.

Linux similarly is set up to automatically start specific services at system initialization
time, and the services that start can be adjusted by system administrators. However, unlike
Windows, in Linux you can establish different startup services depending on the run level.
There are seven run levels in Linux. These are shown in Table 11.3.

When Linux first boots, it runs the script /etc/inittab. One of the first things that inittab
establishes is the run level. A run level of 5, for instance, starts the OS in full GUI mode,
whereas run level of 3 is full text mode and run level of 1 is single user text mode. With the
runlevel established, services are started based on the runlevel. The inittab script executes
the script /etc/rc.d/rc. This script takes care of several startup activities, but among them,
it iterates through the directory /etc/rc.d/rc#.d, where # is the runlevel (for instance, rc5.d
for runlevel 5).

A look at /etc/rc.d/rc5.d shows a number of symbolic links. Each symbolic link has a
name in the form of K##name or S##name. The K and S stand for “kill” and “start”, respec-
tively. This letter denotes whether the rc script will kill or start the service at startup. The
number denotes the order in which the service is started (or stopped). See Figure 11.18,
which lists the symbolic links for runlevel 5. A comparison between the /etc/rc.d/rc5.d and
/etc/rc.d/rc3.d directories will show the services needed for the GUI versus those that are
not, whereas a comparison between the /etc/rc.d/rc3.d and /etc/rc.d/rc2.d directories will
show the services needed for network communication versus those that are not.

As each item in this directory is merely a symbolic link, the rc script follows the link
to the actual service. All services are stored in the directory /etc/rc.d/init.d. Figure 11.19

taBLe 11.3 Linux Run Levels

Run Level Description
0 Halt—shuts down all services when the system will not restart
1 Single-user mode—for system maintenance, operates as root without network capabilities
2 Multiuser mode without network—primarily used for maintenance and testing
3 Multiuser mode with network—text-based mode for normal operation
4 Not used
5 Multiuser mode with network and GUI—typical mode for normal operation
6 Reboot—shuts down all services for system reboot

330 ◾ information technology

illustrates the subdirectory structure for the startup scripts. The /etc/rc.d directory also
contains two additional scripts: rc.sysinit and rc.local. The rc.sysinit script initializes a
number of system settings, sets up the keyboard for use, established environment vari-
ables, and performs other hardware configuration steps. The rc.local script is available for
the system administrator to further tailor the initial environment. It only executes once
all other initialization scripts are executed. This file is initially nearly empty to start with.

As a system administrator, you can further tailor the run levels by merely changing
symbolic link names. For instance, if it is deemed by the system administration that the
Bluetooth service will not be needed in run level 5, the system administrator could rename
the symbolic link S25bluetooth under /etc/rc.d/rc5.d to K25bluetooth. That is, rather than
starting the bluetooth service, it is killed. Of course, if you are unsure about this, it is best
to leave these symbolic links alone. You can always start or stop services at a later point by
using /sbin/service bluetooth start/stop.

FUrtHer reaDing
See Further Reading section in Chapter 4 for a list of texts that describe Windows 7, Linux,
and Unix OSs. Process management is often covered as a chapter or two within these texts.
Additionally, texts that discuss system administration for each OS will cover details on

FigUre 11.18 The /etc/rc.d/rc5.d directory of startup services.

/etc

/rc.d

/rc0.d /rc1.d /rc5.d /rc6.d rc rc.local rc.sysinit

Symbolic
links to
services in
/init.d

Symbolic
links to
services in
/init.d

Symbolic
links to
services in
/init.d

Symbolic
links to
services in
/init.d

Services

/init.d ...

FigUre 11.19 Structure of the /etc/rc.d directory.

Processes and Services ◾ 331

service configuration. You can find additional texts on configuring your Windows 7 and
Linux OSs in certification study guides. The following texts specifically deal with configur-
ing Linux.

•	 Crawley, D. The Accidental Administrator: Linux Server Step-by-Step Configuration
Guide. Washington: CreateSpace, 2010.

•	 LeBlanc, D. and Yates, I. Linux Install and Configuration Little Black Book: The Must-
Have Troubleshooting Guide to Installing and Configuring Linux. Scottsdale, AZ:
Coriolis Open Press, 1999.

revieW termS
Terminology introduced in this chapter:

Child process oddjobd (Linux)

Configuration file Parent process

Core dump PID

Daemon Priority

Delayed start (Windows) Process properties

Exec (Linux command) Process status

Executing (process) Process tree

Executable Rc#.d (Linux)

Firewall Rc.sysinit (linux)

Fork (Linux command) Recovery (Windows)

Inittab (Linux) Resources

Init.d (Linux) Run level (Linux)

Kill (a process) Scheduling

Logging Service

Logon type (Windows) Service dependencies

Log file Short cut icons

Niceness Shut down

332 ◾ information technology

Sleeping (process) Syslog.conf (Linux)

Spawn Task manager (Windows)

Startup level (Windows) Terminating (process)

Suspended (process) Waiting (process)

Syslog (Linux)

Review Questions

 1. In Windows, how can you move a process from the foreground to the background?
In Linux from the command line, how can you move a process from the foreground
to the background?

 2. What is the difference between ps, ps a, and ps ax? Between ps aux and ps afx?

 3. When starting a program in Linux, what happens if you end the command with
an &?

 4. What does the Linux jobs command do? How does it differ from ps?

 5. In Linux, how does a parent generating a child through fork differ from a parent gen-
erating a child through exec?

 6. If process A has a higher priority than process B, what does that mean with respect to
both processes executing in a multitasking system?

 7. If you were to increase a Linux process’ niceness (make the nice value larger), does
this raise or lower its priority?

 8. You want to run a process at 3:45 pm tomorrow. How would you specify this using
Linux’ at command? What if it was 3:45 pm on March 1, 2013?

 9. You want to run a process using at. How would you specify 3 hours from now? Three
days from now?

 10. You want a process to run recurring every Friday the 13th. How would do this? What
if you wanted to specify every Friday at noon? What about the 15th of every month at
6:45 pm?

 11. What does it mean to kill a process? Explain how you can kill a process in Windows
and in Linux.

 12. Why is it important to properly shut down a computer through the operating sys-
tem’s shut down routine rather than just turning it off?

 13. What is a grace period when you use the Linux shutdown command?

 14. How does a service differ from the operating system kernel?

Processes and Services ◾ 333

 15. How does a service differ from a server?

 16. What does it mean that a service runs in the background?

 17. In Windows, how can you determine which services are running? How can you stop
a running service?

 18. In Linux, how can you determine which services are running?

 19. In Linux, what options can you specify in the services command?

 20. In Linux, what is the difference between syslogd and klogd?

 21. What is the difference between the anacron and crond services in Linux?

 22. What is a configuration file? When you modify a configuration file, what happens to
the running service? What do you have to do to have the changes made to the con-
figuration file take effect?

 23. What do the following entries in the syslog.conf file mean?

cron.* /var/log/cron
authpriv.warn |/usr/sbin/filter
*.emerg *

 24. What is the difference between the Crit, Alert, and Emerg priority levels for messages?

 25. What does ACCEPT and REJECT mean when listed in rules in the iptables configu-
ration file?

 26. What do the K and S mean in the file names found in the /etc/rc5.d directories?

 27. What is the difference between Linux run level 3 and 5? Why might you choose 3
instead of 5?

 28. There are directories in/etc for each of rc0.d, rc1.d, …, rc.6.d. What do each of these
directories represent? What is the number used for?

Discussion Questions

 1. You have started a process in Windows. It does not seem to be running correctly.
What should you do in order to determine if the process is running, inspect its status,
and either fix it or kill it?

 2. Repeat question #1 but assume Linux instead of Windows.

 3. Under what circumstances might you increase the priority of a process? Under what
circumstances might you decrease the priority of a process?

334 ◾ information technology

 4. As a system administrator, do you have the authority to change other users’ process
priorities? If your answer is yes, explain under what situations you should use this
authority.

 5. In Windows 7, bring up the resource monitor tool. Select the “Overview” tab. Explain
the various types of information it is providing you.

 6. Repeat #5 but select the “Memory” tab.

 7. Repeat #5 but select the “Disk” tab.

 8. Create a list of five tasks that you, as a system administrator, feel should be scheduled
for off hours. For instance, you might want to perform an automated backup at 2 am
every Sunday night.

 9. Explore the list of log files that are generated from the syslog daemon. As a system
administrator, which of those log files do you feel you should inspect daily? Which
should you inspect weekly? Which would you not inspect unless you had a particular
reason to? Give an explanation for your answers.

 10. As a user, how important is it for you to understand how a firewall works and to alter
its configuration? As a system administrator?

 11. As a system administrator, under what circumstances might you alter the services
that start at boot time in Windows? In Linux?

 12. As a follow-up to question #11, how would you alter the services that automatically
start up at boot time in Windows? In Linux?

335

C h a p t e r 12

Networks, Network
Software, and the Internet

In this chapter, computer networking is covered. This chapter begins by describing the
computer hardware that makes up the physical components of a computer network. Next,
networks are discussed at an architectural level: classifications of networks and network
protocols. Network software, including specific Linux software, is covered. Finally, the
chapter examines the Internet: what makes it work, how it has grown, and what its future
may be.

The learning objectives of this chapter are to

•	 Describe the role of network broadcast devices.

•	 Differentiate between types of network media.

•	 Compare network topologies and classifications.

•	 Discuss the role of each layer in the TCP/IP protocol stack and the OSI model.

•	 Explain IPv4 addressing and compare it to IPv6.

•	 Introduce popular forms of network software.

•	 Present a brief history of the Internet.

•	 Describe how communication takes place over the Internet.

A computer network is a collection of computers and computer resources (e.g., print-
ers, file servers) connected in such a way that the computers can communicate with each
other and their resources. Through computer networks, people can communicate, share
data, share hardware, isolate and secure data, and provide a platform for easy data backup.
Networks (particularly the Internet) also offer a means for commerce and sales. In fact,
there are a number of different benefits that the Internet has provided.

336 ◾ Information Technology

Although networks are known to improve workplace efficiency through the sharing of
data, resources, and communication, there are a number of costs associated with any com-
puter network. There is the cost to purchase and set up the physical media and administer
the network. However, that is not nearly the concern as the cost of securing the network
properly, or the cost of having an insecure network. Additionally, through computer net-
works, most people have access to the Internet, and in a workplace, this could lead to unde-
sirable behavior and inefficient use of time. Some of the threats to a computer network and
activities required in securing a computer network are covered in Chapter 15.

Although a network can consist of many types of resources, it is the computer that is
the primary tool used to communicate over a network. In a network, we define computers
as being local or remote. A local computer is the computer that the user is using. That is,
the user is physically present with that computer. A remote computer is a computer being
accessed over the network. For instance, using a remote desktop connection or telnet [or
ssh (secure shell)], you can log in to another computer. The computer you are logging into
is referred to as the remote computer. A host is a type of computer that can be logged into
from a remote location. This used to be an important distinction in that many personal
computers could not be host computers. But today, that is not necessarily the case as most
computers permit some form of remote login or remote desktop connection.

Computer networks can be viewed at a physical level (the connections or physical media
over which communication is possible), a logical level (network topology), or a software
level (the protocols and programs that allow the computers to communicate). This chapter
examines some of the ideas behind computer networks at each of these levels.

NeTworks aT a Hardware LeveL
The physical level of a network defines how information is carried over the network. At
this level, information is transmitted as bits over some type of media—a physical con-
nection. The media transmits information as electrical current, electromagnetic waves,
light pulses, or radio waves (sometimes at ultrahigh frequencies such as microwaves). The
form of transmission is based on the type of media selected. The type of media is selected,
at least in part, based on the distance between the resources on the network. The form of
media also dictates to some extent the network’s bandwidth. The bandwidth is the transfer
rate permissible over the media, described as some number of bits per second (bps or b/s).
Modern bandwidths are on the order of millions of bits per second (Mbits/second, Mbps).
Older technologies such as computer MODEMs (described later) were limited to hundreds
or thousands of bits per second, such as 56 Kbps.

The most common form of network connection used today is coaxial cable and fiber
optic cable. In the past, the most common connection was through twisted wire pair, as
used in much of the United States telephone network. We still find twisted wire pair used
extensively because it is cheap and because so much of it is already in place. Both coaxial
cable and twisted wire transmit information using electromagnetic waves, whereas fiber
optic cable uses light pulses. For long distances, cable is too expensive, and so radio signals
are sent via radio towers, cell phone towers, microwave towers, and bounced off of satellites

Networks, Network software, and the Internet ◾ 337

in orbit. See Figure 12.1 for a comparison of twisted wire pair (four in one cable in this
figure), a coaxial cable, and dozens of strands of fiber optic cable.

At this physical level, the network is responsible for encoding or decoding the data into
signals, modulating and demodulation signals, transmitting and receiving signals, and
routing of signals. Transmission is the last step that the network performs when sending
a message, and reception is the first step when receiving a message. Encoding/decoding
requires translating the individual bits in the message from the form stored in the com-
puter to the form that the network requires. The message, as stored in computer memory,
consists of electrical charges (current) whereas when transmitted over fiber optic cable,
the message will be a series of light pulses. If the physical media carries an analog signal
rather than a digital signal, further translation is needed, known as modulation. When the
signal is carried over the telephone line, a sequence of 1s and 0s is translated into a tone, to
be broadcast. Demodulation translates from an analog signal to the original digital signal.
Finally, routing steers the message from one network location to the next.

The form of routing depends on whether the network is packet switched or circuit
switched. A circuit switched network requires that a full pathway, or circuit, be established
before transmission can begin and maintained during the entire transmission. The tele-
phone network is a circuit switched network. Because the path exists during the entire
conversation, communication in either direction can occur simultaneously. In a packet
switched network, a message’s pathway is only established as it is sent. When a message
is received at one location, if it is not the destination location, then the message is for-
warded on to another location. The choice of pathway is based on network availability and
amount of message traffic. Most computer networks are packet switched, with the Internet
being the most well-known and commonly cited example. Figure 12.2 illustrates a network
where the message is routed from location to location until it arrives at its destination. If
the network was circuit switched, the route would be established in advance. If the network
was packet switched, the route would be established one branch at a time. Thus, in packet
switching, several messages between the same two resources could cross the network using
different paths.

FIGUre 12.1 Forms of cable.

338 ◾ Information Technology

Aside from the physical media that connects the network resources together, there are
other devices used to broadcast messages from one location to another. The broadcast
devices consist of hubs, switches, routers, and gateways. Collectively, these devices “glue”
the network together by providing points where a network can connect to devices and to
other networks.

A network hub is merely a device that connects multiple computers together. When
there are multiple computers connected to a hub, a message received by the hub is made
available to all computers in the hub. A destination address attached to the message indi-
cates which computer the message is intended for, but it does not necessarily prevent other
computers from picking up the message. A network switch is a more capable connection
than a hub. For one, it records the local network addresses [Media Access Control (MAC)
addresses] of all computers connected to the switch. A message is then only passed along
to the computer that matches the destination address. Thus, the switch is able to utilize
network bandwidth more efficiently.

The router is a device that connects multiple networks together. Therefore, the router
is like a switch for switches. Although you can use a router to directly connect computers
in a network, routers are typically used instead in specific locations in a network so that
messages can be routed to other networks. Figure 12.3 is a network hub and Figure 12.4
demonstrates several network switches with devices attached. Externally, there is little to
differentiate a hub from a switch from a router (other than perhaps the size). Internally,
the switch has more hardware, including storage space for MAC addresses, than a hub. A
router contains programmable routing tables and includes at least one input that comes
from another network.

FIGUre 12.2 A path through a network.

FIGUre 12.3 Network hub.

Networks, Network software, and the Internet ◾ 339

The switch and router use the message’s destination address to select the line to route the
incoming message to. A router has additional decision-making capabilities. For instance,
if message traffic exceeds its capacity, the router may have to purposefully drop messages.
Additionally, when there are multiple incoming messages, the router must select which to
forward first. A routing decision is the destination network that a message is placed onto.
This decision is generally left up to a routing table stored in the router’s memory.

The network gateway is a router that connects networks of different types. That is, if
there are two networks that use different protocols, the gateway is not only capable of rout-
ing messages from one network to the other but also of handling the differences in the
messages themselves because of the different protocols (we discuss protocols in Networks
at a Logical Level). Gateways appear at the edge of a network because they connect differ-
ent types of networks. Gateways, unlike routers, switches, and hubs, are not core compo-
nents within a network. For this reason, gateways may also serve as firewalls.

Figure 12.5 illustrates how these four broadcast devices differ. The hub merely passes
any message to all devices, thus it is a shared communication (whether that was intended
or not). This is shown in the top-left portion of Figure 12.5, where the first (leftmost) com-
puter sends a message to the hub, which is then distributed to the remaining computers.
On the other hand, the switch, shown in the bottom-left portion of Figure 12.5, passes a
message on to only one destination device, so the communication is dedicated. The router,
shown in the right side of Figure 12.5 connects local area networks together so that one hub
or switch can be connected to another. In the figure, the second from the right computer
in the top network is sending a message to the leftmost computer in the bottom network.
In general, a router uses the message’s destination address to determine which network to
route the message onto. The gateway, which would also look like that shown in the right-
hand side of Figure 12.5, serves the same purpose as the router except that it can convert
from one protocol to another while passing a message from one network to another. The
gateway then is used to connect different types of networks together, whereas the router
connects networks of the same type (protocol) together.

Aside from communication over computer networks, users can communicate via the
telephone system. In fact, this was the most common means of telecommunications for

FIGUre 12.4 Network switch.

340 ◾ Information Technology

decades. The telephone network is set up to pass signals in an analog form over twisted
wire pair. Computer data are stored in a binary form, either as electrical current inter-
nally or magnetic charges stored on disk or tape. The binary data must first be converted
into an analog form. This requires modulation (a digital-to-analog conversion). See Figure
12.6, where the sequence 1001 (or high, low, low, high current) must be translated into
analog form, or a sound, in which the wave forms are closer together to represent 1s and
further apart for 0s, which is heard by the human ear as different tones. In this form, the
data can be transmitted over the telephone lines. The receiving device must convert the
analog signal back into a digital form. This is demodulation (analog-to-digital conversion).
A MODEM is a device that performs MOdulation and DEModulation. A user would con-
nect the MODEM to the telephone line (for instance, a telephone wall jack), then place a
phone call to a destination that also has a MODEM. Next, the telephone handset would be
inserted into a MODEM cradle, as shown in Figure 12.7. The computers at both ends can
now communicate with each other. After communication, the handset would be placed
back on the telephone to end the phone call. Today, MODEMs are built into the computer

Binary

Digital signal

Analog signal

1 0 0 1

FIGUre 12.6 Signal modulation.

FIGUre 12.5 Hubs (upper left), switches (lower left), and routers (right).

Networks, Network software, and the Internet ◾ 341

so that you can plug your computer directly into the telephone wall jack although more
commonly, a wireless card lets your computer communicate to your wireless MODEM,
which can be placed at nearly any point in the house.

NeTworks aT a LoGIcaL LeveL
There are many ways that the computer resources can be connected together in a com-
puter network. The various layouts are collectively called network topologies. The topology
chosen dictates the cost of the network as well as the amount of time it might take for a
message to be routed to the destination. In addition, the topology can impact the reli-
ability of the network. Figure 12.8 demonstrates a variety of different topologies. In the
figure, computers and computer resources (file servers, printers, hubs, switches, routers,
CD ROM towers, tape drives, etc.) are all denoted as circles. The lines that link the nodes
together are the connections in the network, typically made up of some sort of cable (as

FIGUre 12.7 MODEM cradle.

FIGUre 12.8 Various network topologies, nodes are computer resources, edges are connections.

342 ◾ Information Technology

shown in Fig ure 12.1, this could be twisted wire pair, coaxial cable, fiber optic cable, or
some combination of these options). The various topologies are a bus topology (upper left),
star topology (middle left), ring topology (to the right of the star), full mesh (lower left),
and nearest neighbor topologies on the right side of the figure [one dimensional (1-D), 2-D,
tree, 3-D]. Not shown in the figure is a 4-D topology known as a hypercube.

The simplest form of a network is a point-to-point network where there is a dedicated
link between two resources. As a network topology, point-to-point is not often used because
it limits how devices can communicate with each other. We do see point-to-point connec-
tions within a computer such as the bus connecting the ALU to registers in the CPU, or
the connection between the monitor and the motherboard). We may also see point-to-
point networks in the form of long distance connections such as dedicated telephone lines
between two locations (e.g., the famous red phone that connects the White House and the
Kremlin).

The bus network topology is the next simplest form and is very common. In this topol-
ogy, every resource is connected to a single cable. The cable is the network, and it carries
one message at a time. Devices connect to the bus through “T” connections. Each device
would plug into a “T” connector that would plug into two cables, each leading to the next
device and “T” connector. Each end of the network would be connected to a terminator.
A cable will have a limited number of “T” connections however, so that the size of the
network is restricted. Figure 12.9a shows a “T” connector and Figure 12.9b shows how
computers connect to “T” connectors through network cards. A network card is plugged
into an expansion slot on the motherboard of the computer. The “T” connector is slotted
into a port so that it sticks out of the back of the system unit.

Another means to connect devices to the single network is through a hub or switch. In
this case, devices plug into the single connection through the back of the hub or switch. If
a network needs expansion, hubs or switches can be daisy chained together.

In the bus network, all devices listen to any communications over the single cable and
ignore all messages that are not intended for them. The bus provides a dynamic network in
that devices can be added and removed from the network at any time as long as there are
still “T” connectors available.

The bus network is the cheapest of all network topologies. It is a reliable form of network
and it does not degrade if a resource is either removed from the network or crashes. We
will see that other forms of networks can degrade when a resource crashes. In spite of this,
the bus network topology has a large drawback. All messages travel along the single cable
and so the network’s efficiency degrades as more devices are connected to it. The greater
the number of devices connected to it, the greater the demand will be on the network. This,
in turn, creates greater message traffic. So, the likelihood of two devices needing to use the
network at the same time increases as we add devices to the network.

What happens if two devices try to communicate at the same time? This is known as
message contention, and the result is that the messages will interfere with each other.
Therefore, after contention is detected, at least one of the devices must wait while another
device reattempts the communication. A strategy for handling message contention is dis-
cussed later in this chapter, developed for Ethernet technology.

Networks, Network software, and the Internet ◾ 343

The star network is in some ways the antithesis of the bus network. In the star network,
all devices have a single point-to-point connection with a central server. This server is a
device dedicated to act as a communication hub, routing messages from one machine to
the destination. The advantages of the star network are its simplicity, ease of adding (or
removing) devices, and the efficiency of message transferal. The star network does not have
to contend with message traffic like the bus network (although the hub can quickly become
a bottleneck if there are a lot of simultaneous messages). The number of links that it takes
for any message to reach its destination is always two (or one if the message is intended for
the hub device).

The star network has two detractors. First, it does require a dedicated device, making it a
more expensive network than the bus. The hub of the star network may be a hub or switch
as discussed in Networks at a Hardware Level. The hub of the star network may also be a
server, which would make the star network more expensive. Second, although losing any
single device would not degrade the network, if the hub is lost, all devices lose connectivity.

(a)

(b)

FIGUre 12.9 A “T” connection (a) and “T” connections to network cards (b).

344 ◾ Information Technology

A common approach to building local area networks today is by connecting star net-
works together. This is done by daisy chaining hubs together. So, for instance, a hub is
used to connect the resources of one network together and the hub is connected to another
hub, which itself connects the resources of a second network together. This creates a larger
single network in which all devices can communicate with each other. In this case, there is
an additional transmission required between some of the resources if they are connected
to different hubs. As hubs (as well as switches, routers, and gateways) will have a limited
number of connections, this approach allows a network to easily grow in size. All that is
needed is additional hubs. Figure 12.10 illustrates this concept. The “crossover cable” is
used to connect the two hubs together. In this particular figure, the devices on the network
are all connected to hubs by twisted wire pair.

In the ring network, devices have point-to-point connections with their neighbors.
Communication between devices requires sending a message to a neighbor and having
that neighbor forward the message along the ring until it reaches its destination. The ring
is easily expanded by adding new devices between any two nodes. However, the larger
the ring becomes, the greater the potential distance that a message might have to travel.
This, in turn, can create lengthier transmission times. Rings are cheap, like buses, in that
there is no dedicated resource that serves as a central point. A ring network could be uni-
directional or bidirectional in terms of the direction that messages travel. In a unidirec-
tional ring, if a device were to go offline, it would detach the network into two such that
some devices could no longer communicate with others. Assume, for instance, that the
ring topology shown in Figure 12.8 were unidirectional and all communication traveled

PC

PC

PC

PC

PC

PCPC

Twisted-pair cable

Twisted-pair cable

Twisted-pair cable

Twisted-pair cable

Twisted-pair cable

Twisted-pair cable

Twisted-pair cable

Hub
Crossover cable

Hub

Printer

Printer

FIGUre 12.10 Two bus networks connected by hubs.

Networks, Network software, and the Internet ◾ 345

clockwise around the ring. If the topmost device were to fail, the device to the immediate
left of the failed device would not be able to reach any other device, whereas the device to
the immediate right of the failed device would not be able to receive communication from
any other device. A bidirectional ring would require losing two devices before portions of
the network became isolated.

The mesh network, also known as a fully connected network, requires that every device
have a point-to-point connection with every other device. If there are n devices in the
network, there are as many as (n – 1)2 connections. Any device can directly communicate
with any other device without concern of message traffic, and if any device were removed,
it would not harm the connectivity of the network. However, the mesh network is imprac-
tical because of the cost. Not only does it require an excessive number of connections, it
requires that every device have n – 1 ports available to make those connections. The mesh
network is typically found in high-performance parallel processing computers but not
used in computer networks. A small mesh network of six devices is shown in Figure 12.8.
With six devices, there are a total of 25 connections. Imagine the number of connections
required for a mesh of 50 devices instead. This would require 2401 connections!

The ring network is a form of nearest neighbor network: neighbors are devices that are
directly connected together. The mesh network is the ultimate form of nearest neighbor in
that every device is connected to every other device so every device is a nearest neighbor.
There are many intermediate forms of nearest neighbor networks. These include the tree
network: one device is the root node of the tree, and it connects to one or more child nodes,
each child then connects to one or more subchildren, and so forth. A common tree is a
binary tree in which every node has up to two children. If a binary tree network has n lev-
els, then there will be 2n – 1 nodes, and a message could require as many as 2*(n – 1) trans-
missions between source and destination nodes. Figure 12.8 shows four forms of nearest
neighbor network, a 1-D network, a 2-D network, a 3-D network (not completely drawn),
and a tree network. A 4-D network carries the name hypercube.

Aside from the topology, we can classify networks based on their physical size. Size is
not a measure of the number of resources so much as the distance between the resources.
The most common size of network today is the LAN (Local Area Network). A LAN may be
wired (components are connected by a physical medium such as twisted wire pair, coaxial
cable, or fiber optic cable) or wireless (components communicate by either infrared light or
radio signals of some kind). Most LANs are wired or a combination of wired and wireless.
A purely wireless LAN is not common.

Many LANs today are collections of smaller LANs. Consider a university as an example.
The university will have computer laboratories. Within any one laboratory, there is one
LAN. The resources of the laboratory are connected together via some broadcast device
such as a hub or (more likely) switch. If the room is large enough, there may be multiple
hubs or switches connected together. In fact, if there are too many devices, there may be a
router that connects to multiple switches. This would create several LANs within the one
room.

Given that this is a university, the building no doubt contains several computer labora-
tories. Each laboratory (room) is connected to other laboratories via a router. This gives us

346 ◾ Information Technology

a LAN of LANs. These LANs connect to other LANs in the building again via routers, and
possibly gateways. For instance, there might be four LANs on the first floor of the building
that house Windows machines and two LANs on the second floor that house Macintosh
computers. The four first floor LANs are connected together by router, and the two second-
floor laboratories are connected together by router. The two routers are connected together
by gateway. Other floors of the building have their own LANs to connect together class-
rooms and faculty offices. Thus, the building contains a LAN of LANs. And this building
connects to other buildings in turn. The entire campus constitutes LANs of LANs.

A CAN (Campus Area Network) is, as the name implies, a network that covers some
organization’s site, such as a campus. This is obviously a LAN of LANs as described in
the previous paragraph. A CAN might extend beyond one regional area as well, perhaps
if a campus has branch locations in the city. At the other extreme of local area networks
is a PAN (Personal Area Network). The PAN is a small LAN, perhaps connecting together
the resources found in a person’s household. Many home computer users now have PANs
in which all home computers and a printer are connected together. This may be entirely
through wireless connections, or some resources, such as the printer, might be wired. The
device connecting these devices may be a network switch or hub, or it might be a MODEM
that has the capability of serving as a hub.

A LAN that uses the Internet Protocol (see the section Networks Protocols) is known as
an intranet. The advantage of an intranet is that applications intended for Internet usage
(e-mail, web browsing, telnet/ssh, etc.) will work internally as easily as they work exter-
nally. An extranet is the extension of an intranet over other networks so that access to the
intranet can be performed from remote sites. This requires additional security to ensure
that remote users are in fact authorized. Typically, a log-in process is used. A virtual private
network (VPN) is a common form of extranet. A VPN will often use encryption technology
so that messages that physically travel outside of the intranet cannot be understood even
if intercepted by techniques such as packet sniffing (this is discussed later in the chapter).

The LAN, CAN, and PAN are small networks in that they connect resources within a
small proximity (feet to perhaps a mile in distance). A larger network is the Metropolitan
Area Network (MAN), which encompasses a portion of or all of a city. At the small end, a
MAN overlaps a CAN in definition. For instance, universities that spread out over several
square miles might contain a MAN rather than a CAN (the distinction here is almost
irrelevant). At the larger end, the MAN covers an entire city. In such a case, the high-
speed physical connectivity of fiber optic cable or radio may be impractical. MANs can be
found covering such cities as London (England), Geneva (Switzerland), and San Francisco
(California, USA). We can continue to extend the reach of network beyond the MAN to
create a WAN (Wide Area Network). These might connect resources across a county,
state, country, or the entire world. One such WAN is called Sohonet, which links together
various film production and postproduction companies across the world (from LA to
New York, Canada to New Zealand, and many European cities). The largest WAN is the
Internet.

We briefly consider one form of implementation for a LAN. One of the most popu-
lar implementations is called an Ethernet. First developed in the early 1970s, the original

Networks, Network software, and the Internet ◾ 347

commercial release of Ethernet was produced by 3Com in 1980. Ethernet was standard-
ized in 1982 and was a competitor of the Token Bus and Token Ring forms of networks.
Although originally implemented using a bus topology over coaxial cable (with T con-
nectors), modern Ethernet networks can use twisted wire pair and fiber optic cable with
devices connecting to hubs or switches. By plugging resources directly into a hub or switch,
not only is it more efficient but it also reduces installation costs and improves network
management.

Ethernet technology has improved over the years, from a theoretical bandwidth of
10 Mbps to a current upper bandwidth of 100 Gbps. Ethernet introduced a number of
networking concepts that are commonly found today. These include collision detection
mechanisms, Ethernet repeaters, a 48-bit MAC (media access control) addressing scheme
for source and destination addresses, the Ethernet frame format, error handling mecha-
nisms, and a variety of adapters so that many different types of computers could connect
to an Ethernet. Here, we briefly look at just the collision detection scheme.

The form of collision detection introduced by Ethernet is called Carrier Sense Multiple
Access with Collision Detection (CSMA/CD). First, a device prepares a message to trans-
mit. It attempts to sense whether the network media is busy. If so, the devices waits until
the media is no longer busy. Then, it places its message onto the media. However, if another
device is waiting, both devices could place messages on the media at the same, or nearly
the same, moment. Therefore, even though it is transmitting, the device also attempts to
sense if any other message is coming across the media. If so, a collision is detected. The
device immediately stops transmitting the data and sends out a jam signal. The jam signal
is used to alert other resources not to transmit at that moment. The jam signal also, since
it is being transmitted over the same media that contains an actual message, overrides the
message. Any receiving device will pick up the jam signal and know that the message it was
receiving was corrupted. Now both sending devices wait a random amount of time before
retrying their transmissions. When switches were added to Ethernet over hubs and bus
connections, collisions were reduced, but CSMA/CD continued to be used.

We can also classify networks by the role that computers play within the network.
Specifically, we refer to networks as either peer-to-peer or client–server networks. A peer
means that each computer is roughly equal to every other computer. This differentiates a
network from that of a client–server model. The client is a computer that will request infor-
mation from another computer. The server is a computer (or device) that takes requests
and responds with the requested information. The client–server network then is a network
that contains one or more servers. Peer-to-peer networks are cheaper, although the need
for servers forces most networks to follow the client–server model. Servers, in many cases,
are more expensive computers as they typically require greater hard disk storage and faster
response time than the other computers in the network. Servers often look like large sys-
tem units, perhaps with multiple hard disk drives. Large file servers are often a collection
of smaller units mounted into a cabinet, as shown in Figure 12.11.

There are a variety of types of servers based on the type of service desired. One type of
server is the file server. In this case, the server’s role is to send files over the network at the
request of clients. The typical file server responds to requests over the LAN and services

348 ◾ Information Technology

only computers on the LAN. File servers may be used to support both application software
and data files. That is, clients will store only their own operating systems. A user wishing
to run software may have to load that software over the network on demand. Or, the file
server may be limited to only a few, shared applications software and/or data files.

Another form of server is the web server. This is a special type of file server in that it still
stores data files (web pages) and programs (scripts). However, the web server responds to client
requests from anywhere on the Internet rather than just the LAN, and the requests are spe-
cifically http (hypertext transfer protocol) requests. Responses may be html files, documents
stored on the file server, or web pages that were dynamically generated through server CGI
(common gateway interface) scripts. The web server has several duties that the file server does
not, including running server side scripts, logging requests and errors, and handling security.

Yet another form of server is the database server. It responds to client database queries with
responses pulled from the database. Additionally, the server may generate reports from data
obtained from the database management system. Like the file server, the database server typi-
cally responds only to local clients. Both the file server and the database server could respond
to authorized clients from remote locations if the server was accessible over a wider area
network. But like the web server, the duties of the database server go far beyond file transfer.

Other servers include print servers, mail servers, and ftp servers. Unlike the other serv-
ers, the print server does not return a file, but instead monitors print jobs and replies with an
acknowledgment that the print job has completed, or an error message. In the case of a mail
server, one submits e-mail to the server to be sent to another e-mail server. The two e-mail
servers communicate with each other, and once the e-mail is received at its destination, the
recipient server informs the recipient user that new e-mail has arrived. An ftp server is much
like a web server or file server in that requests are for files and responses are the files.

FIGUre 12.11 Rack mounted file server.

Networks, Network software, and the Internet ◾ 349

NeTwork ProTocoLs
A protocol is the set of rules established to govern how people behave and interact with
each other. This might be considered a form of diplomacy or etiquette, or the means by
which a researcher will report results to other researchers. A computer network exists at
several different layers. We might think of how the network works at the hardware layer
when discussing the media and the physical form that communication will take. We might
discuss how the network will ensure reliability through error handling information. Or
we might focus on how application software prepares messages for broadcast. In fact, each
one of these steps is necessary and we must specify not only how they work, but how the
steps work together. That is, we will consider network communication as a series of layers
and a message must be translated from one form to another as it moves from layer to layer.

A network protocol provides the rules by which the layers of a network communicate
with each other. This, in turn, provides rules by which different networks can communi-
cate with each other. This also informs network programmers and administrators how to
implement, manage, and maintain a network.

The most common protocol at the physical level is the Ethernet protocol, which specifies
such aspects of the network as the types of cable that can be used, the collision processing
mechanism (CSMA/CD), and the allowable types of topologies: bus, star, tree. Other exist-
ing popular protocols are LocalTalk, developed by Apple computers, Token Ring (devel-
oped by IBM), and ATM (asynchronous transfer mode), which directly supports audio and
video transfer.

Perhaps the most commonly used network protocol is TCP/IP (Transmission Control
Protocol/Internet Protocol),* which is a requirement of all computers that communicate
over the Internet. So, although computers may use other network protocols, they must
also run TCP/IP. As an alternative, the Open Systems Interconnection (OSI) model was
a proposed standard for all network communication. So, although TCP/IP is a concrete
protocol, OSI is often used as a target for new network developers. Today, both TCP/IP and
OSI are commonly cited models for network protocols, so we will examine them both here.

The OSI model consists of seven layers, as shown in Table 12.1. Each layer is numbered,
with the topmost layer numbered as 7 and the bottommost layer as 1. The top four lay-
ers are known as the host layers because the activities of these levels take place on a host
computer. These layers package together the message to transmit, or receive the message
and analyze it. The bottom three layers are known as the media layers because it is at these
layers that messages are addressed, routed, and physically transmitted. Although OSI is
not a specific protocol, it has been used to create network protocols, including Common
Management Information Protocol, X.400 electronic mail exchange, X.500 directory ser-
vices, and the IS–IS (Intermediate System to Intermediate System) routing protocol.

Layer 1, the lowest layer, is the physical layer. This layer dictates how the device that
wishes to communicate (e.g., a computer or a hub) will carry out the communication over
the transmission medium (coaxial cable, fiber optical cable, etc.). This layer requires such
details as the voltage required for transmission, how to modulate the signal (if needed),

* TCP/IP is really a collection of protocols and is sometimes referred to as a protocol stack.

350 ◾ Information Technology

how to establish and how to terminate the connection to the communication medium.
When establishing a connection, the layer requires the capability of detecting message
traffic (contention) and a means of resolution when there is traffic. When transmitting
data, this layer receives the data from layer 2 and must convert it into a form suitable
for transmission. When receiving data, this layer obtains the data from the transmission
medium (electrical current, sound waves, light pulses) and converts the data into a binary
format to be shared with layer 2. Thus, this layer deals with the message as a sequence of
bits. There are numerous implementations of layer 1 including IEEE 802.3, IEEE 802.11,
Bluetooth, USB, and hubs.

What Is 802?

You may have seen notations such as Ieee 802.xx. what does this mean? Ieee is the Institute
of electrical and electronics engineers. among the various efforts of the organization are a
number of standards that they have established. although standards are by no means laws or
requirements, most implementers attempt to meet the established standards to guarantee that
their efforts will be used and usable.

Most telecommunications standards are put forth by the Ieee and they are labeled as Ieee
802.xx, where the 802 stands for “February 1980” for the first month that Ieee met to discuss
telecommunications standards (it was also the first freely available number).

what are some of the standards that go under Ieee 802?

•	 Ieee 802.3—ethernet
•	 Ieee 802.7—Broadband LaN
•	 Ieee 802.10—LaN security
•	 Ieee 802.11—wireless LaN (a number of variations have been produced, each given a

letter such as 802.11 b, 802.11 g, and 802.11 n)
•	 Ieee 802.15.1—Bluetooth certification
•	 Ieee 802.22—wireless area network
•	 Ieee 803.23—emergency services workgroup

aside from Ieee 802, the Ieee has established a number of other standards ranging from
floating point representations in computers (Ieee 754) to the PosIX standard (portable operat-
ing system interface) that Unix and Linux systems meet (Ieee 1003) to standards in the field of
software engineering (Ieee 610).

TaBLe 12.1 OSI Model Layers

Data Unit Layer Number and Name Function
Data 7. Application User interaction with application software

6. Presentation Data representation, encryption/decryption
5. Session Host-level communication, session management

Segments 4. Transport Reliability and flow control
Packet/Datagram 3. Network Logical addressing, routing
Frame 2. Data link Addressing
Bit 1. Physical Physical media, signal transmission in binary

Networks, Network software, and the Internet ◾ 351

Layer 2 is the data link layer. If a message is intended for a device on the same network
(e.g., one that shares the same hub or switch), communication will occur at this level and
will not require layer 1. At this level, data are formed into units called frames. The frame
must indicate frame synchronization, which is a sequence of bits at the start of the mes-
sage. This layer contains two sublayers. The upper sublayer is the Logical Link Control
(LLC) sublayer. This layer provides multiplexing, which is the ability to carry of several
overlapping messages at a time. Through multiplexing, it is possible that multiple mes-
sages are of different network protocols, coexisting at the same time, sharing the same net-
work media. The lower sublayer is the MAC. MAC addresses are used to denote a device’s
location within a given network. The MAC sublayer allows devices in the same network
to communicate together by using only their MAC addresses. This sublayer serves as an
interface between the LLC sublayer and the physical layer. Layer 2 implementations include
IEEE 802.2, IEEE 802.3, PPP (Point-to-Point Protocol), X-25 packet switch exchange, and
ATM. Ethernet is an implementation for both layers 1 and 2.

Layer 3 is the network layer. At this layer, the physical characteristics of the network are
not a concern. Instead, this layer views data as variable length sequences with host and des-
tination addresses. This layer handles routing operations. Messages that arrive at a device
whose job is to route the message onward will examine the destination address with entries
in its own routing table to determine which network to place the message onto. Therefore,
routers operate at this level. At this layer, message components are formed into individual
packets. The message being transmitted by the sending device will likely consist of multiple
packets, perhaps dozens or hundreds depending on the message’s size. Layer 3 implemen-
tations include IP (see TCP/IP below), AppleTalk, IPX (Internet Packet Exchange), ICMP
(Internet Control Message Protocol), and ARP (Address Resolution Protocol).

Layer 4 is the transport layer. Its primary responsibility is to provide transparency
between the upper levels of the protocol and the physical transfer of individual packets.
At this level, messages are represented as segments to be divided into smaller units (e.g.,
packets). Among the services provided at this layer are reliability and control flow. For
reliability, this layer must ensure that the packet is received, and received with no error.
Details for handling reliability are described below. Control flow occurs when the two
devices communicating with each other over the media are communicating at different
rates (speeds), such as when two computers have different MODEM speeds.

To handle reliability, layer 4 must ensure that packets lost en route are replaced. There are
a variety of mechanisms for handling this. A simple approach is to stamp every packet by
its sequence number within the overall message, such as 4 of 7. The receiving device expects
seven packets to arrive. If all packets arrive other than number 4, the sending device must
resend it. Additionally, every packet will contain error detection information, such as a check-
sum. The checksum is a computation based on the binary values that makes up the message.

One simple computation for a checksum is to add up the number of 1 bits in the mes-
sage. For instance, if a binary message consists of 256 bits, and 104 of those are 1s and the
remaining 152 are 0s, then the checksum would be 104. However, typically, the checksum
should be fixed in size. To accomplish this, a checksum function might add up the num-
ber of 1 bits and then divide this by a preselected value. The checksum then becomes the

352 ◾ Information Technology

remainder of the division (this is the mod, or modulo, operator). The idea of using mod is
known as a hash function. There are a number of different checksum algorithms including
fingerprints, randomization functions and cryptographic functions. In any event, upon
receipt of a packet, layer 4 determines if any of the data in the packet is erroneous by
comparing the checksum value with the data in the packet. If an error is detected, layer 4
sends out a request so that the packet can be resent. Layer 4 implementations include TCP,
UDP (both of these are discussed along with TCP/IP below), and SCTP (Stream Control
Transmission Protocol).

Layer 5 is the session layer. This layer maintains a connection between two devices.
When two devices communicate, they first establish a session. The session remains open
until the devices terminate the connection. In between establishing and terminating the
session, the session must be maintained. Additionally, a session that is prematurely ter-
minated can be restored at this layer. It is this layer that handles these tasks (establish-
ing, maintaining, restoring, terminating). Layer 5 implementations include NetBIOS,
SAP (Session Announcement Protocol), PPTP (Point-to-Point Tunneling Protocol), and
SOCKS (SOCKet Secure).

Layer 6 is the presentation layer. This layer is responsible for translating messages from
the given application, which is generating the message, into the form of syntax required
by the lower layers. Because of this, layer 6 is sometimes referred to as the syntax layer. It
is at this layer that the original representation of the message is converted into a uniform
representation. For example, in the C programming language, strings are terminated by
a special character, \0. At this layer, any \0 characters can be stripped from the message.
Another example is for hierarchically structured data, such as data in XML notation. Such
data must be converted into a flat format. Encryption (for outgoing messages) and decryp-
tion (for incoming messages) takes place at this level. Layer 6 implementations include
SSL (Secure Sockets Layer), TLS (Transport Layer Security), and MIME (Multipurpose
Internet Media Extensions).

Layer 7, the highest layer, is the application layer. At this level, the end user or application
program creates the message to be transmitted, or at this level, the application program
presents a received message to the end user. This layer includes various network commu-
nication programs such as telnet; ftp; electronic mail protocols such as POP, SMTP, and
IMAP; and network support services such as domain name system (DNS).

The OSI Model works as follows. A message is created through some application soft-
ware at layer 7. This initial message is considered the data to be transmitted. Layer 7 affixes
a header to the front of the message and maps the message to layer 6. At layer 6, an appro-
priate header is added to the message. The message, now consisting of the original data
and two headers, is mapped into layer 5, and another header is affixed to the front of the
message. The top three layers operate on the message as a whole rather than the segmented
units operated on starting at layer 4. At layer 4, the message is divided up into packets and
then into smaller units until, at layer 1, the message is treated as individual bits. Layers 4
and 3 also affix header information and layer 2 adds both header and footer information.
Finally, at layer 1, the message is transmitted. A received message is similarly mapped
upward through each layer, removing the header (and footer) as needed until the message

Networks, Network software, and the Internet ◾ 353

arrives at the topmost layer and delivered to the application software. Figure 12.12 illus-
trates the mapping process in OSI.

TCP/IP is the other, commonly used, transmission protocol. TCP/IP comprises two
separate protocols that were united early in the development of the Internet. TCP handles
reliability and ordered delivery of packets. It operates at higher levels of the protocol stack,
saving the details for how packets are transmitted to the IP portion. Although TCP is used
extensively for Internet communication, some applications use User Datagram Protocol
(UDP) in its place. Both TCP and UDP sit on top of IP, the Internet Protocol. Here, we
briefly examine the layers of TCP/IP and compare them to the layers found in OSI. Unlike
OSI, the layers of TCP/IP are not as proscriptive. That is, they describe what takes place at
those layers, but they do not offer details on how those actions should take place. Therefore,
there are many different ways to implement the TCP/IP stack.

The lowest layer of IP is called the Link Layer. The Link Layer corresponds directly to
the lowest two levels of OSI. This layer performs all of the services in the physical and data
link layers. The second layer of IP is the Internet Layer. This layer is responsible for sending
packets across one or more networks. At this level, addressing and routing take place. It is
at this level that IP addresses are utilized. TCP/IP layer 2 is similar to OSI layer 3. However,
OSI permits communication between devices on the same network in its layer 2, whereas
all routing takes place at layer 2 of TCP/IP. There are other substantial differences between
OSI Layer 3 and TCP/IP layer 2, but these are not covered here.

It should be noted that the addressing and routing referred to here are from IP version
4 (IPv4), the current and more popular version of IP. However, because of a limitation on
the number of IP addresses, and because of an interest in improving the Internet, IP ver-
sion 6 has become available. IPv6 will make significant differences in Internet usage as
demand increases over the next decade. One of the biggest differences between IPv4 and
IPv6 is the form of addresses. In IPv4, machine addresses consist of 32 bits divided up
into 4 octets. Each octet is 8 bits (1 byte) and thus can store a number between 0 and 255.
The octets of the IP address are separated by periods. For instance, an IP address might
be 127.31.49.6.

Transmission of message in bits over network

Data

Data

Data

Data

Data

Data

L7H

L6H

L6H

L6H

L6H

L6H

L5H

L5H

L5H

L5H

L4H

L4H

L4H

L3H

L3HL2H

L7H

L7H

L7H

L7H

L7H

FIGUre 12.12 OSI model mapping layer by layer.

354 ◾ Information Technology

There are three classes of networks with respect to IP addressing (the practice of assign-
ing classes to networks was discontinued in 1993 although network addresses are often
still assigned this way). The class of network dictates which bits of the four octets specify
the network on which the computer is housed and the remaining bits denote the machine’s
address on its network. Class A networks only use the first 7 bits of the first octet to denote
the network address. This limits the number of class A networks to 128, but leaves 25 bits
for addresses within the network, and thus class A networks can have as many as 16 M
(more than 16 million) internal addresses. Class B networks are denoted with first octet
addresses of 128–191 and use the first two octets to identify the network. This leaves 16 bits
for network addresses, or 65,536. Class C networks, the most common, use the first three
octets for the address allowing for millions of class C networks. However, the class C net-
work then has only a single octet for each device’s address on the network. Therefore, a class
C network can only contain up to 256 addressable devices. See Table 12.2 for details. Notice
that two classes have reserved first octet address values but have not been used to date.

IPv4 addresses are 32 bits long. This provides for 232 different (distinct) addresses, or
approximately 4 billion unique IP addresses. Although this looks like a large number,
the limitation has created a problem in that we have reached this limit because of hand-
held devices (e.g., cell phones) connecting to the Internet. Furthermore, many of the IP
addresses that would normally be available have not been utilized. For instance, class A
networks may have enough addresses for more than 16 million internal devices, but this
does not mean that every class A network uses all of the available addresses. On the other
hand, an organization might be granted a class C network address but may require more
than 256 distinct addresses.

In IPv6, addresses are 128 bits in length and often displayed using hexadecimal nota-
tion. The advantage of the longer address is that it provides as many as 2128 distinct IP
addresses. This gives us plenty of addresses for a very, very long time, even if we provide a
different address for every processor on the planet (including those in cell phones, sensors,
and other electronic devices). The 128-bit address is usually composed of two parts, a 64-bit
network address prefix used for routing across the Internet, and a 64-bit interface identifier
to denote the host within the network. An example address might be 1234:5678:90ab:cdef:
1234:5678:90ab:cdef. Notice the use of hexadecimal in the address rather than binary or
decimal as we typically view IPv4 addresses.

TaBLe 12.2 Internet Network Classes

Class
Octets for

Network Address

Octets for
Address in
Network

Number of
Addresses for

Network
Legal Addresses

(1st Octet) Comments
A 1 3 16,777,216 0–127 Many addresses have

gone unused
B 2 2 65,536 128–191
C 3 1 256 192–223
D Not defined Not defined Not defined 224–239 Multicast addresses

only
E Not defined Not defined Not defined 240–255 Reserved (future use)

Networks, Network software, and the Internet ◾ 355

TCP, the upper layers of TCP/IP, also consists of two layers: the Transport Layer and the
Application Layer. The Transport Layer is similar to OSI’s Transport Layer (OSI layer 4).
However, TCP allows for two different forms of data streams, those using TCP and those
using UDP.

UDP does not provide the reliable form of communication that TCP does. When a
UDP packet is dropped during transmission, there is no effort to resend it. Although this
sounds like a negative, it can be advantageous when real-time communication is more
important than data reliability. As an example, real-time audio transmission might use
UDP instead of TCP. The rationale behind this is that a recipient would not want the audio
signal interrupted while a packet is resent. The omission of one (or even a few packets)
would almost certainly not interfere with the recipient’s ability to understand the audio
signal.

Figure 12.13 illustrates the contents of a TCP packet versus a UDP packet. The UDP
packet is far more concise because it lacks such information as a sequence number,
acknowledgment information, control flags to specify how the packet should be handled,
and a data offset, indicating the size of the data field. The urgent pointer is optional in the
TCP packet but can be useful for denoting the last urgent data byte in the data field.

The highest layer of TCP/IP is the Application Layer, which is roughly synonymous
with OSI’s top three layers. In the case of the Session Layer of OSI, where a connection

Source address
Destination address

Source port Destination port

Sequence number

Acknowledgement number

Data offset/reserved bits Flags Window

Checksum Urgent pointer

Options (optional)

Data

Source address

Destination address

Destination portSource port

Length

Data

Checksum

(a)

(b)

FIGUre 12.13 Standard TCP packet (a) and UDP packet (b).

356 ◾ Information Technology

is retained until termination, there is nothing precisely equivalent in TCP/IP. However,
similar capabilities are handled in TCP/IP’s Transport Layer.

Putting the four Layers of TCP/IP together, we see much of the same functionality as
OSI. As with OSI, the message being transmitted or received is converted between layers.
Figure 12.14 provides an illustration of how a packet is converted layer by layer in TCP/IP,
where each lower layer adds its own header to the previous layer, and the Link Layer adds
a footer as well.

Recall that both OSI and TCP/IP are protocols. They dictate several aspects of network
communication although they leave other details to implementers. Both require that the
protocols be used to translate a message from one format (as generated by some appli-
cation software) to a format that can be transmitted, and then translated back from the
transmitted form to a format that the destination application software can handle. Refer
back to Figures 12.12 and 12.14 for the OSI and TCP/IP mappings, respectively. As you
might notice, mappings take place from top down and from bottom up. As the message
moves down the protocol, more and more details are added such as headers, error check-
ing, and addressing information. As a message moves up the protocol, those added details
are stripped off of the message.

One other aspect of note for TCP/IP is that of network handshaking. In fact, whenever
two computers communicate over network, before any communication takes place, the two
devices must perform a network handshake. In essence, this means that the first machine
contacts the second with a message that indicates “I wish to communicate with you” and then
it waits. When the second machine is ready, it responds with “I am ready”. Once the hand-
shake is done, the machines can freely communicate until communications are terminated
at one end. TCP/IP introduced the notion of a three-way handshake. Here, the first machine
sends a synchronization packet (SYN), to the second machine. The second machine, when
available, responds back with a synchronization and acknowledgment packet (SYN/ACK).
Finally, the first machine responds to the second with an acknowledgment packet of its own
(ACK). At this point, the two machines are synchronized and ready to communicate, until
communication is terminated. Referring back to Figure 12.13, you can see an “acknowledge-
ment number” in the TCP packet. This is used to support the three-way handshake.

Data Application
layer

Transport
layer

Internet
layer

Link
layer

Frame
footer

Data

Data

Data

UDP
header

UDP
header

UDP
header

IP
header

IP
header

Frame
header

FIGUre 12.14 TCP/IP packet formation.

Networks, Network software, and the Internet ◾ 357

One concept not discussed in our examination of TCP/IP is that of a port. TCP and UDP
messages not only require destination addresses but also port addresses. The port is merely
an indication of the intended destination software for the message. Thus, when a message
is received by a destination machine, the operating system can determine how to handle
the message by the port address provided. TCP/IP dictates how that message should be
decomposed, but not the application software that should handle it. Ports are dedicated
for many different purposes. For instance, the common port used for the SMPT e-mail is
25, and the common ports for http used for web browsing are 80 and 8080. There are port
numbers dedicated to ftp (20), telnet (23), ssh (22), and https (443).

Port addresses not only serve the OS, but can also be used by protection software. For
instance, a firewall may disallow certain port addresses such as 23 (since telnet is not
secure). Similarly a web server may ignore messages that come in from ports other than
those expected (e.g., 80, 8080, and 443). Although we limit our discussion of ports here,
you will no doubt gain experience with them as you further explore IT.

We finish off this section with one other TCP/IP-related topic: network address trans-
lation (NAT). NAT is the conversion of one IP address to another. Basic NAT simply
uses one IP address as an alias for another. That is, there is a one-to-one mapping of
one address to another. This form of translation might be useful if two networks with
incompatible network addresses are attempting to communicate with each other. In basic
NAT, the translation process must modify the message’s IP address, IP header, and any
checksum of the message that was computed by both the message content and the header
information.

However, it is far more common to use NAT to hide an entire series of IP addresses.
For instance, an organization might not have enough IP addresses for all of its internal
devices. In this case, only some of the machines in the LAN are given actual IP addresses
that can be “seen” from outside. The other devices are hidden from view externally. When
a message arrives, the destination address must be converted into an internal, private IP
address. This form of NAT is called many-to-one, or NAT overload or IP masquerading.
A server must be able to determine which private IP address should be used in place of the
external address. The translation to the private IP address requires additional modifica-
tions because the packet must be routed properly to the correct internal router. Among the
modifications, it is possible or even likely that port addresses will be modified as well as IP
addresses. The advantages of many-to-one NAT are that they offer a degree of protection
because of the privacy of the internal addresses, and permit LANs to have additional IP
addresses. The main disadvantage of many-to-one NAT is the complexity it introduces at
the server that handles the Internet connection.

NeTwork soFTware
In this section, we look at common forms of network software. These are programs that
we might use to communicate between devices over a network. These are all used in TCP/
IP intranets, so these are not necessarily limited to just Internet usage but can also provide
service within an LAN.

358 ◾ Information Technology

Telnet is a program that allows an individual to log into another computer over the net-
work. The person performing the telnet operation needs to have an account on the remote
(host) computer. A variation of telnet is called rlogin, available in Linux. With rlogin, the
user does not have to actually log in to the destination computer because the user’s account
information (name, password) will be the same on all networks computers. Linux actually
has several “r-utilities”, where “r” stands for “remote.” Aside from rlogin, there is also rfile,
rsh, rstatus, and rwho to name a few. The rfile program allows you to perform a variety of
file management operations remotely. The rsh program opens a shell to another machine
remotely. The rstatus program provides basic receiver status information. The rwho pro-
gram performs the Linux who command on the remote machine, showing you who is
logged in. The idea behind the r-utilities is that they run on a LAN of computers that share
the same log in server. The r-utilities do not require that you log in to the remote computer
as long as you have logged into your local computer. However, the r-utilities must be set up
explicitly for use by a system administrator.

Telnet and rlogin share a problem; neither program is secure. Messages passed between
local and remote computers are in clear text. This includes, in telnet’s case, any passwords
sent from the local to remote computer. It is therefore possible that messages can be inter-
cepted by a third party who might then view your password or other sensitive material.
The ssh utility is a Linux program that performs encryption and decryption automatically
on any message sent, thus providing a secure form of communication, unlike telnet and
rlogin. Although ssh is part of Linux, it is also available via the putty program for Windows.

MorrIs’ Internet WorM

on November 2, 1988, a graduate student at cornell University, robert Morris, unleashed
a program on the Internet intended to demonstrate security holes in Unix. Now known as
Morris’ Internet worm, the program infiltrated about 6000 Unix machines over the course of
3 days, bringing a sizable portion of the Internet to a crawl, or down entirely (it was estimated
that there were about 60,000 total computers on the Internet, so the worm impacted 10%
of the Internet). The worm specifically attempted to gain entrance to Unix systems through
four approaches:

•	 Guessing weak passwords (including no password at all)
•	 exploiting known flaws in the Unix sendmail program such as a buffer overflow
•	 exploiting known flaws in the Unix finger command
•	 Using r-utilities to propagate to other network machines

once the worm reached a machine, it would upload its full version of itself and make
copies to send to other network machines, machines listed in the current machine’s /etc/host
table, and other machines through the same four approaches as listed above.

In essence, the worm acted as a denial of service program in that it made so many copies
of itself that the infected computers could do little else than run copies of the worm.

For his efforts, Morris paid $10,000 in fines and served 400 hours of community service.
The cost of the damage of the worm was estimated at between $100,000 and $10 million.
The worm prompted darPa (defense advanced research Projects agency) to establish a
group that would deal with Internet emergencies and threats in the future.

Networks, Network software, and the Internet ◾ 359

Ping is a program that will generate and send packets repeatedly to the destination
device, outputting acknowledgment messages. This lets you know (1) if your machine can
reach the network and (2) if the remote machine is accessible. You can also use ping to see
how long the message and response take to determine if you have some abnormal network
latency.

A similar program to ping is traceroute. This program outputs the route taken between
your computer and the destination computer. You may use traceroute to see how a message
(packet) makes it across the Internet, how much time it takes, and if there are routers along
the way that are causing problems.

Both ping and traceroute are often considered insecure programs. Clever hackers might
use either or both to investigate the computers on a LAN. In this way, the hackers can obtain
IP addresses that might not otherwise be public knowledge, and use these IP addresses to
stage an attack. Therefore, it is possible that the system or network administrator might
disable both of these programs.

HTTP is the basis for web browser communication. An http request sent to a web server
results in a page being returned and displayed in the browser. However, there may be times
when you want to download the file quickly without displaying it in a browser. You can
accomplish this from the command line in Linux using the program wget. In wget, you
specify the complete URL (server name, directory path on the server, file name). The file is
then downloaded to the current directory.

You can also download files directly using an FTP program. However, in FTP, a session
is created between you and the server, which remains open until either you terminate the
session, or the session times out. Although most FTP programs are graphical, there is also
a command-line version. Graphical versions of ftp include Filezilla, Win-Ftp, and Win-
SCP (which includes a secure form of FTP, similar to how ssh is a secure form of telnet).
In using ftp to access files on a remote computer, you must either have an account on the
remote computer or you must log in as an anonymous user. Anonymous users often only
have access to public files on the ftp server.

One large difference between http and ftp is the URL. You commonly submit an http
request by clicking on a link in an html document in a web browser. The link encodes
the location of the document that you want to retrieve so that you do not have to memo-
rize such information. In ftp, however, you must know the server’s address, and then you
must either know the directory path and the file name, or you have to search around on
the server to locate what you are interested in. In both http and ftp, the server’s address
should be the machine’s IP address. However, since IP addresses are hard to memorize,
we have invented a shortcut whereby you can use the machine’s IP alias instead. The alias
is an English-like description (or abbreviation) of the destination machine. For instance,
we have such aliases as www.google.com for businesses, www.nku.edu for universities and
www.usa.gov for government sites.

Routers can only handle IP addresses, not IP aliases, so we have to provide a form of trans-
lation from alias to address. This is handled by DNSs. A DNS server is merely a computer
running a DNS program and data files that provide mapping information. Additionally,
the DNS has pointers to one or more DNSs on the Internet so that, if the local DNS does

360 ◾ Information Technology

not have the mapping information, it can pass the request on to another DNS. DNSs are
arranged hierarchically across the Internet so that a request might be passed along from one
DNS to another to another to another before the mapping can finally be obtained.

The nslookup program provides a translation from IP alias to IP address for you. This is
convenient if you want to make sure that a particular alias has been established in a DNS
table. It is also useful if you want to know the physical IP address of a computer, knowing
only its alias. If you want to learn your own computer’s IP address, use ifconfig (in Linux)
or ipconfig (in Windows).

Three other Linux network commands are arp, used to determine Ethernet connectivity
and network card response; netstat, used to determine the status of network connectivity
and socket status; and route, which lists the routing tables (including such things as net-
work gateway IP address and local network IP address and masks). Also of note in Linux
is the network service command. You can start or stop the network service or check its
status. The command looks like this:

/sbin/service network command

where command is down, start, restart, status. The network service is a daemon that must
be running for you to be able to use the network (send out messages or receive messages).

Linux has many network-related files worth exploring. A few are listed below.

•	 /etc/hosts: IP alias to address mapping for machines that your machine will often
communicate with. By placing the IP addresses in this file, your machine does not
have to communicate with the DNS first, saving time.

•	 /etc/resolv.conf: stores the address of your DNS. There may be several entries.

•	 /etc/sysconfig/network-scripts/: stores configuration files that are run during the
Linux system initialization process to set up network connections.

•	 /etc/xinetd.d/: contains services that rely on the network daemon, xinetd.

•	 /etc/hosts.allow and/etc/hosts.deny: to permit or restrict access to your computer.

•	 /etc/hosts.equiv: contains IP addresses of “trusted” machines so that r-utilities will
work for all computers defined as equiv (equivalent).

Placing your computer on a network invites hackers to attack your computer. This is
perhaps one of the most vulnerable aspects to modern-day computing. The ultimate secu-
rity is to not connect your computer to a network. Naturally, this drastically limits your
computer’s capabilities and your own. Therefore, network security software is available.
Such software is not just useful these days but essential for anyone who wishes to access
the Internet safely. Two of the most common network security software are firewalls and
antiviral software.

Networks, Network software, and the Internet ◾ 361

A firewall can either be software or hardware (in the latter case, it is a dedicated server
that runs firewall software). The firewall software contains a list of rules that describe the
types of messages that should either be permitted to make it through the firewall and to
your computer, and those that should be blocked. Rules can be based on the port num-
ber of the message, the type of message, the IP address of the originator of the message,
whether the message is in TCP or UDP (or other) format, and protocol (e.g., http, https,
ftp). We briefly examined the Linux firewall in Chapter 11.

Antiviral software attempts to identify if a file contains a virus, or more generally, some
form of malware. Antiviral software can be run on demand, or you can set it up so that
all incoming messages are scanned. Unfortunately, antiviral software will not necessarily
catch every piece of malware. As programmers become more ingenious in how to attack
an unsuspecting user, antiviral software must become more sophisticated. But the antivi-
ral software always lags behind the innovations of the attackers. Furthermore, you must
be diligent in updating your antiviral software often (new releases may come out daily or
weekly).

Networks may have their own forms of security, such as intrusion detection and intru-
sion prevention software. There is no generic solution to preventing intrusions at this point
as all operating systems have security holes to be exploited. In fact, hackers often attempt
to probe a system’s defenses before they mount an attack. Some of the openings that hack-
ers may find include leaving gaps in the firewall (e.g., ports that are not inspected), leaving
wireless connections unprotected, foregoing encryption, not requiring strong passwords,
a lack of physical security around network access points, and permitting operations such
as ping and traceroute.

Among the more common forms of attacks found today are denial of service attacks on
web servers, IP spoofing to intercept messages, ARP poisoning to change IP addresses in
a router to be of the attacker’s machine rather than a local machine, buffer overflow that
allows a hacker to invade computer memory with their own code, and SQL injections that
permit a hacker to invade a database with their own SQL commands. Although these are
all known forms of attacks, it does not necessarily mean that a system is protected against
them. And as these attacks are known, newer attacks are being thought of. Any organi-
zation that values data integrity and the functionality of its computer systems will need
operating system level and network security. It is common for mid-sized and large organi-
zations to hire network security administrators in addition to system administrators. We
examine data integrity and security in Chapter 15.

THe INTerNeT
IP addresses are often difficult to remember, so we allow users to reference servers by aliases,
such as www.google.com. In order to translate from an alias to the actual IP address, you
need access to a DNS server. Every network either has a DNS or knows where to find a
DNS. Most of this is hidden from you as a user, but if you are a network administrator,
you will have to either set up a DNS or know where to find one. There are further aliases
to restrict what a user might have to remember. For instance, it is common to further alias

362 ◾ Information Technology

a web server so that the user does not require the www portion, and therefore although
www.google.com is the alias of the Google search engine web servers, so is google.com. The
DNS is a computer that has a table that contains IP addresses and aliases. When provided
with an Internet alias, the DNS looks the entry up in its own DNS table and returns the
corresponding IP address. The IP address is then sent back to your computer.

Computer networks have existed for decades. In the past, most computer networks were
local area networks (LAN), and they were isolated—you could communicate within the
network, but not outside of the network. The Internet changed all of this. To communicate
over the Internet, a machine needs to run the TCP/IP protocol. With the popularity of the
Internet, all computers today run TCP/IP. A computer connected to a LAN can also com-
municate over the Internet if the LAN has a connection to the Internet, and most do. We
have blurred the lines of where one network stops and the next starts. A network connect-
ing computers in a single room is connected by router to a network connecting comput-
ers in another room. The network that exists on one floor is connected to the network on
another floor. The networks of one building are connected to the networks in other build-
ings. A LAN might be considered any one of these networks, or the network that covers the
entire campus. With VPNs, the network can expand to include those logged in remotely
from other sites. The network for the organization is most likely connected to the Internet
as well. With Internet Service Providers (ISPs), computers in people’s homes also connect
to the Internet making the Internet a network of networks. So you might think of the
Internet as an extension to the LAN of your current computer. There are three technologies
“gluing” these computers together:

 1. Packet switching. The telephone network uses circuit switching—when you dial a
number, a pathway is set up between the source phone and the destination phone and
that pathway remains fixed and established until one of the phones hangs up. Cell
phone networks, carrying voice (but not data), are similar although the circuit can
change as you move because you are routed to the nearest available cell phone tower.
Packet switching, on the other hand, breaks the communication down into small
packets of data and each is sent across the network separately. Each packet could
potentially take a different pathway to reach the destination. Packet switching was
pioneered in the 1960s when the Internet was first being constructed.

 2. Routers. The router is the device that permits packet switching so that a message
can be routed to the next link in the network “on the fly.” The router is a device that
receives a message, examines its destination IP address, and sends the message on to
the next location in the network, another router. At the destination network, routers
route messages until they reach a LAN, and finally the LANs router or switch sends
the message to that one destination machine.

 3. IP addresses. Part of the TCP/IP protocol is addressing rules. An IP address consists
of four numbers, where each number is between 0 and 255. For instance, 10.11.241.105
is an IP address. Each number is actually stored in 1 byte of memory (1 byte is 8 bits,
and 8 bits can store any number from 0 to 255). This makes an IP address 4 bytes

Networks, Network software, and the Internet ◾ 363

or 32 bits in size. Since IP addresses are difficult to remember, we often reference
machines by an IP alias, an English-like name (for instance, www.google.com). In
order to translate from an IP alias to an IP address, we use a DNS. As mentioned
earlier, because of the limitation now being felt by the 32-bit addresses, IPv6 uses
128 bits for IP addresses.

The three classes of IP addresses currently in use dictate how to interpret the 4 octets of the
address. In class A IP addresses, the first octet is the network ID and the remainder of the
octets constitute the computer number. Class B addresses split the address into network ID
for the first two octets and the machine number in the last two octets. Class C addresses
use the first three octets for the network address leaving one octet (256) for the machine
number. The class identification of the network part of the address can be subdivided even
further through a process called subnetting.

You may have seen the term subnet mask. What is a mask (or netmask)? We often com-
pute values in a computer using the AND or the OR operation on binary bits. For instance,
the two bytes 10101010 and 00001111 when ANDed together yield 00001010 and when
ORed together yield 10101111. These operations work bit-wise, that is, we perform the AND
or OR operation on the first bit of both numbers to yield a new first bit (1 AND 0 is 0, 1 OR
0 is 1). We do this for all eight pairs of bits. The AND operation returns a 1 if both bits are
a 1 (0 otherwise) and the OR operation returns a 1 if either bit are a 1 (0 otherwise).

Now, why do we use these? Imagine that you have the following IP address in binary:

00001010.00001011.11110001.01101001 (10.11.241.105)

If we AND this with 11111111.11111111.11111111.00000000, what do we get? We get

00001010.00001011.11110001.00000000

What does this value represent? We started with 10.11.241.105 and the result of the AND
operation gives us 10.11.241.0. For a class C network, what we have obtained is the IP
address of the network that houses our computer. On the other hand, if we AND the num-
ber with 00000000.00000000.00000000.11111111, we get

00000000.00000000.00000000.01101001

This value, 0.0.0.105, is our computer’s specific address on the network.
The bit patterns 00000000 and 11111111 are the integer numbers 0 and 255, respectively.

We use the values 255.255.255.0 and 255.0.0.0 as netmasks. Two combinations that we
would not use are 0.0.0.0 and 255.255.255.255 because such netmasks would either return
0.0.0.0 or the entire original IP address, so neither would provide us with useful informa-
tion. The subnet mask is used to easily obtain the network number and the subnet number
is used to obtain the device’s address on the network. You may also see an IP address ref-
erenced like this: 10.11.241.0/24 or 10.0.0.0/8. This is simply another technique for defining

364 ◾ Information Technology

the subnet mask. The number after the / refers to the number of binary 1’s in the mask.
Therefore, a mask of 255.255.0.0 can also be referred to as /16.

How the Internet works

Briefly, the Internet works as follows. You want to send a message from your computer to
another computer (e.g., e-mail message, http request for a web page, ftp request, ssh, or
telnet communication). Your computer takes your message and packages it up into one or
more packets. Packets are relatively small. If the message is short, it can fit in one packet.
As an example, the request http://www.google.com/ will be short, but an e-mail message
could be thousands to millions of bytes long so it might be placed into multiple packets.
Each packet is given the destination address (an IP alias), a checksum (error detection
information base, which often is computed by summing up the byte values of several bytes
and then doing some compression type operations on that sum and then summing the
sums), and a return address (your machine’s IP address so that the destination computer
can send a response).

As the packet is assembled, the destination IP alias is translated into an IP address. Your
computer stores the address of your site’s DNS (in Linux, this is stored in /etc/resolv.conf).
Your computer sends a message to the site’s DNS to translate the IP alias to an IP address.
If the local DNS does not recognize the IP alias, then a request is passed on to another
DNS. The DNSs on the Internet are organized as a hierarchy. Ultimately, a DNS will rec-
ognize the alias and respond to those below it with the address. Each receiving DNS will
update its own tables (if necessary). However, if the DNS at the highest level of the hierar-
chy does not recognize the alias, an error is returned and your message will never make it
out of your computer.

Once the IP address has been provided, the packets are sent out. They are sent from your
computer to your site’s Internet point of presence (or gateway). The message is routed from
the current LAN to this gateway. From there, the server sends each packet along one of its
pathways that connect it to the Internet. Each packet finds its own way across the Internet
by going from one router to another. Each router selects the next path based on the destina-
tion address and the current message traffic along the various paths available. The packet
might traverse a single link, two links, or dozens of links. Use the traceroute command to
explore how many hops a message might require.

Upon receiving a message at the destination site, the destination IP address may or may
not be the actual IP address of the destination host. If NAT is being used at the remote
site, the IP address is translated from an “external public” address to an “internal private”
address. And now with the internal private address, the message continues to be routed
internally to the destination network and finally, by switch to the destination computer.
Usually there are fewer pathway choices internally and in fact a message may have only one
route to take. Once received by the destination computer, that machine’s operating system
saves the packet. The packet is mapped up the protocol stack, and all packets of the same
message are combined together as they arrive. They are sequenced based on sequencing
numbers (such as packet 3 of 5). Once all packets have been received, the final message is
presented to the appropriate application software (or stored to disk in such a case as an ftp

Networks, Network software, and the Internet ◾ 365

or wget communication). Note that the ordering of packets is not done by IP, but rather
by the higher-level TCP protocol. The destination machine packages together a response
to the sending device to alert it that the message was received in full and correctly (or if
any packets were dropped or arrived with errors). The entire process takes seconds or less
(usually) even though the distance traveled may be thousands of miles and the number of
hops may be in the dozens.

Brief History of the Internet

In 1968, four research organizations were funded by the Department of Defense (DOD)
to create a computer network for long-distance communication. These organizations were
the University of Utah, the University of California at Los Angeles (UCLA), the University
of California at Santa Barbara, and Stanford Research Institute (SRI). Their intention was
to build an “electronic think-tank” by having a computer network that could accommo-
date the transfer of files and allow remote access to each other’s computers. They enhanced
the fairly recently proposed packet switching technology ideas into practice and used
telephone networks to connect these computers together. This network was dubbed the
ARPANET. The first message was sent between UCLA and SRI on October 29, 1969.

The original protocol used was called 1822 protocol. This protocol was not very efficient
and would eventually be replaced by TCP/IP in 1983. The first e-mail message was sent over
the ARPANET in 1971. FTP was added in 1973.

As time went on, more computers were added to the network. By June 1970, there were
nine computers on the network. By December 1970, there were 13 computers, and by
September 1971, there were 18. Between 1972 and 1973, 29 and then 40 computers were
placed on the ARPANET.

Two satellites made available to support ARPANET communication and computers
in both Hawaii and Norway were added in 1973, making the network international. By

the Internet versus the World WIde Web

although most people use the terms interchangeably, they are not the same. The Internet,
as discussed in this chapter, is a computer network. It is a worldwide network but it is still
a network—the computers and computer resources that we use to communicate with each
other, the media connecting these devices together (whether cable, radio, microwave, or
satellite-based), and the broadcast devices such as switches and routers. The Internet is a
physical entity; it contains parts you can touch and point to.

The world wide web is a collection of documents, linked together by hyperlinks. These
documents are stored on computers that we call servers. and these servers are among the
various computers connected to the Internet.

The world wide web then sits on top of the Internet. we could continue to have an
Internet without the web, but without the Internet, there would be no web.

another point of distinction worth noting is of people who comment that they have lost
their Internet, or that the Internet is down. what has happened is that they have lost their abil-
ity to connect to or communicate over the Internet. But the Internet should never be down.
It was built to survive a nuclear war and it would take a lot of destruction for the Internet to
be lost.

366 ◾ Information Technology

1975, the network had reached 57 computers. Also in 1975, the DOD handed control of
the ARPANET from ARPA to the Defense Communications Agency (another part of the
DOD). In 1983, the military portion of the network (MILNET) was separated. Before this
split, there were 113 computers and afterward, 68.

In 1974, the UK developed its own form of packet switched network, X.25. X.25 became
publicly available. Other networks were created in the late 1970s and early 1980s. These,
along with ARPANET, would eventually become components of the Internet.

In 1979, two Duke students created UUCP for sharing messages via an electronic bul-
letin board. This became known as Usenet news. Usenet was made available over a number
of networks and people could access the network using dial-up over a MODEM from their
home computer or from a networked machine.

In 1983, with the creation of TCP/IP, the ARPANET was renamed the Internet. The
various previous networks that were connected together became the NSF Backbone, which
would become the Internet’s backbone as the Internet continued to grow. In the 1980s and
early 1990s, NSF sponsored an initiative to provide Internet access to as many U.S. univer-
sities as possible. In the meantime, pay networks (AOL, Genie, Compuserve, etc.) began
connecting to the Internet.

From the late 1980s through the mid 1990s, there were several other developments that
would change the Internet. First, access was being made available to the public through
pay networks, libraries, schools, and universities. Second, hypertext documents were being
pioneered. Third, the U.S. government passed legislation to make it easier for companies
to offer Internet services and therefore provide more access to home computer users.
However, many people were still uncomfortable trying to access the Internet.

Around 1994, the idea of a web browser was developed. The first one was known as
Mosaic. The idea behind the web browser was that the browser would load and display
a document automatically. The document would include hypertext information (links).
Clicking on a hypertext link would activate a command for the browser to send out an http
request for a new document to be sent from a server. The document would be sent back and
displayed in the browser. Until this time, most users had to understand how to send mes-
sages (whether ftp, telnet, e-mail, or other) including knowing how to specify IP aliases or
addresses. But with web browsers, the user only had to know how to click on links. Over
time, the web browser has replaced most other methods of Internet communication except
for e-mail for the typical user.

Where are we today? Hundreds of millions of computers make up the Internet. The exact
number is difficult to tell because home computer users do not leave the computers on all
the time. When we factor in handheld devices, the number exceeds 4 billion. The number
of actual Internet users is also an estimate, but between home computers and handheld
devices, it is estimated that (as of 2012) there are more than 2 billion users (approximately
one-third of the population of the planet). Figure 12.15 indicates the growth that we have
seen in Internet users since 1995.

And the web? There are perhaps trillions of documents available over the Internet. Many
of these documents are hypertext (html) documents with hyperlinks to other documents.

Networks, Network software, and the Internet ◾ 367

However, a large number of documents are data files (word documents, pdf documents,
powerpoint documents, etc.).

Today, control of the Internet is largely in the hands of corporations that provide
Internet access. These include many telecommunications companies thanks to the US
1996 Telecommunications Act. This act, among other things, allowed telephone compa-
nies, cable companies, cell phone companies, and others to serve as ISPs. Up until this
point, Internet access was largely made available either through employers and universities
or through pay WANs such as CompuServe, America On-line, and Prodigy.

So telecommunications companies control access to the Internet. But who controls the
Internet itself? In some regard, all of the users control the Internet in that we are all respon-
sible for the content being placed onto the Internet—through our web pages, through
e-mails that we send and files that we upload and download, and through our participation
on message boards, blog sites, and so forth. Some aspects of the Internet, however, have
been handed over to a variety of international consortia.

One such organization is known as the Internet Corporation for Assigned Names and
Numbers (ICANN). This organization provides IP addresses and handles domain name
(IP alias) disputes. A department of ICANN is the Internet Assigned Numbers Authority,
who as their name implies, hand out IP addresses. These addresses are based on geographi-
cal location, so, for instance, one set of IP addresses is issued to sites in North American
and another in Europe and western Asia.

Another organization is the World Wide Web Consortium (W3C). This organization
provides standards for web site construction including the next generation of the html
markup language, the use of cascaded style sheets, the use of XML, and concepts related
to the semantic web.

Future of the Internet

Obviously, the Internet has had a tremendous impact on our society. The advantages that
our society has gained because of the Internet are perhaps too numerous to list. However,

2500

2000

1500

1000

500

0

1995
1996

1997
1998

1999
2000

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

N
um

be
r o

f I
nt

er
ne

t u
se

rs
 (i

n
m

ill
io

ns
)

FIGUre 12.15 Number of Internet users from 1995 to 2012.

368 ◾ Information Technology

there are also significant problems with the current state of the Internet today. Solutions to
these problems are currently being researched.

 1. Dial-up access. Many people have used the telephone network to obtain access to the
Internet through an ISP. The problem is that the telephone network consists primar-
ily of twisted wire pair, and this medium can only support a limited bandwidth of
message traffic (approximately 56,000 bps). Downloading a 1 MB file (a small picture
for instance) would take 18 seconds at this bandwidth. Although other technologies
are now available such as digital cable and direct digital subscriber lines (DSL) to
people’s households, there are still millions of households forced to use the slower
technology. This has been called last mile technology because most of the telephone
network uses fiber optic cable except for the last stretch between the subdivision and
the home itself. To replace this last mile or two of twisted wire is cost prohibitive. The
telephone companies are only slowly replacing it. Although it seems unlikely that last
mile technology impacts people in larger cities, many people who live on the outskirts
of a city or in rural areas largely must rely on the telephone lines for access to the
Internet. One solution to this problem is through a satellite antenna. Downloading
information is done very rapidly as the satellite has a much larger bandwidth than the
telephone lines. However, uploading must still be done through the telephone lines,
so this only offers a partial solution. Another solution to this problem is the use of cell
phones. However, cell phone networks often are overcrowded and so their bandwidth
will ultimately be limited as well. In fact, 3G networks are set up to drop packets
when there are too many messages going across the network. The 4G networks are
promising to resolve this, but 4G coverage is spotty.

 2. TCP/IP seemingly offers 4 billion unique IP addresses (32 bits gives you 232 or
roughly 4 billion combinations of addresses). However, not all of the addresses
are being used. Consider for instance a small organization that is given a Class C
net work address. They are given 256 distinct addresses but do not necessarily use
them all. Another organization might require two Class C networks because they
have more than 256 addressable devices but fewer than 512. Through NAT, organi-
zations can provide a greater number of IP addresses for their devices, but this solu-
tion cannot extend to, for instance, all of the handheld devices that are now using
the Internet. Considering that there are 7 billion people on the planet, we have run
out of addresses for everyone.

 3. The Internet backbone was not set up to support billions of users especially when the
users are requesting large documents such as images, movies, and music. The result
is that the Internet is sluggish.

To resolve some of the problems, IPv6 (IP version 6) is being used by some networks.
However, IPv6 cannot solve all the problems and so researchers are investigating technolo-
gies for Internet2, a new form of Internet. Whether this will utilize the current backbone
or require brand new hardware will be decided in the upcoming years.

Networks, Network software, and the Internet ◾ 369

Along with the upgrades to the Internet infrastructure and protocols, two additional
concepts are present when discussing “Web 2.0”. These are cloud computing and the
semantic web. We wrap up this chapter with brief discussions of both of these ideas.

Cloud computing combines several different technologies: distributed computing,
computer networks, storage area networks. The idea is to offer, as a service, the abil-
ity to offload computation and storage from your local computer to the cloud. Through
the cloud, users can access resources that they may not normally have access to, such as
increased processing power to support search engines, software that they do not have
licenses for on their local machine, and storage in excess of their local file server or com-
puter. Conceptually, a cloud is a step toward ubiquitous computing—the ability to have
computation anywhere at any time. In effect, a cloud is the ultimate in a client–server
network. The clients are the users who access the cloud remotely and the server is the
cloud itself, although unlike a traditional client–server model, the cloud represents ser-
vice on a very large scale.

To access a cloud, commonly the interface is made through a web portal. In this way,
the client computers do not need any specific software downloaded onto their computers.
In some cases, clients download specific applications for access. They are also provided a
secure account (i.e., an account that requires a log in to gain access). Services offered by
cloud computing range from simple storage to database and web services, e-mail, games,
and load balancing for large-scale computational processing.

To support a cloud, a company needs a sophisticated network infrastructure. This infra-
structure must handle very high bandwidth to support the hundreds, thousands, or mil-
lions of users. Data storage capacity might need to run on the order of Petabytes (the next
magnitude of storage up from the Terabyte). If the cloud is to support computing as well as
storage, dozens to hundreds of high-end processors may also be required. Companies that
are making cloud services available (e.g., Amazon, Google, Oracle) are investing billions
of dollars in the infrastructure. The result, for a small fee, is that businesses and individu-
als can have secure data storage (secure both in terms of secure access and the security of
mind in that their data are backed up regularly) and remote access to powerful processing.
Cloud computing may reach a point eventually where individually, we do not need our
own desktop units but instead just interfaces (e.g., handheld devices or wearables), and all
storage and computing take place elsewhere.

It should be noted that cloud computing does not have to done by the Internet, but for
commercial and practical purposes, most cloud computing exists as a part of the Internet.
If a company were to build their own private cloud, its use would be restricted to those who
could access the company’s network. In fact, we commonly see this with virtual private
networks and extranets. The idea is that a company provides processing and storage, but
through the VPN, users of the company’s computing resources can remotely access them.
Thus, they carry their computing with them no matter where they go.

Finally, we consider the semantic web. The World Wide Web is a collection of data files,
hyperlinked together, and stored on servers on the Internet. The WWW contains a mass of
information perhaps reaching the sum total of all human knowledge now that libraries are
accessible via the web. However, the information is largely poorly indexed and organized.

370 ◾ Information Technology

It is up to an intelligence (human) to sift through the information and make sense of it.
The semantic web is a pursuit led by researchers in artificial intelligence to organize the
knowledge and provide automated reasoners to not only search through the information
but to find useful pieces to present to the human users.

As a simple example, imagine that you want to take a vacation to Hawaii. Through vari-
ous websites and search engines, you can book a flight, book a hotel, rent a car, and discover
events and locations to explore in Hawaii. How much of this process could be automated?
Let us assume that you have a representative-bot (a piece of software to represent you). You
have described to your bot your interests, likes, and dislikes. You provide your representa-
tive-bot a calendar of important dates that limit your travel dates. You might also specify
other criteria such as price restrictions. The representative-bot will use this information
and communicate with the various websites to book the entire vacation for you, right down
to obtaining maps to the locations you should see during your visit. Further, the bot would
reason over the events to coordinate them so that proximity, travel time between locations,
times of day/evening, and other factors are taken into account.

The semantic web consists of several different components. Website data are now being
organized into ontologies: knowledge bases that not only contain information but how that
information can be interpreted and used. Small programs, intelligent agents, are being
built to handle different tasks such as scheduling, communication, and commerce deci-
sion making. New types of query languages are being created to facilitate communication
between agents and between agents and ontologies. Combined, it is hoped that these new
technologies will move the World Wide Web closer to the vision of a semantic web, an
Internet whose resources are easily accessible and whose knowledge can be used without
excessive human interaction. The semantic web, whose ideas date back to 2001, is only now
being used in such areas as intelligence gathering and medical research. It will probably be
another decade or more before we see practical, every day uses.

FUrTHer readING
There are many texts that cover topics introduced in this chapter from computer science
texts on network programming and network protocols to engineering books on the trans-
mission media and protocols of networks to IT texts that detail how to set up a computer
network and troubleshoot it. Additionally, there are numerous books that describe the
development and use of the Internet. Here, we cite some of the more significant texts from
an implementation perspective (the first list) and from an administration and trouble-
shooting perspective (the next list).

•	 Blum, R. C# Network Programming. New Jersey: Sybex, 2002.

•	 Forouzan, B. Data Communications and Networking. New York: McGraw Hill, 2006.

•	 Harold, E. Java Network Programming. Massachusetts: O’Reilly, 2004.

•	 Kurose, J. and Ross, K. Computer Networking: A Top–Down Approach. Reading, MA:
Addison Wesley, 2009.

Networks, Network software, and the Internet ◾ 371

•	 Lin, Y., Hwang, R. and Baker, F. Computer Networks: An Open Source Approach. New
York: McGraw Hill, 2011.

•	 Peterson, L and Davie, B. Computer Networks: A Systems Approach. San Francisco,
CA: Morgan Kaufmann, 2011.

•	 Reese, G. Cloud Application Architectures. Massachusetts: O’Reilly, 2009.

•	 Rhoton, J. Cloud Computing Explained: Implementation Handbook for Enterprises.
USA: Recursive Press, 2009.

•	 Segaran, T., Evans, C., and Taylor, J. Programming the Semantic Web. Cambridge,
MA: O’Reilly, 2009.

•	 Sosinsky, B. Cloud Computing Bible. New Jersey: Wiley and Sons, 2011.

•	 Stallings, W. Data and Computer Communications. Upper Saddle River, NJ: Prentice
Hall 2010.

•	 Stevens, W. UNIX Network Programming: The Sockets Networking API. Englewood
Cliffs, NJ: Prentice Hall, 1998.

•	 Tanenbaum, A. Computer Networks. Upper Saddle River, NJ: Prentice Hall, 2010.

•	 Yu, L. A Developer’s Guide to the Semantic Web. New Jersey: Springer, 2011.

•	 Allen, N. Network Maintenance and Troubleshooting Guide: Field Tested Solutions for
Everyday Problems. Reading, MA: Addison Wesley, 2009.

•	 Corner, D. Computer Networks and Internets. Upper Saddle River, NJ: Prentice Hall,
2008.

•	 Dean, T. Network+ Guide to Networks. Boston, MA: Thomson Course Technology,
2009.

•	 Donahue, G. Network Warrior. Massachusetts: O’Reilly, 2011.

•	 Gast, M. 802.11 Wireless Networks: The Definitive Guide. Massachusetts: O’Reilly, 2005.

•	 Hunt, C. TCP/IP Network Administration. Massachusetts: O’Reilly, 2002.

•	 Limoncelli, T., Hogan, C., and Chalup, S. The Practice of System and Network
Administration. Reading, MA: Addison Wesley, 2007.

•	 Mansfield, K. and Antonakos, J. Computer Networking for LANs to WANs: Hardware,
Software and Security. Boston, MA: Thomson Course Technology, 2009.

•	 Matthews, J. Computer Networking: Internet Protocols in Action. Hoboken, NJ: Wiley
and Sons, 2005.

•	 Odom, W. CCNA Official Exam Certification Library. Indianapolis, IN: Cisco Press,
2007.

372 ◾ Information Technology

•	 Odom, W. Computer Networking First-Step. Indianapolis, IN: Cisco Press, 2004.

•	 Rusen, C. Networking Your Computers & Devices Step By Step. Redmond, WA:
Microsoft Press, 2011.

•	 Sloan, J. Network Troubleshooting Tools. Massachusetts: O’Reilly, 2001.

In addition to the above texts, there are users’ guides for various types of networks and
study guides for certifications such as for the Cisco Certified Network Associate.

The original article that describes the semantic web was written by Tim Berners-Lee,
who was one of the inventors of the World Wide Web. His article can be found on line at
http://www.scientificamerican.com/article.cfm?id=the-semantic-web.

You can find a great many interesting statistics on Internet usage at http://www.inter
networldstats.com/.

revIew TerMs
The following terms were introduced in this chapter:

Anonymous user Gateway

ARPANET Host

Bandwidth Hub

Bus network Ifconfig

Checksum Ipconfig

Circuit switching Internet

Client Intranet

Client–server network IP address

Cloud computing IP alias

Coaxial cable IPv4

Collision detection IPv6

DNS Last mile technology

Ethernet Local area network

Extranet Local computer

Fiber optic cable MAC address

Firewall Mesh network

FTP MODEM

Networks, Network software, and the Internet ◾ 373

Nearest neighbor Router

Network address translation Routing

Network handshake Semantic web

Netmask Server

Network Ssh

Network topology Star network

Nslookup Subnet

OSI Switch

Packet T-connection

Packet switching Telnet

Peer-to-peer network TCP/IP

Ping Traceroute

Point-to-point Transmission media

Port Tree topology

Protocol Twisted wire pair

Remote access UDP

Remote computer Virtual private network

Ring network Wide area network

Review QUestiONs

 1. What is the physical layer of a network composed of?

 2. How does a switch differ from a hub?

 3. How does a router differ from a switch?

 4. What is a bus network?

 5. How does a ring network differ from a bus network?

 6. What are the advantages and disadvantages of a star network?

 7. Why would you not expect to find a mesh network used in large networks?

 8. What does message traffic mean? Of the bus, star and ring networks, which is most
impacted by message traffic?

374 ◾ Information Technology

 9. How does Ethernet handle message traffic?

 10. How does a VPN differ from an extranet?

 11. How does a MAN differ from a LAN?

 12. In which layer of the OSI protocol do packets get formed?

 13. In which layer of the OSI protocol is encryption handled?

 14. In which layer of the OSI protocol does error detection get handled?

 15. In which layer of the OSI protocol can messages be transmitted between devices on
the same network?

 16. In which layer of the OSI protocol are messages routed?

 17. In which layer of the OSI protocol are applications software data converted into a
uniform representation?

 18. What is the difference between TCP and IP?

 19. Which layer(s) of OSI is (are) similar to the application layer of TCP/IP?

 20. Which layer(s) of OSI is (are) similar to the transport layer of TCP/IP?

 21. Which layer(s) of OSI is (are) similar to the Internet layer of TCP/IP?

 22. Which layer(s) of OSI is (are) similar to the link layer of TCP/IP?

 23. How many bits is an IPv4 address? How many bits is an IPv6 address? Why are we
finding it necessary to move to IPv6 addresses?

 24. What is an octet?

 25. Given an IPv4 address, what happens when you apply the netmask 255.255.255.0 to
it? What about 0.0.0.255?

 26. Given the IP address 201.53.12.251, apply the netmask 255.255.128.0 to it.

 27. How does a TCP network handshake differ from other network handshaking?

 28. Why might an organization use many-to-one network address translation?

 29. Who funded the original incarnation of the Internet?

 30. How does the ARPAnet differ from the Internet?

 31. What significant event happened in 1994 that changed how we use the Internet today?

DisCUssiON QUestiONs

 1. To what extent should a user understand computer networks? To what extent should
a system administrator?

Networks, Network software, and the Internet ◾ 375

 2. The bus topology is the simplest and cheapest topology of network, but not very com-
mon today. Why not?

 3. The primary alternative to the bus topology used to be the ring topology. Research
these topologies and compare them in terms of their advantages and disadvantages.

 4. What is the value of a metropolitan area network when just about all computers in
that area would already be connected to the Internet?

 5. What are the advantages for an organization to use an intranet? What are the advan-
tages for that organization to enhance their network into an extranet?

 6. In what way(s) does a virtual private network provide security for an organization?

 7. IEEE 802.x are a series of standards produced by the IEEE organization. Why are
standards important for computer network design and implementation? What is
the significance behind the 802.x standards? That is, what have they all contributed
toward?

 8. The OSI model improves over TCP/IP in several ways. First, it has a built-in encryp-
tion component lacking from IPv4. Second, it is more concrete in its description.
Why then is TCP/IP far more commonly used to implement networks?

 9. Why are we running out of internet addresses? What are some of the solutions to this
problem?

 10. What is the difference between UDP and TCP? Why might you use UDP over TCP?
Why might you use TCP over UDP?

 11. Two network programs that might be useful are ping and traceroute, yet these pro-
grams are often disabled by system or network administrators. Explore why and
explain in your own words what harm they could do.

 12. Research Morris’ Internet Worm. Why did Robert Morris write and unleash his
worm? Why was it a significant event? What, if anything did we learn from the event?

 13. You most likely have a firewall running on your home computer. Examine its rules
and see if you can make sense of it. What types of messages does it prevent your
computer from receiving? In Windows, to view the Firewall rules, go to your control
panel, select Network and Sharing Center, and from there, Windows Firewall. From
the pop-up window, click on Inbound and Outbound Rules and you will see all of the
software that has rules. Click on any item and select properties to view the specific
rules. From Linux, you can view your Firewall rules either by looking at the iptables
file or from the GUI tool found under the System menu selection Security level and
Firewall.

 14. Figure 12.14 demonstrates the growth of the Internet in terms of hosts (computers).
Research the growth of the Internet in terms of users and plot your own graph. How
does it compare to the graph in Figure 12.14?

376 ◾ Information Technology

 15. Explore the various companies that offer cloud computing and storage services. Make
a list of the types of services available. Who should be a client for cloud computing
and storage?

 16. The original article describing the vision behind the semantic web was published
here:

 Berners-Lee, T., Hendler, J., and Lassila, O. (May 17, 2001). The semantic web.
Scientific American Magazine. http://www.sciam.com/article.cfm?id=the-semantic-
web&print=true. Retrieved March 26, 2008. Read this article and summarize the idea
behind it. How plausible is the vision?

377

C h a p t e r 13

Software

This chapter begins with an introduction to software classifications and terminology.
However, the emphasis of this chapter is on software management, specifically software
installation in both Windows and Linux. In Linux, the discussion concentrates on the use
of package managers and the installation of open source software. The chapter ends with
an examination of server software with particular attention paid to installing and config-
uring the Apache web server at an introductory level.

The learning objectives of this chapter are to

•	 Discuss types of software and classification of proprietary and free software.

•	 Describe the process of software installation from an installation wizard and package
manager.

•	 Illustrate through example how to install open source software in Linux using con-
figure, make, and make install.

•	 Describe the function of popular server software.

•	 Introduce Apache web server installation and configuration.

Here, we look at the various types of software and consider what an IT specialist might
have to know about. Aside from introducing software concepts and terminology, we will
focus on software maintenance and installation. We end the chapter with an examination
of servers, server installation, and maintenance.

Types of sofTware
The term software refers to the programs that we run on a computer. We use the term
software because programs do not exist in any physical, tangible form. When stored in
memory, they exist as electrical current, and when stored on disk, they exist as magnetic
charges. Thus, we differentiate software from hardware, whose components we can point
to, or pick up and touch.

378 ◾ Information Technology

This distinction may seem straightforward; however, it is actually not as simple as it
sounds. Our computers are general purpose, meaning that they can run any program.
The earliest computers from the 1930s and 1940s were not general purpose but instead
only could run specific types of programs, such as integral calculus computations or code
breaking processes. We see today that some of our devices, although having processors
and memory, are also special purpose (e.g., navigation systems, mp3 players, game con-
soles). But aside from these exceptions, computers can run any program that can be com-
piled for that platform. On the other hand, anything that we can write as software can
also be implemented using circuits. Recall that at its lowest level, a computer is merely a
collection of AND, OR, NOT, and XOR circuits (along with wires to move data around).
We could therefore bypass the rest of the computer and implement the given program at
the circuit level. Capturing a program directly in hardware is often referred to as firmware
(or a hardwired implementation). Similarly, any program that can be built directly into
circuits can also be written in some programming language and run on a general purpose
computer.

This concept is known as the equivalence of hardware and software. Thus, by calling one
entity software and another hardware, we are differentiating how they were implemented,
but not how they must be implemented. We typically capture our programs in software
form rather than implement them as hardware because software is flexible. We can alter
it at a later point. In addition, the creation of firmware is often far more expensive than
the equivalent software. On the other hand, the fetch–execute process of the CPU adds
time onto the execution of a program. A program implemented into firmware will execute
faster, possibly a good deal faster, than one written as software. Therefore, any program
could conceivably be implemented as software or firmware. The decision comes down to
whether there is a great need for speed or a desire for flexibility and a cheaper production
cost. Today, most programs exist as software. Those captured in firmware include com-
puter boot programs and programs found inside of other devices, such as the antilock
brake system or the fuel-injection system in a car.

We prefer to store our programs as software because software can be altered. Most soft-
ware today is released and then revised and revised again. We have developed a nomencla-
ture to reflect software releases. Most software titles have two sets of numbers listed after
the title. The first number is the major release version and the second is the minor release
version. For instance, Mozilla Firefox 5.2 would be the fifth major version of Firefox and
the second minor release of version 5. A minor release typically means that errors were
fixed and security holes were plugged. A major release usually means that the software
contains many new features likely including a new graphical user interface (GUI). It is
also possible that a major release is rewritten with entirely new code. Minor releases might
appear every month or two, whereas major releases might appear every year or two. Service
packs are another means of performing minor releases; however, service packs are primar-
ily used to release operating system updates.

We generally categorize software as either system software or application software.
Application software consists of programs that end users run to accomplish some task(s).
The types of application software are as varied as there are careers because each career has

software ◾ 379

its own support software. Productivity software consists of the applications that are useful
to just about everyone. Productivity software includes the word processor, presentation
software (e.g., PowerPoint), spreadsheet program, database management systems, calendar
program, address book, and data organizer. Drawing software may also be grouped here
although drawing software is more specific toward artists and graphic designers. Another
type of application software is that based around Internet usage. Software in this class
includes the e-mail client, web browser, and FTP client. There are also computer games
and entertainment software (e.g., video players, DVD players, CD players); although not
considered productivity software, they are used by just about everyone.

Productivity software is sometimes referred to as horizontal software because the soft-
ware can be used across all divisions in an organization. Vertical software applies instead
to software used by select groups with an organization or to a specific discipline. For
instance, there are classes of software used by musicians such as music sequencers, sam-
plers, and digital recorders. Programmers use development platforms that provide not
only a language compiler but also programming support in the form of debugging assis-
tance, code libraries, tracking changes, and code visualization. Filmmakers and artists use
video editing, photographic editing and manipulation, and sound editing software. There
is a large variety of accounting software available from specialized tax software to digital
ledgers.

System software consists of programs that make up the operating system. System soft-
ware is software that directly supports the computer system itself. Such software is often
started automatically rather than by request of the end user. Some pieces of the operating
system run in the background all of the time. These are often known as daemons or services.
They wait for an event to arise before they take action. Other pieces of the operating system

A Brief History of Productivity softwAre

1963—IBM developed GUaM, the first database management system, for IBM main-
frames intended for use by the National aeronautics and space administration.

1963—Based on a doctoral thesis, an MIT student released sketchpad, a real-time com-
puter drawing system using a light pen for input.

1964—IBM released MT/sT, the first word processor; I/o was performed on a selectric
keyboard, not directly with the computer.

early 1970s—INGres, the first relational database software, released by relational
Technology, followed shortly thereafter by oracle.

1972—Lexitron and Linolex both introduced machines capable of displaying word pro-
cess text on a screen (rather than operated on remotely).

1976—electric pencil, the first pC word processor, was released.
1979—VisiCalc, the first spreadsheet program, was released for the apple II.
1979—The wordstar word processor was developed and would become very popular.
1982—Lotus 1-2-3 was released, which combined spreadsheets, graphics, and data

retrieval in one software.
1984—apple released appleworks, the first office suite.
1985—pageMaker, for Macintosh, was released, a GUI-based word processor making

desktop publishing available for personal computers.

380 ◾ Information Technology

are executed based on a scheduler. For instance, your antiviral software might run every
24 hours, and a program that checks a website for any updates might run once per week.
Yet other pieces, often called utilities, are run on demand of the user. For instance, the user
might run a disk defragmentation utility to improve hard disk performance. Antiviral soft-
ware is another utility, although as stated above, it may be executed based on a scheduler.

The various layers of the operating system, and their relationship with the hardware, the
application software and the user, are shown in Figure 13.1. The figure conveys the layering
that takes place in a computer system where the hardware operates at the bottommost level
and the user at the top. Each action of the user is decomposed into more and more primi-
tive operations as you move down the layer.

The core components of the operating system are referred to as the kernel. The kernel is
loaded when the computer is first booted. Included in the kernel are the components that
handle process management, resource management, and memory management. Without
these, you would not be able to start a new program or have that program run efficiently.
The kernel sits on top of the hardware and is the interface between hardware and software.

Another piece of the operating system is the collection of device drivers. A device driver
is a critical piece of software. The user and applications software will view hardware devices
generically—for instance, an input device might respond to commands such as provide input,
check status, reboot. But every device requires unique commands. Therefore, the operating
system translates from the more generic commands to more specific commands. The transla-
tion is performed by the device driver software. Although a few device drivers are captured in
the ROM BIOS as firmware, most device drivers are software. Many popular device drivers
are preloaded into the operating system, whereas others must be loaded off of the Internet or
CD-ROM when a new hardware device has been purchased. In either case, the device driver
must be installed before the new hardware device can be used. There are literally hundreds
of thousands of drivers available (according to driverguide .com, more than 1.5 million), and
there is no need to fill a user’s hard disk drive with all of them when most will never be used.

Other system software components sit “on top” of the kernel (again, refer to Figure 13.1).
Components that are on top of the kernel include the tailored user environment (shells or the
user desktop), system utility programs, and services/daemons. As discussed in Chapter 9,
Linux shells permit users to establish their own aliases and variables. Desktop elements
include shortcut icons, the theme of the windows, menus and background, the appearance
of toolbars and programs on the start menu, and with Windows 7, desktop gadgets.

User
Applications
OS utilities
Services
Shells
OS kernel
Software device drivers
ROM BIOS drivers
Hardware

Operating
system
components
(System
software)

fIGUre 13.1 Layers of a computer system.

software ◾ 381

System utilities are programs that allow the user to monitor and improve system perfor-
mance. We discussed some of these when we talked about processes. To improve system
performance, utilities exist to defragment the hard disk and to scan files for viruses and
other forms of malware. Usually, system utilities must be installed separately as they may
not come with the operating system (often, these require purchasing and so many users
may ignore their availability).

Services, or daemons, are operating system programs that are usually started when the
operating system is loaded and initialized, but run in the background. This means that the
program, while it is active, does not take up any CPU time until it is called upon. The oper-
ating system will, when a particular event arises, invoke the needed service or daemon
to handle the event. There are numerous services in any operating system. We covered
services in Chapter 11, Services, Configuring Sevices, and Establishing Services at Boot
Time.

Aside from the system software and the application software, there is also server soft-
ware. Servers include web servers, e-mail servers, and database servers, to name a few. We
will examine servers in Services and Servers, with an emphasis on the Apache web server.

sofTware-reLaTed TerMINoLoGy
In this section, we briefly examine additional terms that help us understand software.

Compatibility describes the platforms that a piece of software can execute on. Most soft-
ware that our computers run requires that the software be compiled for that computer
platform. There are three issues here. First, the software must be compiled for the class
of processor of the given computer. Intel Pentium processors, for instance, have different
instruction sets than MIPS processors. If someone were to write a program and compile
it for the Pentium processor, the compiled program would not run on a MIPS processor.

oLe!

one of the key components found in many forms of windows-based productivity software
today is the ability to link and embed objects created from one piece of software into another.
oLe stands for object Linking and embedding. It was developed in 1990 as a successor
to dynamic data exchange, made available in windows 2.0, so that data could be trans-
ferred between two running applications. This allowed, for instance, for a Microsoft access
record to be copied or embedded into a Microsoft excel spreadsheet. Modifying the record
in access would automatically update the values stored in excel. This capability was imple-
mented through tables of pointers whereby one application’s data would point at data stored
in other applications.

However, data exchange was limited. with oLe, improvements include the ability to cap-
ture an object as a bitmap to be transferred pictorially into another application through the
clipboard. also, the table of pointers was replaced through the Component object Model
(CoM). In addition, the user’s means to copy or embed objects was simplified through simple
mouse operations.

oLe is a proprietary piece of technology owned by Microsoft. Today, Microsoft requires
that any application software be able to utilize oLe if that piece of software is to be certified
as compatible with the windows operating system.

382 ◾ Information Technology

Because of the close nature between the hardware and the operating system, the compila-
tion process must also be for a given operating system platform. A computer with a Pentium
processor running Linux rather than Windows could not execute programs compiled for
Windows in spite of having the same processor. Therefore, software must be compiled for
both the processor and the operating system. Finally, the software might have additional
requirements to run, or at least to run effectively, such as a minimum amount of RAM or
hard disk space or a specific type of video card.

Backward compatibility means that a piece of software is capable of reading and using
data files from older versions of the software. Most software vendors ensure backward
compatibility so that a customer is able to upgrade the software without fear of losing older
data. Without maintaining backward compatibility, a customer may not wish to upgrade
at all. Maintaining backward compatibility can be a significant challenge though because
many features in the older versions may be outdated and therefore not worth retaining, or
may conflict with newer features. Backward compatibility also refers to newer processors
that can run older software. Recall that software is compiled for a particular processor. If
a new version of the processor is released, does it maintain backward compatibility? If not,
a computer user who owns an older computer may have to purchase new software for the
newer processor. Intel has maintained backward compatibility in their x86 line of proces-
sors, starting with the 8086 and up through the most recent Pentium. Apple Macintosh has
not always maintained backward compatibility with their processors.

Upgrades occur when the company produces a new major or minor release of the soft-
ware. Today, most upgrades will happen automatically when your software queries the
company’s website for a new release. If one is found, it is downloaded and installed without
requiring user authorization. You can set this feature in just about any software so that
the software first asks you permission to perform the upgrade so that you could disallow
the upgrade if desired. However, upgrades often fix errors and security holes. It is to your
advantage to upgrade whenever the company recommends it.

Patches are releases of code that will help fix immediate problems with a piece of soft-
ware. These are typically not considered upgrades, and may be numbered themselves sepa-
rately from the version number of the software. Patches may be released at any time and
may be released often or infrequently depending on the stability of the software.

Beta-release (or beta-test) is an expression used to describe a new version of software
that is being released before the next major release. The beta-release is often sent to a select
list of users who are trusted to test out the software and report errors and provide feedback
on the features of the software. The company collates the errors and feedback and uses
this to fix problems and enhance the software before the next major release. A beta-release
might appear a few months or a full year before the intended full release.

Installation is the process of obtaining new software and placing it on your com-
puter. The installation process is not merely a matter of copying code onto the hard disk.
Typically, installation requires testing files for errors, testing the operating system for
shared files, placing files into a variety of directories, and modifying system variables such
as the path variable. Installation is made easy today with the use of an installation wiz-
ard. However, some software installation requires more effort. This will be addressed in

software ◾ 383

Software Management. A user might install software from a prepackaged CD-ROM* or
off of the Internet. In the latter case, the install is often referred to as a download. The term
download also refers to the action of copying files from some server on the Internet, such
as a music download. Installation from the Internet is quite common today because most
people have fast Internet access.

There are several categories to describe the availability of software. Proprietary, or
commercial, software is purchased from a vendor. Such software may be produced by a
company that commercially markets software (usually referred to as a software house), or
by a company that produces its own in-house software, or by a consultant (or consultant
company) hired to produce software. Purchasing software provides you with two or three
things. First, you receive the software itself, in executable form. If you have purchased
the software from a store or over the Internet, the software is installed via an installation
program. If you have purchased it from a consultant, they may perform the installation
themselves. Second, you are provided a license to use the software. It is often the case that
the software purchase merely gives you the right to use the software but it is not yours to
own. Third, it is likely that the purchase gives you access to helpful resources, whether they
exist as user manuals, technical support, online help, or some combination.

The other categories of software all describe free software, that is, software that you can
obtain for free. Free does not necessarily mean that you can use the software indefinitely
or any way you like, but means that you can use it for now without paying for it. One of
the more common forms of software made available on the Internet is under a category
called shareware. Shareware usually provides you a trial version of the software. Companies
provide shareware as a way to entice users to purchase the software. The trial version will
usually have some limitation(s) such as a set number of uses, a set number of days, or restric-
tions on the features. If you install shareware, you can often easily upgrade it to the full
version by purchasing a registration license. This is usually some combination of characters
that serves to “unlock” the software. The process is that you download the shareware. You
use it. You go to the website and purchase it (usually through credit card purchase), and you
receive the license. You enter the license and now the software moves from shareware to
commercial software.

On the other hand, some software is truly free. These fall into a few categories. First,
there is freeware. Such software is free from purchase, but not necessarily free in how you
use it. Freeware is usually software that has become obsolete because a newer software has
replaced it, or is software that the original producer (whether an individual or a company)
no longer wishes to maintain and provide support for. You are bound by some agreements
when you install it, but otherwise you are free to use it as if you purchased it. Public domain
software, on the other hand, is software that has been moved into the public domain. Like
freeware, this is software that no one wishes to make money off of or support. Anything
found in the public domain can be used however you feel; no one is claiming any rights for

* Prior to optical disks, installation was often performed from floppy disks. Since floppy disks could only store about
1.5 MB, software installation may have required the use of several individual disks, perhaps as many as a dozen. The user
would be asked to insert disk 1, followed by disk 2, followed by disk 3, etc.; however, it was also common to be asked to
reinsert a previous disk. This was often called disk juggling.

384 ◾ Information Technology

it. Both freeware and public domain software are made available as executables. Finally,
there is open source software. As discussed in Chapter 8, this software was created in the
Open Source Community and made freely available as source code. You may obtain the
software for free; you may enhance the software; you may distribute the software. However,
you have to abide by the copyright provided with the software. Most open source software
is made available using the GNUs Public License, and some are made available with what is
known as a copyleft instead of a copyright.

sofTware MaNaGeMeNT
Software management is the process of installing, updating, maintaining, troubleshooting,
and removing software. Most software today comprises a number of distinct programs
including the main executable, data files, help files, shared library files, and configuration
files. Installation involves obtaining the software as a bundle or package. Once downloaded
or saved to disk, the process requires uncompressing the bundled files, creating directories,
moving files, getting proper paths set up, and cleaning up after the installation process. In
the case of installing from source code, an added step in the process is compiling the code.
Today, the installation process has been greatly simplified thanks to installation wizards
and management packages. In Linux, for instance, users often install from yum or rpm.
Here, we look at the details of the installation process, upgrading the software, and remov-
ing the software.

A software installation package is a single file that contains all of the files needed to
install a given software title. The package has been created by a software developer and
includes the proper instructions on how to install and place the various files within the
package. You might perform the installation from an optical disk, or just as likely, by
downloading the software from the Internet. Installation wizards require little of the user
other than perhaps specifying the directory for the software, agreeing to the license, and
answering whether shortcuts should be created.

Because the Windows end user is often not as knowledgeable about the operating sys-
tem as the typical Linux end user, Windows installs have been simplified through the
use of the Windows Installer program, an installation wizard. The Installer program is
typically stored as an .msi file (MicroSoft Installer) and is bundled with the files necessary
for installation (or is programmed to download the files from a website). The installa-
tion files are structured using the same linkages that make OLE possible (see the sidebar
earlier in this chapter), COM files. The installer, although typically very easy to use, will
require some user interaction. At a minimum, the user is asked to accept the software’s
licensing agreement. In addition, the installer will usually ask where the software should
be installed. Typically, a default location such as C:\Program Files (x86)\softwarename
is chosen, where softwarename is the name of the software. The user may also be asked
whether a custom or standard installation should be performed. Most installers limit the
number of questions in the standard install in order to keep matters as simple as possible.
Figure 13.2 shows four installation windows that may appear during a standard installa-
tion. Note that these four windows are from four different software installations, in this
case all open source.

software ◾ 385

In spite of the ease of installation through Windows Installers, there are still things the
user should know. The most important concern is whether you have the resources needed
to run the software. The most critical resources are sufficient hard disk space, fast enough
processor, and sufficient RAM. Before installing the software, you may want to check out
the installation requirements. You also must make sure that you are installing the right
version of the software—that is, the version compiled for your particular hardware and
operating system platform. You will also need to make sure that you have sufficient access
rights to install the software. Are you an administrator? Have you logged in as an admin-
istrator to perform the installation? Or, as a user, has your administrator permitted you
access to install new software?

In Linux, there are several different ways to install software. First, there is the simpli-
fied approach using an installation wizard from downloaded software, just as you do in
Windows. A second approach, also like Windows, is to install software from CD-ROM
(or DVD). One difference here is that much software is available on the Linux operating
system installation CD. To install from the CD, you must retrieve your installation CD and
use the Add or Remove Programs feature (found under the Applications menu).

Another option in Linux is to install software packages from the command line. There
are multiple approaches that one can take. The easiest command-line approach is through a

fIGUre 13.2 Various windows from Windows installers.

386 ◾ Information Technology

package manager program. In Red Hat, there are two, yum (Yellow dog Updater, Modified)
and rpm (Red Hat Package manager). The rpm program operates on rpm files. An rpm
file is a package: an archive of compressed files that include the executable program(s)
and related files as well as a description of the dependencies needed to run the files.
Dependencies are the files that these files rely on. The rpm program will test these depen-
dencies and alert the user of any missing files. The yum program uses rpm but handles
dependencies for you, making it far easier.

To install software using rpm, the instruction is rpm –i packagename.rpm. To unin-
stall software, use –e (for erase) as in rpm –e packagename. To upgrade a package, use –u.
Finally, you can also use –q to query the rpm database to find more information on either
already installed packages, or packages that have yet to be installed (as long as the rpm files
are present). You can combine the –q and –l options to get a listing of the files in a given
package or the –q and –a options to get a list of all already installed packages. There are
rpm repositories available at many locations on the Internet, such as http://centos.karan
.org/el4/extras/stable/i386/RPMS/. Aside from using rpm from the command line prompt,
you can also run GUI package managers.

Yum is a product from Duke University for Linux users. Yum calls upon rpm to perform
the installation; however, it has the ability to track down dependencies and install any
dependent packages as needed. As with rpm, yum can install or update software, including
the Linux kernel itself. It makes it easier to maintain groups of machines without having to
manually update each one using rpm. Using yum is very simple; it does most of the work
by itself (although it can be time consuming to update packages and install new ones). A
simple yum command is yum install title, where title is the name of the software package.
Other yum commands (in place of install) include list (which lists packages that have a
given name in them as in yum list “foobar”), chkconfig yum on (which schedules yum to
perform an upgrade every night), yum remove title (to uninstall the titled package, remov-
ing all dependencies), and yum –y install title (which does the install, answering “yes” to
any yes/no question so that the install can be done without human intervention).

The more challenging form of installation in Linux is installation of software from
source code. Source code is the program code written in a high level language (e.g., C++
or Java). Such a program cannot be executed directly on a computer and therefore must be
compiled first (we discuss compilation in the next chapter). Because so much of the soft-
ware available in Linux is open source software, it is likely that a Linux user will need to
understand how to install software from source code. Before attempting to install software
from the source code, you might still look to see if the software is available in an executable
format, either through an installation wizard or as an rpm package.

Installation from source code first requires manually unpackaging the software bundle.
Most open source software is bundled into an archive. There are several mechanisms for
archiving files, but the most common approach is through the Unix-based tape archive
program called tar. The tar program was originally intended for archiving files to be saved
onto tape. However, it is convenient and fairly easy to use, so many programmers use it to
bundle their software together.

software ◾ 387

A tar file will have .tar as an extension. In addition, once tarred together, the bundle
may be compressed to save space and allow faster transmission of the bundle across the
Internet. Today, GNU’s Zip program, gzip, is often used. This will add a .gz extension to
the filename. For instance, a bundled and zipped archive might appear as bundle.tar.gz.
The user must first unzip the compressed file using gunzip. This restores the archive, or
bundle. To unbundle it, the next step is to untar the bundle, using tar.

When creating a tar file, you must specify both the source file(s) and the name of the
tar file along with the options that indicate that you are creating a tar file (c) and that the
destination is a file (f) instead of tape. This command could look like: tar –cf bundle1.tar
*.txt or it might look like: tar –cf bundle2.tar /temp. The former case would take all.txt files
and tar them into an archive, whereas the latter example takes all files in the directory
/ temp, including the directory itself, and places them in the archive. To untar the file, the
command is tar –xf bundle2.tar. The x parameter stands for extract, for file extraction. If
you were to untar bundle2.tar, it would create the directory /temp first and then place the
contents that were stored in the original /temp directory into this new /temp directory.

Once the software has been unbundled, you must compile it. Most open source pro-
grams are written in either C or C++. The compilers most commonly used in Linux for
C and C++ are gcc (GNU’s C/C++ compiler) and g++ (gcc running specific c++ settings).
Unfortunately, in the case of compiling C or C++ programs, it is likely that there are numer-
ous files to deal with including header files (.h), source code files (.c or .cpp), and object files
(.o). Without a good deal of instruction, a user trying to compile and install software may
be utterly lost. Linux, however, has three very useful commands that make the process
simple. These are the commands configure, make, and make install. These commands run
shell scripts, written by the programmer, to perform the variety of tasks necessary to suc-
cessfully compile and install the software.

The configure command is used to create or modify a Makefile script. The Makefile
script is the programmer’s instructions on how to compile the source code. The configure
command might, for instance, be used by the system administrator to specify the directo-
ries to house the various software files and to specify modules that should be compiled and
included in the software. If no Makefile exists, the configure command must be executed.
If a Makefile already exists, the configure command is sometimes optional. The configure
command is actually a script, also set up by the programmer. To run the configure script,
one enters ./configure (rather than configure). The ./ means “execute this shell script”. Once
completed, there is now a Makefile.

The command make executes the Makefile script (NOTE: make will execute either
Makefile or makefile, whichever it finds). The Makefile script contains all of the commands
to compile the software. The Makefile script may also contain other sections aside from
compilation instructions. These include an install section to perform the installation steps
(if the software is to be installed into one or more directories), a clean section to clean up
any temporarily created files that are no longer needed, and a tar section so that the com-
bined files can be archived. If everything goes smoothly, all the user has to do is enter the
commands ./configure, make, make install. A good Makefile will call make clean itself

388 ◾ Information Technology

after performing the installation steps. These steps may take from a few seconds to several
minutes depending on the amount of code that requires compilation.

Before trying to perform the compilation and installation of software, the administrator
should first read the README text file that comes with the distribution. Like the Makefile
script, README is written by the programmer to explain installation instructions.
Reading the README file will help an administrator perform the compilation and instal-
lation steps especially if there are specific steps that the programmer expects the adminis-
trator to carry out in advance because the programmer has made certain assumptions of
the target Linux system. For instance, the programmer might assume that gcc is installed
in a specific location or that /usr/bin is available. The README file may also include hints
to the administrator for correcting errors in case the Makefile script does not work.

Figure 13.3 provides an example Makefile script. This is a short example. Many Makefile
scripts are quite large. The example Makefile script from Figure 13.3, although short, shows
that the contents of a Makefile are not necessarily easy to understand. The first four lines of
this script define variables to be used in the Makefile file. In this example, there are three
program files: file1.c, file2.c, and file3.c. These are stored in the variable FILES. The next
three lines define variables for use in the compilation steps. These variables define the name
of the compiler (gcc, the GNU’s C compiler), compiler flags for use during compilation,
and linker flags for use during the linking stage of compilation. Note that the items on the
right-hand side of the file are comments (indicated by being preceded by the // charac ters).
Comments are ignored by the bash interpreter when the script executes.

The next six lines represent the commands to execute when the make command is
issued. The idea behind these six lines is that each first defines a label, possibly with argu-
ments (e.g., $(FILES)), and on the next line, indented, a command to carry out. The all:
label has no arguments, and its sole command is to execute the command under the files:
label. This is often used in a Makefile for the command make all. The files label iterates
through all of the files in the variable $(FILES) (i.e., the three C files) and issues the gcc
linking command on each. Beneath this is the line .c, which is used to actually compile
each C program. The compilation and linking steps can be done together, but are often

FILES = file1.c file2.c file3.c // define program files to be compiled
CC = gcc // C compiler
CFLAGS = -c –Wall // C compiler options
LFLAGS = -Wall // C compiler options for linking
all: // start here – call files
 files
files: $(FILES) // for each item in the FILES variable
 $(CC) $(LFLAGS) $(FILES) -o // perform linking
.c: // for each .c file, compile it
 $(CC) $(CFLAGS) –o
clean: // if make is called with clean, do this
 \rm *.o myprog // step (remove all files except the c files)
tar: // if make called with tar, tar all files
 tar cfv myprogram.tar file1.c file2.c file3.c myprogram.h

fIGUre 13.3 Sample Makefile script.

software ◾ 389

separated for convenience. The last four lines pertain to the instructions that will execute
if the user issues either make clean or make tar. The former cleans up any temporary files
from the current directory, and the latter creates a tar file of all relevant program files.
Because this was such a simple compilation process, there is no need for an install section.

The programmer(s) writes the Makefile file and packages it with all source code and any
other necessary files (such as documentation). The administrator then installs the software
by relying on the Makefile script. It is not uncommon that you might have to examine the
script and make changes. For instance, imagine that the Makefile moved the resulting files
to the directory /usr/local/bin but you wanted to move it to /usr/bin instead, requiring that
you make a minor adjustment in the script, or if you wanted to change the settings for the
compiler from –g and –Wall to something else.

With the use of package management facilities such as rpm and yum, why are configure,
make, and make install important? They may not be if you are happy using the execut-
able code available through the rpm repository websites. However, there are two situa-
tions where they become essential. First, some open source software does not come in an
executable form and therefore you have no choice but to compile it yourself. Second, if you
or someone in your organization wanted to modify the source code, you would still have
to install it using the configure, make, and make install commands. We will briefly look at
the use of configure in the next section.

serVICes aNd serVers
The term server may be used to refer to three different things. The first is a dedicated com-
puter used to provide a service. Servers are typically high-performance computers with
large hard disk drives. In some cases, servers are built into cabinets so that several or even
dozens of hard disk drives can be inserted. The server is commonly a stand-alone com-
puter. That is, it is not someone’s desktop machine, nor will users typically log directly into
the server unless they happen to be the administrator of the server.

The second use of the term server is of the software that is run on the machine. Server
software includes print service, ftp server, webserver, e-mail server, database server, and
file server. The software server must be installed, configured, and managed. These steps
may be involved. For instance, configuring and managing the Apache web server could
potentially be a job by itself rather than one left up to either a system administrator or web
developer.

The third usage for server is the collection of hardware, software, and data that together
constitutes the server. For instance, we might refer to a web server as hardware, software,
and the documents stored there.

In this section, we look at a few types of software servers. We emphasize the Apache web
server with a look at installation and minimal configuration. Below is a list of the most
common types of servers.

web server

The role of a web server is to respond to HTTP requests. HTTP requests most typically
come from web browsers, but other software and users can also submit requests. HTTP is

390 ◾ Information Technology

the hypertext transfer protocol. Most HTTP requests are for HTML documents (or vari-
ants of html), but could include just about any web-accessible resource. HTTP is similar
to FTP in that a file is transferred using the service, but unlike FTP, the typical request is
made by clicking on a link in a web browser—and thus, the user does not have to know
the name of the server or the name or path of the resource. These are all combined into
an entity known as a URL. The open source Apache server is the most popular web server
used today. Aside from servicing requests, Apache can execute scripts to generate dynamic
pages, use security mechanisms to ensure that requests are not forms of attacks, log requests
so that analysts can find trends in the public’s browser behavior of the website, and numer-
ous other tasks. We look at Apache in more detail below. Internet Information Server (also
called Internet Information Services), or IIS, is a Microsoft web server, first made available
for Windows XP operating systems and also comes with Windows Vista and Windows 7.

proxy server

A proxy server is used in an organization to act as a giant cache of web pages that anyone
in the organization has recently retrieved. The idea is that if many people within the orga-
nization tend to view the same pages, caching these pages locally permits future accesses
to obtain the page locally rather than remotely. Another function of the proxy server is to
provide a degree of anonymity since the IP address recorded by the web server in response
to the request is that of the proxy server and not the individual client. Proxy servers can also
be used to block certain content from being returned, for instance, rejecting requests going
out to specific servers (e.g., Facebook) and reject responses that contain certain content (e.g.,
the word “porn”). Squid is the most commonly used proxy server although Apache can
also serve as a proxy server. Squid, like Apache, is open source. Among the types of things
a system administrator or web administrator might configure with Squid are the number
and size of the caches, and the Squid firewall to permit or prohibit access of various types.

database server

A database is a structured data repository. A database management system is software that
responds to user queries to create, manipulate, and retrieve records from the database.
There are numerous database management system packages available. A database server
permits database access across a network. The database server will perform such tasks as
data analysis, data manipulation, security, and archiving. The database server may or may
not store the database itself. By separating the server from the database, one can use dif-
ferent mechanisms to store the database, for instance a storage area network to support
load balancing. MySQL is a very popular, open source database server. MySQL is actually
an umbrella name for a number of different database products. MySQL Community is
the database server. There is also a proxy server for a MySQL database, a cluster server for
high-speed transactional database interaction, and a tool to support GUI construction.

fTp server

An FTP server is like a webserver in that it hosts files and allows clients to access those files.
However, with FTP, access is in the form of uploading files and downloading files. Any files

software ◾ 391

downloaded are saved to disk unlike the web service where most files are loaded directly
into the client’s web browser. FTP access either requires that the user have an account
(unlike HTTP), or requires that the user log in as an anonymous user. The anonymous user
has access to public files (often in a special directory called /pub). FTP is an older protocol
than HTTP and has largely been replaced by HTTP with the exception of file uploading.
An FTP server is available in Linux, ftpd. This service is text-based. An extension to FTP is
FTPS, a secure form of FTP. Although SFTP is another secure way to handle file transfer, it
is not based on the FTP protocol. One can also run ssh and then use ftp from inside of ssh.
Popular FTP client tools for performing FTP include WS-FTP and FileZilla, both of which
are GUI programs that send commands to an FTP server. FileZilla can also operate as an
FTP server, as can Apache.

file server

A file server is in essence a computer with a large hard disk storing files that any or many
users of the network may wish to access. The more complex file servers are used to not only
store data files but also to store software to be run over the network. File servers used to be
very prominent in computer networks because hard disk storage was prohibitively expen-
sive. Today, with 1 TB of hard disk space costing $100, many organizations have forgone
the use of file servers. The file server is still advantageous for most organizations because it
supports file sharing, permits easy backup of user files, allows for encryption of data stor-
age, and allows remote access to files. There are many different file servers available with
NFS (the Network File System) being the most popular in the Unix/Linux world.

e-mail server

An e-mail server provides e-mail service. Its job is to accept e-mail requests from clients and
send messages out to other e-mail servers, and to receive e-mails from other servers and alert
the user that e-mail has arrived. The Linux and Unix operating systems have a built-in e-mail
service, sendmail. Clients are free to use any number of different programs to access their
e-mail. In Windows, there are a large variety of e-mail servers available including Eudora,
CleanMail, and Microsoft Windows Server. Unlike FTP and Web servers, which have a lim-
ited number of protocols to handle (primarily ftp, ftps, http, and https), there are more e-mail
protocols that servers have to handle: IMAP, POP3, SMTP, HTTP, MAPI, and MIME.

domain Name system

For convenience, people tend to use IP aliases when accessing web servers, FTP servers,
and e-mail servers. The aliases are easier to remember than actual IP addresses. But IP
aliases cannot be used by routers, so a translation is required from IP alias to IP address.
This is typically performed by a domain name system (DNS). The DNS consists of map-
ping information as well as pointers to other DNSs so that, if a request cannot be success-
fully mapped, the request can be forwarded to another DNS. In Linux, a common DNS
program is bind. The dnsmasq program is a forwarder program often used on small Linux
(and MacOS) networks. For Windows, Microsoft DNS is a component of Windows Server.
Cisco also offers a DNS server, Cisco Network Registrar (CNR).

392 ◾ Information Technology

We conclude this chapter by looking at how to install and configure the Apache web-
server in Linux. Because much software in Linux is open source, we will look at how to
install Apache using the configure, make, and make install steps.

The first step is to download Apache. You can obtain Apache from httpd.apache.org.
Although Apache is available for both Linux/Unix and Windows, we will only look at
installing it in Linux because the Windows version has several limitations. From the above-
mentioned website, you would select Download from the most recent stable version (there
is no need to download and install a Beta version because Apache receives regular updates
and so any new features will be woven into a stable version before too long). Apache is
available in both source code and binary (executable) format for Windows, but source code
only in Linux. Select one of the Unix Source selections. There are encrypted and nonen-
crypted versions available. For instance, selecting http-2.4.1.tar.gz selects Apache version
2.4.1, tarred and zipped. Once downloaded, you must unzip and untar it. You can accom-
plish this with a single command:

tar -xzf httpd-2.4.1.tar.gz

The options x, z, and f stand for “extract”, “unzip”, and “the file given as an argument”,
respectively. The result of this command will be a new directory, httpd-2.4.1, in the cur-
rent directory. If you perform an ls on this directory, you will see the listing as shown in
Figure 13.4.

The directory contains several subdirectories. The most important of these subdirecto-
ries are server, which contains all of the C source code; include, which contains the various
C header files; and modules, which contains the code required to build the various mod-
ules that come with Apache. There are several scripts in this directory as well. The build-
conf and configure scripts help configure Apache by altering the Makefile script to fit the
user specifications. The Makefile.in and Makefile.win scripts are used to actually perform
the compilation steps.

The next step for the system administrator is to perform the configure step. The usage of
this command is ./configure [OPTION]… [VAR = VALUE]… If you do ./configure –h, you
will receive help on what the options, variables, and values are. There are few options avail-
able and largely will be unused except possibly –h to obtain the help file and –q to operate
in “quiet mode” to avoid lengthy printouts of messages. The more common arguments for
configure are establishing a number of environment variables. Many of these are used to

fIGUre 13.4 Listing of the Apache directory.

software ◾ 393

either alter the default directories or to specify modules that should be installed. Here are
some examples:

--bindir=DIR —replace the default executable directory with DIR
-- sbindir=DIR —replace the default system administration
executable directory with DIR

-- sysconfidir=DIR —replace the default configuration directory
with DIR

-- datadir=DIR —replace the default data directory (usually/var/
www/html) with DIR

--prefix=DIR —replace all default directories with DIR
--enable-load-all-modules —load all available modules
--enable-modules=MODULE-LIST —load all modules listed here
-- enable-authn-file —load the module dealing with authentication
control

-- enable-include —enable server side includes module (to run CGI
script)

--enable-proxy —enable proxy server module
--enable-ssl —enable SSL/TLS support module

A typical command at this point might be:

./configure --prefix=/usr/local/ --enable-modules=…

Where you will fill in the desired modules in place of …, or omit –enable-modules= entirely
if there are no initial modules that you want to install. The configure command will most
likely take several minutes to execute. Once completed, your Makefile is available. Type
the command make, which itself will take several more minutes to complete. Finally, when
done, type make install. You will now have an installed version of Apache, but it is not yet
running.

There are other means of installing Apache. For instance, an executable version is
available via the CentOS installation disk. You can install this using the Add/Remove
Software command under the Applications menu. This does require that you have the
installation disk available. An even simpler approach is to use yum by entering yum
install httpd. However, these two approaches restrict you to default options and the ver-
sion of Apache made available in their respective repositories (the one on the disk and
the one in the RPM website) and not the most recent version as found on the Apache
website.

Now that Apache is installed, we can look at how to use it. To run Apache, you must
start the Apache service. Find the binary directory, in this case it would be /usr/local/
apache2/bin. In this subdirectory is the script apachectl. You will want to start this by
executing ./ apachectl start. Your server should now be functional.

Using the above configuration, all of your configuration files will be stored under /usr/
local/apache2/conf. The main conf file is httpd.conf. You edit this file to further configure

394 ◾ Information Technology

and tailor your server to your specific needs. This file is not the only configuration file.
Instead, it is common to break up configuration commands into multiple files. The Include
directive is used to load other configuration files. You might find in the httpd.conf file that
many of the Include statements have been commented out.

Let us consider what you might do to configure your server. You might want to establish
additional IP addresses or ports that Apache will respond to. You might want to alter the
location of log files and what is being logged. You might want to utilize a variety of mod-
ules that you specified in the ./configure command. You might want to alter the number
of children that Apache will spawn and keep running in the background to handle HTTP
requests. Additionally, you can add a variety of containers. Containers describe how to
specifically treat a subdirectory of the file space, a group of files that share the same name,
or a specific URL. Any time you change your configuration file, you must restart apache
to have those changes take effect. You can either issue the commands ./apachectl stop and
./ apachectl start or ./apachectl restart (the latter command will only work if Apache is cur-
rently running).

The location of your “web space”, as stored in your Linux computer, should be /usr/
local/apache2/web. This is where you will place most of your web documents. However,
you might wish to create subdirectories to better organize the file space. You can also bet-
ter control access to individual subdirectories so that you could, for instance, place certain
restricted files under https access that requires an authorized log in, by using directory
containers.

The Apache configuration file is composed of comments and directives. Comments are
English descriptions of the directives in the file along with helpful suggestions for making
modifications. The directives are broken into three types. First, server directives impact
the entire server. Second, container directives impact how the server treats specific direc-
tories and files. Finally, Include statements are used to load other configuration files.

The server directives impact the entire server. The following are examples of seven
server directives.

 ServerName www.myserver.com

 User apache

 Group apache

 TimeOut 120

 MaxKeepAliveRequests 100

 Listen 80

 DocumentRoot “/usr/local/apache2/web”

ServerName is the IP alias by which this machine will respond. User and Group define
the name by which this process will appear when running in Linux (e.g., when you do

software ◾ 395

a ps command). TimeOut denotes the number of seconds that the server should try to
communicate with a client before issuing a time out command. MaxKeepAliveRequests
establishes the number of requests that a single connection can send before the connection
is closed and a new connection must be established between a client and the server. Listen
identifies the port number(s) that the server will listen to. Listen also permits IP addresses
if the server runs on a computer that has multiple IP addresses. DocumentRoot stores
the directory location on the server of the web pages. The default for this address typically
/var/www/html; however, we overrode this during the ./configure step when we specified
the location in the file system for all of Apache.

The Include directive allows you to specify other configuration files. For instance,

Include conf.d/*.conf

would load all other.conf files found in the conf.d subdirectory at the time Apache is
started. This allows you to separate directives into numerous files, keeping each file short
and concise. This also allows the web server administrator to group directives into cat-
egories and decide which directives should be loaded and which should not be loaded by
simply commenting out some of the Include statements. In the CentOS version of Linux,
there are two .conf files found in this subdirectory: one to configure a proxy service and a
welcome .conf file.

The last type of directive is actually a class of directives called containers. A container
describes a location for which the directives should be applied. There are multiple types of
containers. The most common type are <Directory> to specify directives for a particular
directory (and its subdirectories), <Location> to specify directives for a URL, and <Files>
to specify directives for all files of the given name no matter where those files are stored
(e.g., index.html).

The container allows the website administrator to fine-tune how Apache will perform
for different directories and files. The directives used in containers can control who can
access files specified by the container. For instance, a pay website will have some free pages
and some pages that can only be viewed if the user has paid for admittance. By placing all
of the “pay” pages into one directory, a directory container can be applied to that directory
that specifies that authentication is required. Files outside of the directory are not impacted
and therefore authentication is not required for those.

Aside from authentication, numerous other controls are available for containers. For
instance, encryption can also be specified so that any file within the directory must be
transmitted using some form of encryption. Symbolic links out of the directory can be
allowed or disallowed. Another form of control is whether scripts can be executed from a
given directory. The administrator can also control access to the contents of a container
based on the client’s IP address.

What follows are two very different directory containers. In the first, the container
defines access capabilities for the entire website. Everything under the web directory will
obey these rules unless overridden. These rules first permit two options, Indexes and

396 ◾ Information Technology

FollowSymLinks. Indexes means that if a URL does not include a filename, use index.
html or one of its variants like index.php or index.cgi. FollowSymLinks allows a devel-
oper to place a symbolic link in the directory to another location in the Linux file system.
AllowOverride is used to explicitly list if an option can be overridden lower in the file space
through a means known as htaccess. We will skip that topic. Finally, the last two lines are
a pair: the first states that access will be defined first by the Allow rule and then the Deny
rule; however, because there is no Deny rule, “Allow from all” is used, and so everyone is
allowed access.

<Directory “/usr/local/apache2/web”>
 Options Indexes FollowSymLinks
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>

The following directory container is far more complex and might be used to define a sub-
directory whose contents should only be accessible for users who have an authorized access,
that is, who have logged in through some login mechanism. Notice that this is a subdirectory
of the directory described above. Presumably, any files that were intended for an authorized
audience would be placed here and not in the parent (or other) directory. If a user specifies
a URL of a file in this subdirectory, first basic authentication is used. In the pop-up log in
window, the user is shown that they are logging into the domain called “my store”. They
must enter an account name and password that match an entry in the file /usr/localapache2/
accounts/file1.passwd. Access is given to anyone who satisfies one of two constraints. First,
they are a valid user as authenticated by the password file, or second, they are accessing the
website from IP address 10.11.12.13. If neither of those is true, the user is given a 401 error
message (unauthorized access). Finally, we alter the options for this subdirectory so that only
“ExecCGI” is available, which allows server-side CGI scripts stored in this directory to exe-
cute on the server. Notice that Indexes and FollowSymLinks are not available.

<Directory “/usr/local/apache2/web/payfiles”>
 AuthType Basic
 AuthName “my store”
 AuthUserFile/usr/local/apache2/accounts/file1.passwd
 Require valid-user
 Order deny,allow
 Deny from all
 Allow from 10.11.12.13
 Satisfy any
 Options ExecCGI
</Directory>

There is much more to explore in Apache, but we will save that for another textbook!

software ◾ 397

fUrTHer readING
As with previous chapters, the best references for further reading are those detailing spe-
cific operating systems (see Further Reading section in Chapter 4, particularly texts per-
taining to Linux and Windows). Understanding software categories and licenses can be
found in the following texts:

•	 Classen, H. Practical Guide to Software Licensing: For Licensees and Licensors.
Chicago, IL: American Bar Association, 2012.

•	 Gorden, J. Software Licensing Handbook. North Carolina: Lulu.com, 2008.

•	 Laurent, A. Understanding Open Source and Free Software Licensing. Cambridge,
MA: O’Reilly, 2004.

•	 Overly, M. and Kalyvas, J. Software Agreements Line by Line: A Detailed Look
at Software Contracts and Licenses & How to Change Them to Fit Your Needs.
Massachusetts: Aspatore Books, 2004.

•	 Tollen, D. The Tech Contracts Handbook: Software Licenses and Technology Services
Agreement for Lawyers and Businesspeople. Chicago, IL: American Bar Association,
2011.

Installing software varies from software title to software title and operating system to
operating system. The best references are found on websites that detail installation steps.
These websites are worth investigating when you face “how to” questions or when you need
to troubleshoot problems:

•	 http://centos.karan.org/

•	 http://support.microsoft.com/ph/14019

•	 http://wiki.debian.org/Apt

•	 http://www.yellowdoglinux.com/

The following texts provide details on various servers that you might wish to explore:

•	 Cabral, S. and Murphy, K. MySQL Administrator’s Bible. Hoboken, NJ: Wiley and
Sons, 2009.

•	 Costales, B., Assmann, C., Jansen, G., and Shapiro, G. sendmail. Massachusetts:
O’Reilly, 2007.

•	 Eisley, M., Labiaga, R., and Stern, H. Managing NFS and NIS. Massachusetts: O’Reilly,
2001.

•	 McBee, J. Microsoft Exchange Server 2003 Advanced Administration. New Jersey:
Sybex, 2006.

398 ◾ Information Technology

•	 Mueller, J. Microsoft IIS 7 Implementation and Administration. New Jersey: Sybex,
2007.

•	 Powell, G., and McCullough-Dieter, C. Oracle 10g Database Administrator:
Implementation and Administration. Boston, MA: Thomson, 2007.

•	 Sawicki, E. Guide to Apache. Boston, MA: Thomson, 2008.

•	 Schneller, D. and Schwedt, Ul., MySQL Admin Cookbook. Birmingham: Packt
Publishing, 2010.

•	 Silva, S. Web Server Administration. Boston, MA: Thomson Course Technology, 2008.

•	 Wessels, D. Squid: The Definitive Guide. Massachusetts: O’Reilly, 2005.

Finally, the following two-page article contains a mathematical proof of the equivalence of
hardware and software:

•	 Tan, R. Hardware and software equivalence. International Journal of Electronics,
47(6), 621–622, 1979.

reVIew TerMs
Terminology introduced in this chapter:

Apache E-mail server

Application software Equivalence of hardware and software

Background File extraction

Backward compatibility File server

Beta-release software Firmware

Compatibility Freeware

Compilation FTP server

Configure (Linux) Horizontal software

Container (Apache) Installation

Daemon Kernel

Database server Make (Linux)

Device driver Makefile (Linux)

Directive (Apache) Make install (Linux)

Download Package manager program

software ◾ 399

Patch Source code

Productivity software System software

Proprietary software Tape archive (tar)

Proxy server Upgrade

Public domain software Utility

Server Yum (Linux)

Service Shareware Version

Shell Vertical software

Software Web server

Software release Windows installer

Review Questions

 1. What are the advantages of firmware over software?

 2. What are the advantages of software over firmware?

 3. Is it true that anything implemented in software can also be implemented in hardware?

 4. What is the difference between application software and system software?

 5. Why are device drivers not necessarily a permanent part of the operating system?

 6. When do you need to install device drivers?

 7. What is the difference between the kernel and an operating system utility?

 8. What types of things can a user do to tailor the operating system in a shell?

 9. A service (daemon) is said to run in the background. What does this mean?

 10. Why might a software company work to maintain backward compatibility when
releasing new software versions?

 11. What is a patch and why might one be needed?

 12. When looking at the name of a software title, you might see a notation like Title 5.3.
What do the 5 and 3 represent?

 13. What does it mean to manage software?

 14. What is rpm? What can you use it for? Why is yum simpler to use than rpm?

 15. What is the Linux tar program used for? What does tar –xzf mean?

400 ◾ Information Technology

 16. What does the Linux command configure do? What does the Linux command make
do? What does the Linux command make install do?

 17. What are gcc and g++?

 18. What is the difference between a web server and a proxy server? Between a web server
and an FTP server?

Discussion Questions

 1. We receive automated updates of software over the Internet. How important is it to
keep up with the upgrades? What might be some consequences of either turning this
feature off or of ignoring update announcements?

 2. Intel has always maintained backward compatibility of their processors when-
ever a new generation is released, but this has not always been the case with Apple
Macintosh. From a user’s perspective, what is the significance of maintaining (or not
maintaining) backward compatibility? From a computer architect’s perspective, what
is the significance of maintaining backward compatibility?

 3. Explore the software on your computer. Can you identify which software is com-
mercial, which is free but proprietary under some type of license, and which is free
without license?

 4. Have you read the software licensing agreement that comes with installed software?
If so, paraphrase what it says. If not, why not?

 5. What are some ways that you could violate a software licensing agreement? What are
some of the consequences of violating the agreement?

 6. Assume that you are a system administrator for a small organization that uses Linux
on at least some of their computers. You are asked to install some open source soft-
ware. Provide arguments for and against installing the software using an installa-
tion program, using the yum package manager, using the rpm package manager, and
using configure/make/make install.

401

C h a p t e r 14

Programming

IT administrators will often have to write shell scripts to support the systems that they main-
tain. This chapter introduces the programming task. For those unfamiliar with programming,
this chapter covers more than just shell scripting. First, the chapter reviews the types of pro-
gramming languages, which were first introduced in Chapter 7. Next, the chapter describes,
through numerous examples, the types of programming language instructions found in most
programming languages: input and output instructions, assignment statements, selection
statements, iteration statements, subroutines. With this introduction, the chapter then turns to
scripting in both the Bash interpreter language and DOS, accompanied by numerous examples.

The learning objectives of this chapter are to

•	 Describe the differences between high level language and low level programming.

•	 Discuss the evolution of programming languages with an examination of innova-
tions in programming.

•	 Introduce the types of programming language instructions.

•	 Introduce through examples programming in both the Bash shell and DOS languages.

In this chapter, we look at programming and will examine how to write shell scripts in
both the Bash shell and DOS.

Types of Languages
The only types of programs that a computer can execute are those written in the com-
puter’s machine language. Machine language consists of instructions, written in binary,
that directly reference the computer processor’s instruction set. Writing programs in
machine language is extremely challenging. Fortunately though, programmers have long
avoided writing programs directly in machine language because of the availability of lan-
guage translators. A language translator is a program that takes one program as input,
and creates a machine language program as output. Each language translator is tailored

402 ◾ Information Technology

to translate from one specific language to the machine language of a given processor. For
instance, one translator would be used to translate a C program for a Windows computer
and another would be used to translate a C program for a Sun workstation. Similarly, dif-
ferent translator programs would be required to translate programs written in COBOL
(COmmon Business-Oriented Language), Ada, or FORTRAN.

There are three types of language translators, each for a different class of programming
language. These classes of languages are assembly languages, high level compiled languages,
and high level interpreted languages. The translators for these three types of languages are
called assemblers, compilers, and interpreters, respectively.

Assembly languages were developed in the 1950s as a means to avoid using machine
language. Although it is easier to write a program in assembly language than in a machine
language, most programmers avoid assembly languages as they are nearly as challenging
as machine language programming. Consider a simple C instruction

for(i=0;i<n;i++)
 a[i]=a[i]+1;

which iterates through n array locations, incrementing each one. In assembly (or machine)
language, this simple instruction would comprise several to a few dozen individual instruc-
tions. Once better languages arose, the use of assembly language programming was limited
to programmers who were developing programs that required the most efficient executable
code possible (such as with early computer games). Today, almost no one writes assembly
language programs because of the superiority of high level programming languages.

High level programming languages arose because of the awkwardness of writing in
machine or assembly language. To illustrate the difference, see Figure 14.1. In this figure,
a program is represented in three languages: machine language (for a fictitious computer

1111 0000000000001 Load #1 int a = 1, b = 5, c;
0010 1010100110000 Store a while(a < b)
1111 0000000000101 Load #5 {
0010 1010100110001 Store b c = c + 2;
0001 1010100110000 Top: Load a b = b – 1;
0100 1010100110001 Subt b }
1000 0000000000000 Skipcond 00 printf(“%d”, c);
1001 0001000101010 Jump exit
0001 1010100110011 Load c
1110 0000000000010 Add #2
0010 1010100110011 Store c
0001 1010100110001 Load b
1101 0000000000001 Subt #1
0010 1010100110001 Store b
1001 0001000100010 Jump top
0001 1010100110011 Exit: Load c
0101 0000000000000 Output

fIguRe 14.1 A simple program written in machine language (leftmost column), assembly lan-
guage (center column), and C (rightmost column).

programming ◾ 403

called MARIE), assembly language (again, in MARIE), and the C high level programming
language. Notice that the C code is far more concise. This is because many tasks, such as
computing a value (e.g., a = b – 1) require several steps in machine and assembly languages
but only one in a high level language. Also notice that every assembly language instruction
has an equivalent machine language instruction, which is why those two programs are of
equal size.

High level programming languages come in one of two types, compiled languages and
interpreted languages. In both cases, the language translator must translate the program
from the high level language to machine language. In a compiled language, the language
translator, called a compiler, translates the entire program at one time, creating an execut-
able program, which can be run at a later time. In an interpreted language, the program
code is written in an interpreted environment. The interpreter takes the most recently
entered instruction, translates it into machine language, and executes it. This allows the
programmer to experiment while developing code. For example, if the programmer is
unsure what a particular instruction might do, the programmer can enter the instruction
and test it. If it does not do what was desired, the programmer then tries again. The inter-
preted programming process is quite different from the compiled programming process
as it is more experimental in nature and developing a program can be done in a piecemeal
manner. Compiled programming often requires that the entire program be written before
any of it can be compiled and tested.

Most of the high level languages fell into the compiled category until recently. Scripting
languages are interpreted, and more and more programmers are using scripting languages.
Although interpreted programming sounds like the easier and better approach, there is a
large disadvantage to interpreted programming. Once a program is compiled, the chore
of language translation is over with and therefore, executing the program only requires
execution time, not additional translation time. To execute an interpreted program, every
instruction is translated first and then executed. This causes execution time to be lengthier
than over a similarly compiled program. However, many modern interpreted languages
have optional compilers so that, once complete, the program can be compiled if desired.

Another issue that arises between compiled and interpreted programming is that of
software testing. Most language compilers will find many types of errors at the time a pro-
gram is being compiled. These are known as syntax errors. As a programmer (particularly,
a software engineer), one would not want to release software that contains errors. One type
of error that would be caught by a compiler is a type mismatch error. In this type of error,
the program attempts to store a type of value in a variable that should not be able to store
that type, or an instruction might try to perform an operation on a variable that does not
permit that type of operation. Two simple examples are trying to store a fractional value
with a decimal point into an integer variable and trying to perform multiplication on a
string variable. These errors are caught by the compiler at the time the program is com-
piled. In an interpreted program, the program is not translated until it is executed and so
the interpreter would only catch the error at run-time (a run-time error), when it is too late
to avoid the problem. The user, running the interpreted program, may be left to wonder
why the program did not run correctly.

404 ◾ Information Technology

A run-time error is one that arises during program execution. The run-time error occurs
because the computer could literally not accomplish the task at hand. A common form of
run-time error is an arithmetic overload. This happens when a computation results in a
value too large to place in to the designated memory location. Another type of run-time
error arises when the user inputs an inappropriate value, for instance, entering a name
when a number is asked for.

The type mismatch error described above is one that can be caught by a compiler. But
if the language does not require compilation, the error is only caught when the particular
instruction is executed, and so it happens at run time.

A third class of error is a logical error. This type of error arises because the programmer’s
logic is incorrect. This might be something as trivial as subtracting two numbers when the
programmer intended to add two numbers. It can also arise as a result of a very compli-
cated code because the programmer was unable to track all of the possible outcomes.

Let us consider an example that illustrates how challenging it is to identify a logical
error from the code. The following code excerpt is from C (or C++ or Java).

int x = 5;
float y;
y = 1/x;

The code first declares two variables, an integer x and a floating point (real) y. The variable
x is initialized with the number 5. The third instruction computes 1/x and stores the result
in y. The result should be the value 1/5 (0.2) stored in y. This should not be a problem for the
computer since y is a float, which means it can store a value with a decimal point (unlike x).
However, the problem with this instruction is that, in C, C++, and Java, if the numerator and
the denominator are both integers, the division is an integer division. This means that the
quotient is an integer as well. Dividing 1 by 5 yields the value 0 with a remainder of 1/5. The
integer quotient is 0. So y = 1/x; results in y = 0. Since y is a float, the value is converted from
0 to 0.0. Thus, y becomes 0.0 instead of 0.2! Logical errors plague nearly every programmer.

a BRIef examInaTIon of HIgH LeveL pRogRammIng Languages
Programming languages, like computer hardware and operating systems, have their own
history. Here, we take a brief look at the evolution of programming languages, concentrat-
ing primarily on the more popular high level languages of the past 50 years.

The earliest languages were native machine languages. Such a language would look
utterly alien to us because the instructions would comprise only 1s and 0s of binary, or
perhaps the instructions and data would be converted into octal or hexadecimal represen-
tations for somewhat easier readability. In any event, no one has used machine language
for decades, with the exception of students studying computer science or computer engi-
neering. By the mid 1950s, assembly languages were being introduced. As with machine
languages, assembly languages are very challenging.

Starting in the late 1950s, programmers began developing compilers. Compilers are lan-
guage translators that translate high level programming languages into machine language.

programming ◾ 405

The development of compilers was hand in hand with the development of the first high
level programming languages. The earliest high level language, FORTRAN (FORmula
TRANslator) was an attempt to allow programmers who were dealing with mathemati-
cal and scientific computation a means to express a program as a series of mathematical
formulas (thus the name of the language) along with input and output statements. Most
programmers were skeptical that a compiler could produce efficient code, but once it was
shown that compilers could generate machine language code that was as efficient as, or
more efficient than, that produced by humans, FORTRAN became very popular.

FORTRAN, being the first high level language, contained many features found in assem-
bly language and did not contain many features that would be found in later languages.
One example is FORTRAN’s reliance on implicit variable typing. Rather than requiring
that the programmer declare variables by type, the type of a variable would be based on
the variable’s name. A variable with a name starting with any letter from I to N would
be an integer and any other variable would be a real (a number with a decimal point).
Additionally, FORTRAN did not contain a character type so you could not store strings,
only numbers. Variable names were limited to six characters in length. You could not,
therefore, name a variable income_tax.

FORTRAN did not have a useful if-statement, relying instead on the use of GO TO state-
ments (a type of unconditional branching instruction). Unconditional branches are used
extensively in machine and assembly language programming. In FORTRAN, the GO TO
permits the programmer to transfer control of the program from any location to another.
We will examine an example of this later in this section. Because of the GO TO rather than
a useful if-statement, FORTRAN code would contain logic that was far more complex (or
convoluted) than was necessary. In spite of its drawbacks, FORTRAN became extremely
popular for scientific programming because it was a vast improvement over assembly and
machine language.

As FORTRAN was being developed, the Department of Defense began working with
business programmers to produce a business-oriented programming language, COBOL
(COmmon Business-Oriented Language). Whereas FORTRAN often looked much like
mathematical notation, COBOL was expressed in English sentences and paragraphs,
although the words that made up the sentences had to be legal COBOL statements, written
in legal COBOL syntax. The idea behind a COBOL program was to write small routines,
each would be its own paragraph. Routines would invoke other routines. The program’s
data would be described in detail, assuming that data would come from a database and
output would be placed in another database. Thus, much of COBOL programming was the
movement and processing of data, including simple mathematical calculations and sort-
ing. COBOL was released a couple of years after FORTRAN and became as successful as
FORTRAN, although in COBOL’s case, it was successful in business programming.

COBOL also lacked many features found in later languages. One major drawback was
that all variables were global variables. Programs are generally divided into a number of
smaller routines, sometimes referred to as procedures, functions, or methods. Each routine
has its own memory space and variables. In this way, a program can manipulate its local
variables without concern that other routines can alter them. Global variables violate this

406 ◾ Information Technology

idea because a variable known in one location of the program, or one routine, is known
throughout the program. Making a change to the variable in one routine may have unex-
pected consequences in other routines.

COBOL suffered from other problems. Early COBOL did not include the notion of an
array. There was no parameter passing in early COBOL (in part because all variables were
global variables). Like FORTRAN, COBOL had a reliance on unconditional branching
instructions. Additionally, COBOL was limited with respect to its computational abilities.
COBOL did, however, introduce two very important concepts. The first was the notion
of structured data, now referred to as data structures, and the second was the ability to
store character strings. Data structures allow the programmer to define variables that are
composed of different types of data. For instance, we might define a Student record that
consists of a student’s name, major, GPA, total credit hours earned, and current courses
being taken. The different types of data would be represented using a variety of data types:
strings, reals, integers.

Researchers in artificial intelligence began developing their own languages in the late
1950s and early 1960s. The researchers called for language features unavailable in either
FORTRAN or COBOL: handling lists of symbols, recursion and dynamic memory alloca-
tion. Although several languages were initially developed, it was LISP—the LISt Processing
language—that caught on. In addition to the above-mentioned features that made LISP
appealing, LISP was an interpreted language. By being an interpreted language, program-
mers could experiment and test out code while developing programs and therefore pro-
grams could be written in a piecemeal fashion. LISP was very innovative and continued to
be used, in different forms, through the 1990s.

Following on from these three languages, the language ALGOL (ALGOrithmic Language)
was an attempt to merge the best features of FORTRAN, COBOL, and LISP into a new
language. ALGOL ultimately gained more popularity in Europe than it did in the United
States, and its use was limited compared to the other languages, eventually leading to
ALGOL’s demise. However, ALGOL would play a significant role as newer languages would
be developed.

In the 1960s, programming languages were being developed for many different appli-
cation areas. New languages were also developed to replace older languages or to pro-
vide facilities that older languages did not include. Some notable languages of the early
1960s were PL/I, a language developed by IBM to contain the best features of FORTRAN,
COBOL, and ALGOL while also introducing new concepts such as exception handling;
SIMULA, a language to develop simulations; SNOBOL (StriNg Oriented and SymBOlic
Language), a string matching language; and BCPL, an early version of C.

By the late 1960s, programmers realized that these early languages relied too heavily on
unconditional branching statements. In many languages, the statement was called a GO
TO (or goto). The unconditional branch would allow the programmer to specify that the
program could jump from its current location to anywhere else in the program.

As an example, consider a program that happens to be 10 pages in length. On page 1,
there are four instructions followed by a GO TO that branches to an instruction on page 3.
At that point, there are five instructions followed by an if–then–else statement. The then

programming ◾ 407

clause has a GO TO statement that branches to an instruction on page 6, and the else
clause has a GO TO statement that branches to an instruction on page 8. On page 6, there
are three instructions followed by a GO TO statement to page 2. On page 8, there are five
instructions followed by an if–then statement. The then clause has a GO TO statement that
branches to page 1. And so forth. Attempting to understand the program requires tracing
through it. Tracing through a program with GO TO statements leads to confusion. The
trace might begin to resemble a pile of spaghetti. Thus, unconditional branching instruc-
tions can create what has been dubbed spaghetti code.

Early FORTRAN used an if-statement that was based around GO TO statements. The
basic form of the statement is If (arithmetic expression) line number1, line number2, line
number3. If the arithmetic expression evaluates to a negative value, GO TO line number1,
else if the arithmetic expression equals zero, GO TO line number2, otherwise GO TO line
number3. See Figure 14.2, which illustrates spaghetti code that is all too easily produced
in FORTRAN. The second instruction is an example of FORTRAN’s if-statement, which
computes I–J and if negative, branches to line 10, if zero, branches to line 20, otherwise
branches to line 30.

Assuming I = 5, J = 15, and K = –1, can you trace through the code in Figure 14.2 to see
what instructions are executed and in what order? If your answer is no, this may be because
of the awkwardness of tracing through code that uses GO TO statements to such an extent.

Programmers who were developing newer languages decided that the unconditional
branch was too unstructured. Their solution was to develop more structured control
statements. This led to the development of conditional iteration statements (e.g., while
loops), counting loops (for-loops), and nested if–then–else statements. Two languages that
embraced the concept of structured programming were developed as an offshoot of ALGOL:
C and Pascal. For more than 15 years, these two languages would be used extensively in
programming (C) and education (Pascal). Developed in the early 1980s, Ada would take
on features of both languages, incorporate features found in a variety of other languages,
introduce new features, and become the language used exclusively by the U.S. government
for decades.

 READ (*,*) I, J, K
 If (I-J), 10, 20, 30
10 If(K) 30, 40, 50
20 I=J*K
 If(I-25) 40, 50, 60
30 J=K*3
 GO TO 20
40 K=K+1
 GO TO 10
50 WRITE (*,*) I, J, K
 GO TO 70
60 WRITE (*, *) J, K
70 END

fIguRe 14.2 Spaghetti code in FORTRAN.

408 ◾ Information Technology

In 1980, a new concept in programming came about, object-oriented programming.
Developed originally in one of the variants of Simula, the first object-oriented program-
ming language was Smalltalk, which was the result of a student’s dissertation research. The
idea was that data structures could model real-world objects (whether physical objects such
as a car or abstract objects such as an operating system window). A program could consist
of objects that would communicate with each other. For example, if one were to program a
desktop object and several window objects, the desktop might send messages to a window
to close itself, to move itself, to shrink itself, or to resize itself. The object would be specified
in a class definition that described both the data structure of the object and all of the code
needed to handle the messages that other objects might pass to it. Programming changed
from the idea of program subroutines calling each other to program objects sending mes-
sages to each other.

In the late 1980s, C was upgraded to C++ and LISP was upgraded to Common Lisp, the
two newer languages being object-oriented. Ada was later enhanced to Ada 95. And then,
based on C++, Java was developed. Java, at the time, was a unique language in that it was both
compiled and interpreted. This is discussed in more detail later. With the immense popular-
ity of both C++ and Java, nearly all languages since the 1990s have been object-oriented.
Another concept introduced during this period was that of visual programming. In a visual
programming language, GUI programs could be created easily by using a drag-and-drop
method to develop the GUI itself, and then program the “behind-the-scenes” code to handle
operations when the user interacts with the GUI components. For example, a GUI might
contain two buttons and a text bar. The programmer creates the GUI by simply inserting the
buttons and text bar onto a blank panel. Then, the programmer must implement the actions
that should occur when the buttons are clicked on or when text is entered into the text bar.

The 1990s saw the beginning of the privatization of the Internet. Companies were
allowed to sell individuals the ability to access the Internet from their homes or offices.
With this and the advent of the World Wide Web, a new concept in programming was pio-
neered. Previously, to run a program on your computer, you would have to obtain a com-
piled version. The programmer might have to find a compiler for every platform so that the
software could be made available on every platform. If a programmer wrote a C++ pro-
gram, the programmer would have to compile the program for Windows, for Macintosh,
for Sun workstations, for Intel-based Linux, for IBM mainframes, and so forth. Not only
would this require the programmer to obtain several different compilers, it might also
require that the programmer modify the code before using each compiler because compil-
ers might expect slightly different syntax.

When developing the Java programming language, the inventors tried something new.
A Java compiler would translate the Java program into an intermediate language that they
called byte code. Byte code would not run on a computer because it was not machine lan-
guage itself. But byte code would be independent of each platform. The compiler would
produce one byte code program no matter which platform the program was intended
to run on. Next, the inventors of Java implemented a number of Java Virtual Machines
(JVM), one per platform. The JVM’s responsibility would be to take, one by one, each
byte code instruction of the program, convert it to the platform’s machine language, and

programming ◾ 409

execute it. Thus, the JVM is an interpreter. Earlier, it was stated that interpreting a program
is far less efficient than compiling a program, which is true. However, interpreting byte
code can be done nearly as efficiently as running a compiled program because byte code
is already a partially translated program instruction. Thus, this combination of compila-
tion and interpretation of a program is nearly as efficient as running an already compiled
program. The advantage of the Java approach is that of portability; a program compiled by
the Java compiler can run on any platform that has a JVM. JVMs have been implemented
in nearly all web browsers, so Java is a language commonly used to implement programs
that run within web browsers (such programs are often called applets).

The desire for platform-independent programs has continued to increase over time with
the increased popularity of the Internet. Today, Microsoft’s .net (“dot net”) programming
platform permits a similar approach to Java’s byte codes in that code is compiled into byte
code and then can be interpreted. .Net programming languages include C# (a variation
of C++ and Java), ASP (active server pages), Visual Basic (a visual programming lan-
guage), C++, and a variant of Java called J++. The .Net platform goes beyond the platform-
independent nature of Java in that code written in one language of the platform can be
used by code written in another one of the languages. In this way, a program no longer
has to be written in a single language but instead could be composed of individual classes
written in a number of these languages.

It is unknown what new features will be added to languages in the future, or where the
future of programming will take us with respect to new languages. But to many in com-
puter science, a long-term goal is to program computers to understand natural languages.
A natural language is a language that humans use to communicate with each other. If a
computer could understand English, then a programmer would not have to worry about
writing code within any single programming language, nor would a computer user have
to learn the syntax behind operating system commands such as Linux and DOS. Natural
languages, however, are rife with ambiguity, so programming a computer to understand a
natural language remains a very challenging problem.

Types of InsTRucTIons
Program code, no matter what language, comprises the same types of instructions. These
types of instructions are described in this section along with examples in a variety of
languages.

Input and output Instructions

Input is the process of obtaining values from input devices (or files) and storing the values
in variables in memory. Output is the process of sending literal values and values from
variables to output devices (or to files).

Some languages have two separate sets of I/O statements: those that use standard input
(keyboard) and output (monitor) and those that use files. Other languages require that the
input or output statement specify the source/destination device. In C, C++, and Java, for
example, there are different statements for standard input, standard output, file input, and
file output. In FORTRAN and Pascal, the input and output statements default to standard

410 ◾ Information Technology

input and output but can be overridden to specify a file. In addition, some languages use
different I/O statements for different data types. In Ada, there are different input state-
ments for strings, for integers, for reals, and so forth. Most languages allow multiple vari-
ables to be input or output in a single statement.

Figure 14.3 demonstrates file input instructions from four languages: FORTRAN, C,
Java, and Pascal. In each case, the code inputs three data—x, y, and z (an integer and two
real or floating point numbers)—from the text file input.dat. Each set of code requires
more than just the input instruction itself.

The FORTRAN code first requires an OPEN statement to open the text file for input.
The file is given the designator 1, which is used in the input statement, READ. The READ
statement is fairly straightforward although the (1, 50) refer to the file designator and the
FORMAT line, respectively. The FORMAT statement describes how the input should be
interpreted. In this case, the first two characters are treated as an integer (I) and the next
six characters are treated as a floating point (real) number with two digits to the right of the
decimal point (F6.2) followed by another float with the same format.

In the case of C, the first statement declares a variable to be of type FILE. Next, the file is
opened with the fopen statement. The “r” indicates that the file should be read from but not
written to. The notation “%d %f %f” indicates that the input should be treated as a decimal
value (integer) and two floating point values. The & symbol used in C before the variables
in the scanf statement is required because of how C passes parameters to its functions.

 OPEN(1,FILE=‘input.dat’, ACCESS=‘DIRECT’, STATUS=‘OLD’)
 READ(1,50) X, Y, Z
50 FORMAT(I2, F6.2, F6.2)

FILE *file;
file = fopen(“input.dat”, “r”);
fscanf(“%d %f %f”, &x , &y, &z);

var input : text;
…
Assign(input, ‘input.dat’);
Reset(input);
Readln(input, x, y, z);

try {
 BufferedReader input = new BufferedReader(new FileReader(“input.dat”));
 data=input.readLine();
 StringTokenzier token = new StringTokenizer(data, “ ”);
 x=Integer.parseInt(token.nextToken());
 y=Float.parseFloat(token.nextToken());
 z=Float.parseFloat(token.nextToken());
}
catch(IOException e) { }

fIguRe 14.3 Example file input in four programming languages.

programming ◾ 411

In Pascal, the textfile must be declared as type text. Next, the text variable is assigned
the name of the file and opened. Finally, the values are input. Pascal, the least powerful of
these four languages, is the simplest. In fact, Pascal was created with simplicity in mind.

In Java, any input must be handled by what is known as an exception handler. This is
done through the try-catch block (although Java gives you other mechanisms for handling
this). Next, a variable of type BufferedReader is needed to perform the input. Input from
BufferedReader is handled as one lengthy string. The string must then be broken up into
the component parts (the three numbers). The string tokenizer does this. Additionally, the
results of the tokenizer are strings, which must be converted into numeric values through
the parse statements. If an exception arises while attempting to perform input, the catch
block is executed, but here, the catch block does nothing.

assignment statements

The assignment statement stores a value in a variable. The variable is on the left-hand side
of the statement, and the value is on the right-hand side of the statement. Separating the
two parts is an assignment operator. The typical form of assignment operator is either =
or : = (Pascal and Ada). The right-hand side value does not have to be a literal value but is
often some form of expression. There are three common forms of expressions: arithmetic,
relational, and Boolean. The arithmetic expression comprises numeric values, variables, and
arithmetic operators, such as a * b – 3. In this case, a and b are variables presumably storing
numeric values. Arithmetic operators are +, –, *, /, and modulo (division yielding the remain-
der), often denoted using %. Relational expressions use relational operators (less than, equal
to, greater than, greater than or equal to, equal to, etc.) to compare values. Boolean expres-
sions use AND, OR, NOT, XOR. There can also be string expressions using such string func-
tions as concatenation, and function calls that return values, such as sqrt(y) to obtain the
square root of y. Function calls are discussed in Subroutines and Subroutine Calls.

Since the equal sign (=) is often used for assignment, what symbol do languages use
to test for equality (i.e., “does a equal b”)? We usually use the equal sign in mathematics.
Should a programming language use the same symbol for two purposes? If so, this not
only might confuse the programmer, but it will confuse the compiler as well. Instead, lan-
guages use two different sets of symbols for assignment and equality. Table 14.1 provides a

TaBLe 14.1 Assignment and Equality Operators in Several Languages

Language Assignment Operator Equality Operator Not Equal Operator
Ada : = = /=
C/C++/Java, Python,
Ruby

= = = (2 equal signs) ! =

COBOL assign Equals (or =) Is not equal to (or NOT =)
FORTRAN = .EQ. .NE.
Pascal : = = <>
Perl = eq (strings), = =

(numbers)
ne (strings), ! = (numbers)

PL/I = = <>

412 ◾ Information Technology

comparison in several languages. It also shows what the “not equal” operator is. Notice that
PL/I is the only language that uses = for both assignment and equality.

The assignment statement in most languages assigns a single variable a value. Some lan-
guages, however, allow multiple assignments in one instruction. In C, for instance, x = y =
z = 0; sets all three variables to 0. In Python, you can assign multiple variables by separating
them on the left-hand side with commas, as in x, y = 5, x + 1, which assigns x to the value 5, and
then assigns y to the value of x+1 (or 6). This shortcut can reduce the number of instructions
in a program but may make the program less readable. C also has shortcut operators. These
include the use of ++ to increment a variable, as in x++, which is the same as x = x + 1, and
+ =, which allows us to write x+ = y instead of x = x + y. C also permits assignments within the
expression part of an assignment statement. The statement a = (b = 5) * c; is two assignment
statements in one. First, b is set equal to 5, and then a is set equal to b * c using b’s new value.

If the language is compiled and variables are declared, then the compiler can test for
type mismatches. This type of error will arise if the right-hand side of the assignment state-
ment generates a value that is not compatible with the variable on the left-hand side. For
example, if x is an integer variable, then the assignment statement x = 3.1415 * y will yield
a type mismatch error because the right-hand side involves a real (floating point) number.
This is true no matter what type y is.

selection statements

Conditions are expressions that evaluate to true or false. Conditions are used in programs
to determine what the program should do next. They are used in two types of statements,
selection statements and iteration (or loop) statements (covered in Iteration Statements).
The idea behind a condition is that the value stored in one or more variables is compared.
Comparisons can be based on relational operators and can also use Boolean operators and
arithmetic operators. For instance, a condition might test to see if x is greater than y, or
x > y. Another condition might test if x equals y or x equals z. Different languages use dif-
ferent symbols for the relational operators (less than, greater than, equal to, etc.) and the
Boolean operators (and, or, not).

A selection statement decides whether a series of instructions should be executed or
skipped based on the evaluation of a condition. This type of statement is often called an
if–then statement (or just an if statement). In the if–then statement, if the condition is true,
the then portion of the statement (usually called the then clause) is executed. If the condi-
tion is false, the then clause is skipped.

In an if–then–else statement, if the condition is true the then clause is executed, and if
the condition is false the else clause is executed. You would use an if–then statement if you
only wanted code to execute when a condition is true. This is sometimes called a one-way
selection. You would use an if–then–else statement if you wanted code to execute no matter
what the condition turned out to be. This is sometimes called a two-way selection.

Figure 14.4 provides example code in three languages: Pascal, C, and FORTRAN IV (an
early version of FORTRAN). Each example is of the same logical problem, adding 1 to x if x
is equal to y or x is equal to z, and subtracting 1 from x otherwise. The Pascal code is the eas-
iest to understand. In C, two equal signs make up the “equality” operator and two vertical

programming ◾ 413

bars (||) make up the OR operator. The FORTRAN code, which relies on GO TO statements,
is less intuitive. Read through the code and see if you can understand it. You might notice
that in C, the word “then” is omitted and the condition is placed inside of parentheses.

The if–then–else statement selects between two sets of code, a “one thing or the other”
situation. What if there were more than just the two possible sets of code to select between?
Most languages allow the then-clause and the else-clause to contain if–then and if–then–
else statements. This creates what is called a nested if–then–else statement. Figure 14.5
shows an example in Pascal, demonstrating how to determine which letter grade to assign
based on the student’s numeric grade. We use the typical 90/80/70/60 breakdown. Based on
the condition that matches, the code assigns the variable letter one of the following values:
‘A’, ‘B’, ‘C’, ‘D’, or ‘F’.

Notice that the last statement does not require an if. The idea is that if the first condition
is true, then the first then clause executes and the entire nested statement ends; otherwise,
the first else clause executes. That else clause contains an if–then–else statement. For that
second condition, if it is true, then the second then clause executes and the statement ends;
otherwise, the second else clause executes. That else clause also contains an if–then–else
statement. If that clause’s condition (the third condition) is true, then the third then clause
executes and the statement ends; otherwise, the third else clause executes. The third else
clause contains yet another if–then–else statement. If that fourth condition is true, then

If grade >= 90 then letter := ‘A’
 Else if grade >= 80 then letter := ‘B’
 Else if grade >= 70 then letter := ‘C’
 Else if grade >= 60 then letter := ‘D’
 Else letter := ‘F’;

fIguRe 14.5 Nested if–then–else in Pascal.

If x = y or x = z then
x := x + 1
Else
x := x - 1;

if (x = = y || x = = z)
 x = x + 1;
else
 x = x – 1;

 IF (X .EQ. Y .OR. X .EQ. Z) GO TO 10
 X = X – 1
 GO TO 20
10 X = X + 1
20 ….

fIguRe 14.4 Three examples of if–then–else statements.

414 ◾ Information Technology

the fourth then clause executes and the statement ends; otherwise, the final else clause
executes.

A couple of other comments are worth mentioning here. The indentation provided
above helps make the code more readable, but does not impact the code’s accuracy or per-
formance. That is, all of the tabs inserted are ignored by the computer. Also, capitalization
is unimportant. Finally, you might notice that the entire set of code contains a single semi-
colon at the end. One difference between Pascal and C, C++, and Java is the use of semico-
lons to end statements. In Pascal, only one is used, to end the entire structure.

Notice in the above examples that the then and else clauses consisted of single opera-
tions. For instance, in the example shown in Figure 14.4, each clause did one thing: incre-
ment x or decrement x. It is just as often the case that the clause will contain multiple
instructions. In Pascal, for instance, you might have code like this:

If x > = y
 Then x: = z;
 y: = 0;
q : = x + y;

Indentation and other white space is ignored, so how does the compiler know when the
then clause ends? That is, is q : = x + y; part of the then clause? In fact, it is not, and neither
is y : = 0; even though the spacing implies that it is. In languages such as Pascal and C, the
compiler only expects a clause to have a single instruction. If you want to specify multiple
instructions, you must place them into a block. A block denotes a collection of instructions
that should be treated as one. This allows you to have multiple instructions in a then or else
clause. In Pascal, a block is denoted using the words begin and end, whereas in C, the block
is denoted using the symbols { and }. The correct Pascal and C versions of the above if–then
statement are shown below. You might notice that y : = 0 does not end with a semicolon.
Pascal semicolon rules are somewhat complicated.

If x > = y Then if (x > = y) {
 Begin x = z;
 x : = z; y = 0;
 y : = 0 }
 End; q = x + y;
q : = x + y;

In some languages such as Ada, an explicit endif ends the statement. In early FORTRAN
instead, you denoted the end of clauses through GO TO statements. We will see the block
return when we get to iteration statements and in Subroutines and Subroutine Calls. Below
is the same code from above but this time written in Python. Python is a unique language
in that indentation does matter. Notice how we do not need the block indicators (begin and
end or { and }) but instead, the indentation indicates that both instructions after if x > = y:
are part of the then clause. Without the indentation for the last statement, it means that it
is not a part of the then clause.

programming ◾ 415

If x > = y:
 x = z
 y = 0
q = x + y

Let us look at another example of a nested if–else statement, this time in C. You will
see that there are three different clauses that can execute based on the values of x, y, and
z. Given values for x, y, and z, you should be able to determine which of the three clauses
executes. For instance, if x = 5, y = 3, and z = 0, which clause would execute?

if(x > 0)
 if(y > 0)
 …//clause 1
 else if(z > 0)
 …//clause 2
 else …//clause 3

Clause 1 will execute if x > 0 and y > 0. Clause 2 will execute if x > 0, y < = 0, and z > 0
(if x < = 0, we never reach the second if-statement and therefore we never reach the else if-
statement, and if y > 0, we never reach the else if-statement). When does clause 3 execute?
That is, is the last else clause paired with the condition (z > 0) or the condition (x > 0)? It is
not paired with (y > 0) because the else if statement contains the else clause for that condition.

In this example code, it is unclear if the last else is associated with the first if or the third
if. This is a situation known as a dangling else. If we were to use block notation, we could
easily resolve this as one of the following:

if(x > 0) { if(x > 0)
 if(y > 0) if(y > 0) {
 …//clause 1 …//clause 1
 } else if(z > 0)
else if(z > 0) …//clause 2
 …//clause 2 }
else …//clause 3 else …//clause 3

In the code on the left, the last else goes with the second if statement (y > 0) and in the code
on the right, the last else goes with the first if statement (x > 0). However, in C, we do not
need to use the block notation because, by default, any dangling else clause is always asso-
ciated with the most recent condition. So clause 3 executes if x > 0 and y < = 0 and z < = 0.
If we did not want the default to apply (the case on the right above), we would then use
the block notation. Different languages have different rules regarding dangling else state-
ments. By the way, if x = 5, y = 3, and z = 0, clause 3 will execute.

There are other forms of multiple selection statements. In Pascal, they are called case
statements. In C and Java, they are called switch statements. We will not cover them here
although you would see them in any introductory programming course.

416 ◾ Information Technology

Iteration statements

There are times when a set of code should be performed multiple times. Let us consider as
an example that you want to write a payroll program that will perform payroll operations.
The program needs to input an employee’s data, compute the employee’s pay and taxes,
output the results, and maintain totals throughout. You might think to write the program
as a straight line of code that performs the input steps, the computations, and the outputs,
and then ends. This would compute one employee’s pay. You would not want to run the
program one time per employee because it would be annoying to keep rerunning the pro-
gram. Additionally, you would not be able to compute the totals of all employees. Instead,
you would write the “straight line code” and place it inside of an iteration statement. The
iteration statement is used to repeat a set of code.

There are two general forms of iteration statement. The conditional, or logical, loop
repeats the code while the condition evaluates to true. The counting loop (often known
as a for-loop) iterates a number of times based on either a starting and ending point (for
instance, 1 to 10) or the values stored in a list. The reason that counting loops are some-
times called for-loops is that most languages use the reserved word for to indicate that it
is a counting loop. The following examples are of Pascal code. First, we see a logical loop.

While x > y
 begin
 …
 end;

In the preceding loop, the condition is x > y. This means that the loop will continue to
execute while x remains greater than y. Notice the use of the begin…end block. As with

Language Barriers

as described in Types of Instructions, all programming languages have the same types of pro-
gramming language instructions: input, output, assignment, selection, iteration, subroutines.
If this is true, then should you not be able to solve a given problem in any language? and if
so, then why are there so many different programming languages? It seems unreasonable to
have dozens, hundreds or thousands of languages when one will do!

early in the history of computers, languages offered different features. coBoL, for instance,
allowed you to structure your data very precisely, whereas aLgoL introduced useful control
statements and LIsp provided for both symbolic processing and recursion. But if you could
write a program to solve a problem in any language, what exactly were the differences? The
differences were a matter of convenience. for instance, you could not write recursive code
in foRTRan or coBoL. If the problem were to call for recursion, you could still solve it in
foRTRan or coBoL, but it would be far more challenging because your program would
have to mimic the aspects of recursion that were required.

even today, we see differences in the advantages and disadvantages of the various program-
ming languages that lead some people to use one and other people to use another. These features
include how safe a language is, whether the language can be interpreted, if the language produces
byte code, and even what the language looks like. To a c++ or Java programmer, for instance,
python is very unusual because it uses indentation rather than blocks denoted with { } symbols.

programming ◾ 417

if–then and if–then–else statements, if the while loop’s code (known as the loop body) con-
sists of more than one instruction, the use of a block is required. In the above loop, once
y is no longer less than x, the loop terminates and the program continues with the next
instruction after the end statement. In C, the same loop would look like this:

while (x > y) {
 …
}

The for-loop can be used in one of two ways. First, the loop iterates through a series of
values denoted as the starting value and the terminating value by units called the step size.
For instance, we might specify a loop from 1 to 11 by 2s (the loop would iterate by counting
1, 3, 5, 7, 9, 11). Second, the loop iterates through a list. For instance, if a variable stored a
list of values, say x = {1, 10, 25, 39, 44}, the loop would iterate five times, once per value in
the list. In either case, the loop contains a loop index. This variable stores the value that is
currently being iterated over. In the counting loop, the index would take on each value of
1, 3, 5, 7, 9, 11, and in the list loop, it would take on each value of the list (1, 10, 25, 39, 44).

The loop below is a counting loop. The loop index I takes on the value of 1 during the
first iteration, 2 during the second iteration, 3 during the third, and so forth until it reaches
10, its final iteration.

for I : = 1 to 10 do
 begin
 …
 end;

The loop index can be referenced in the loop body. You might use this value as part of a
computation. The following code not only iterates from 1 to 10, but adds the current loop
index to a running sum. This code then sums up the values from 1 to 10 (i.e., it computes
1 + 2 + 3 + … + 10). This is known as a summation loop.

Sum := 0;
For I := 1 to 10 do
 Sum := Sum + I;

Notice that we did not need to place the loop body inside of begin…end statements because
the loop body consists of a single instruction. The same code is given below in C. The C
for-loop looks odd in comparison to the relatively simple Pascal for loop. In C, the first
clause in the parentheses initializes any loop index(es), the second contains the terminat-
ing condition, and the third clause performs the step increment or decrement of the index.

sum = 0;
for(i=0;i<=10;i=i+1)
 sum = sum + i;

418 ◾ Information Technology

C actually provides a number of shortcuts. One of which is the statement i++, which can be
used in place of i = i + 1. Another is sum +=i, which can be used in place of sum = sum + i.
The following is a for-loop (just the loop statement, not the loop body) that will iterate
downward instead of upward. for (i = 10; i > 0; i--). One difference between C and Pascal
is that C can vary its step size (for instance, iterating by 2s or 5s), whereas Pascal can only
iterate upward or downward by ones.

Some languages offer multiple forms of both conditional and counting loops. C and Java
have both while loops and do–while loops. The difference between them is where the condi-
tion is tested. In the while loop, the condition is tested before entering the loop body, whereas
in the do–while loop, the condition is tested after executing the loop body. Although this may
seem like the same thing, the do–while loop tests the condition after executing the loop body
so that the loop body is executed at least one time. If a while loop’s condition is initially false,
then the loop body does not execute at all. Here is an example that compares two loops in C.

while(x > 0)
 x = x/2;

do {
 x = x/2;
} while (x > 0);

Assume in both of these loops above that x is an integer initially equal to –1. In the first
loop, the condition is initially false and so the loop body (x = x/2) never executes. Thus,
x remains –1. In the second loop, the loop body executes one time because the condition
is not checked until after the loop body executes, so x is changed from –1 to 0 (the value
–1/2 cannot be stored in an integer, so instead x gets the value 0). The loop then terminates
because x is not greater than 0.

Newer languages often forego the counting loop in favor of an iterator loop. This version
of a counting loop iterates over a list rather than over a sequence of values. For example,
if you have a list, 1, 5, 10, 19, then the loop will iterate four times, once for each of the four
values in the list. Python is an example where the for-loop iterates over a list. You can use
this type of loop to simulate a counting loop by iterating over a range from 1 to the upper
limit by stating range(1, 100). C++ and Java originally only had the counting form of for
loop but today have both counting and iterator loops.

One last comment regarding conditional loops is that the loop body should contain
instructions that manipulate at least one of the variables used in the loop’s condition.
Consider the following code in C.

while(x > y)
 x = x + 1;

If x is initially greater than y, the loop body will be executed. However, because x starts at
a value larger than y, repeatedly adding to x will never make x become less than or equal
to y, and the result is that the loop will never terminate. This is known as an infinite loop.

programming ◾ 419

In order to ensure that you do not have an infinite loop, you have to make sure that there
is code in the loop body that changes some value in the condition so that, eventually, the
condition can become false. Consider the following C code.

while(x > 0)
 printf(“%d\n”, x); //print out x
 x = x – 1;

This loop looks like it will count down from whatever x starts at to 0, printing out each value.
But because the loop body contains two instructions, we need to place them inside a block
using the { } symbols. Unfortunately, the compiler examines this code and decides that the
statement x = x – 1; exists outside of (or after) the loop. Therefore, the while loop only per-
forms the printf output statement. The result is that, if x is greater than 0 to begin with, the
printf executes and the condition is tested again. Since the printf did not alter x, it is still
greater than 0 and the printf executes again. This repeats, over and over again and never stops
(until the user forces the program to abort). The reason for this infinite loop is a logical error,
the programmer’s logic was not correct. To fix this problem, the loop should be as follows.

while(x > y) {
 printf(“%d\n”, x); //print out x
 x = x – 1;
}

Infinite loops are often a problem for programmers, even those with extensive experi-
ence. This type of logical error is often difficult to detect, and the programmer only discov-
ers the error when testing the program and finding that it seems to “hang”. In this case, a
loop never terminates so the program does not advance on to the next step.

Recall from earlier that Python does not use special block designators such as begin…
end and {…}. Instead, indentation is used. So in this case, the infinite loop from earlier
would probably not occur because the indentation would resolve it.

subroutines and subroutine calls

A subroutine is a set of code separate from the code that might invoke it. A subroutine call
invokes the subroutine. The subroutine might be part of your program, or it might be part
of another program or some independent piece of code made available through a library of
subroutines. Most programmers will write programs as a series of subroutines. In this way,
designing, writing, and debugging a program is simplified because the programmer need
only concentrate on one subroutine at a time. The concept is known as modular program-
ming where the modules are relatively small and independent chunks of code.

What follows is a brief example of two subroutines written in C. In C, subroutines are
called functions. The function main is always the first to execute in a program. Here, main
will execute its first printf (output) statement and then call the function foo. The function
foo will output its own statement and terminate. When foo terminates, main resumes from

420 ◾ Information Technology

the point immediately after the call to foo, which is the last printf statement. The function
main then terminates and the program is over.

void foo() {
 printf(“are we in foo? Yes!”);
}

void main() {
 printf(“Hello world. We are about to enter foo.”);
 foo();
 printf(“We have now returned from foo.”);
}

The output of this program is as follows:

Hello world. We are about to enter foo.
are we in foo? Yes!
We have now returned from foo.

Obviously, there is no reason to write this program in two functions; we could have instead
written all three printf statements in main. However, most programs are too complicated
to write in a single function.

In the preceding example, the function call is foo(). The parentheses provide a means of
communicating between the calling function (main) and the called function (foo). This com-
munication comes in the form of variables and values. We call them parameters. For instance,
if a function will compute the square root of a value, we must tell the function what value we
want the square root of. If the function is called sqrt, we might call the function using nota-
tion such as sqrt(5) to compute the square root of 5, or sqrt(x) to compute the square root of
the value stored in variable x. What follows is an example of passing a parameter in a function
in C. The function computes a value (the reciprocal of the parameter) and outputs the result.

void determineReciprocal(float x) {
 if(x==0)
 printf(“There is no reciprocal of 0”);
 else printf(“The reciprocal is %f”, 1.0/x);
}

Here, the function is passed a float value. The function will output a different message for each
different parameter. For instance, what does it output if x = 1.0? What if x = 10.0? What if x = 0?

special purpose Instructions

These might include invocations of the operating system, string operations, computer
graphics routines, random number operations, and error handling routines.

Aside from the list of executable instructions above, some programming languages also
require explicit variable declarations. In languages such as Pascal, C, and Java, variables

programming ◾ 421

require being typed, that is, declared a specific type of value, which they then remain as
during the course of the program. In JavaScript, although variables must be declared by
name, you do not type them. In Figure 14.6, three variables, x, y, and z, are declared in
three languages: Pascal (top), C (center) and JavaScript (bottom). In C, int means integer
and float is the same as Pascal’s real (a number with a decimal point).

Some languages allow you to define your own types. In Ada, you can declare a type to be a
subset of another type. For example, we might define the type Grades to be a subset of integers
with an allowable range of 0..100. In this way, a variable of type Integer is any integer where a
variable of type Grade is an integer within the range 0 to 100. In Java, types are known as classes.

What’s in a name?

most early programming languages were named by acronyms that explained the language
(e.g., foRTRan, coBoL, aLgoL, LIsp). Today, language names are more creative. Here are
some of the more intriguing ones.

•	 axum
•	 Beanshell
•	 Blue
•	 Boo
•	 Boomerang
•	 caml
•	 chef
•	 cola
•	 easy
•	 fancy
•	 go
•	 groovy
•	 Joy
•	 Lua
•	 nice
•	 oxygene
•	 pure
•	 Rust
•	 scratch
•	 shakespeare
•	 squeak
•	 ZZ T-oop

Var x, y : integer;
Var z : real;

int x, y;
float z;

var x, y, z;

fIguRe 14.6 Three forms of variable declarations.

422 ◾ Information Technology

scRIpTIng Languages
As a system administrator, it is important that you understand programming because you
will often have to write scripts. A script is an interpreted program. Scripts are often fairly
short (as compared to applications or systems software). But in spite of not having to write
code for large-scale applications, a system administrator must still understand the com-
mands of a programming language as presented.

Types of Instructions

Popular scripting languages today include shell scripting languages (like the Bash script-
ing language and DOS) as well as more complete and complex programming languages
such as Python, Ruby, Perl, and PHP. Here, we will concentrate on the Bash Shell and DOS
languages only. We will specifically examine the language features described in Types of
Instructions, and see numerous examples. As this is not a programming text, these sec-
tions only introduce shell scripting.

Some of the code that you can place into a shell script is the same as the commands
that you use at the command line. In Linux, for example, a script can contain cd, ls, rm,
echo, and so forth. And similarly, commands that you will see in the next two subsections
can also be typed at the command line. However, there are some differences. A script can
receive parameters making the script more powerful.

Bash shell Language

Shell scripts are stored in text files. These files must be both readable and executable. It is best
to set such files with 745 or 755 permission. To execute a script named foo, you would type ./
foo. This implies that your working directory stores the file foo. All Bash shell scripts should
start with the following line, which alerts the Bash interpreter to execute: #!/bin/bash.

Variables in Bash scripts are handled the same way as from the command line. You can
assign a variable a value using an assignment statement of the form VAR=VALUE.* The
value on the right-hand side must be a string, a literal number, or the value computed from
an integer-based arithmetic expression. If the string has spaces, enclose the entire string in
“” marks. We look at integer-based arithmetic expressions below. To access the value in a
variable, precede the variable’s name with a $. Some examples follow.

X=0
Y=“Hi there”
NAME=Frank
Z=$X
MESSAGE=“$Y $NAME”

X contains the value 0, Y the string “Hi there”, and NAME the string “Frank” even
though no quote marks were used in the assignment statement. Z obtains the value

* Note that variable names do not need to be written in upper-case letters. I will use upper-case letters to easily distinguish
a variable from an instruction.

programming ◾ 423

currently stored in X, 0. MESSAGE obtains the string of the value stored in Y (Hi there),
a space, and the value stored in NAME (Frank), or “Hi there Frank”.

An integer-based operation is tricky because, if it has variable values, it must be enclosed
in peculiar syntax: $(()). For example, to set Z to be X + 5, you would use Z = $((X + 5)),
and to increment X, you would use X = $((X + 1)). The legal operators for arithmetic expres-
sions are +, –, *, /, and % (% performs the modulo operation, i.e., it provides the remainder
of a division). The division operation (/) operates only on integers and returns an integer
quotient. For example, if X = 5 and Y = 2, then Z = $((X/Y)) results in Z being set to 2, not
2.5. The operation Z = $((X%Y)) results in Z being set to 1 because 5/2 is 2 with a remainder
of 1.

The output statement is echo. You saw this earlier in the textbook. The echo statement
contains a list of items to be output. This list can contain variables, literal values, and Linux
commands. If you place this list ‘’, the output is provided literally (i.e., variable values are
not returned, instead you get the names of the variables). For example, if NAME = Frank
and AGE = 53, then

echo $NAME is $AGE

provides the output

Frank is 53

but the instruction

echo ‘$NAME is $AGE’

provides the output

$NAME is $AGE.

You can also place your output within “”, which provides the same result as having no
quote marks. In most cases, the “” can be omitted in an echo statement. However, consider
the following two echo statements:

echo $NAME is $AGE
echo “$NAME is $AGE”

The first echo statement contains three arguments (parameters), whereas the second echo
statement only contains one. In addition, the use of “” suppresses Bash’ file name expan-
sion. For instance, echo * will result in Bash first expanding * to be all items in the local
directory, and then echo will output them, so echo * is the same as ls or ls *. However, echo
“*” will literally output * as the file name expansion does not occur.

424 ◾ Information Technology

You can use echo to combine the output of a literal message with the output of another
Linux command. For instance, if you wished to output “the date and time are” along
with the current date/time, you can combine the echo statement and the date opera-
tion. However, to keep echo from outputting the word “date” literally, you must indicate
that Bash should execute the date command. This is accomplished using the back quote
marks, ` .̀ For instance, the statement

echo the date is date

will literally output “the date is date”. However, the statement

echo the date is `date`

causes Linux to execute the date command and then insert its output into the echo state-
ment. The result would look like this: “the date is Thu Mar 29 10:35:32 EDT 2012”.

Input is accomplished through the read statement. This statement must always be fol-
lowed by a variable name. For instance, “read NAME” would be used to obtain an input
from the user and place the entered value into the variable NAME. When a script with an
input statement is executed, a read statement will result in the cursor blinking on a blank
line. Since the user may not know what is going on, or what the program is expecting, it is
important to precede any read statement with a prompting statement. A prompt is simply
an output statement that instructs the user on what to do. The following example would
prompt the user for their name, input the value, and then provide a personalized output
statement. Notice that the variable NAME in the input statement is not preceded with $,
whereas the $ is used in the output statement.

echo Enter your name

read NAME
echo Hello $NAME, nice to meet you!

The user may enter anything in the read statement. For instance, they might enter their
name, or another string entirely, or even a number. Nothing in the code above prevents
this. If the input has a space in it, no special mechanism is required in the code, unlike an
assignment statement such as NAME=“Frank Zappa”, which requires that the string be
placed in quote marks. If the user were to enter Frank Zappa for the above code, the output
would be as expected, “Hello Frank Zappa, nice to meet you!”.

At this point, we will put together everything we have seen. The following script will
compute the average of four values. Notice the use of parentheses in the two assignment
statements. Recall that to perform an arithmetic operation that contains variables, you
use the notation $((…)). However, in this case, since we want to sum num1, num2, num3,
and num4 before performing the division or mod operation, we place that summation in

programming ◾ 425

another layer of parens. Without the parens, the division (num4/4) is performed before the
additions.

#!/bin/bash
echo Please input your first number
read num1
echo Please input your second number
read num2
echo Please input your third number
read num3
echo Please input your fourth number
read num4
quotient = $(((num1+num2+num3+num4)/4))
remainder = $(((num1+num2+num3+num4)%4))
echo The average is $quotient with a remainder of $remainder/4

The conditional statement in Bash has very peculiar syntax. Because of this, it is often
challenging for introductory scripters to get their scripts running correctly. Make sure you
stick to the syntax. The form of the statement is “if [condition]; then action(s); fi”. The semi-
colons must be positioned where they are shown here. Furthermore, there must be spaces
between the various components of the if statement as shown. Finally, the word “fi” must
end your if statement. The actions are individual statements, separated by semicolons. For
instance, you might have assignment statements, input statements, output statements, and
even nested if-statements.

The conditional statement requires a condition. There are two common forms of the
condition:

•	 variable comparison value

•	 filetest filename

In the former case, the variable’s name is preceded by a $. The comparisons are one of ==
or ! = for string comparisons, or one of –eq, -ne, -gt, -lt, -ge, -lt for numeric comparisons
(equal to, not equal to, greater than, less than, greater than or equal to, less than or equal
to). The value maybe a literal value, another variable (whose name is again preceded by $),
or an arithmetic expression.

The second case is a filetest condition followed by a filename. A filetest is one of –d (item is
a directory), –e (file exists), –f (file exists and is a regular file), –h (item is a symbolic link), –r
(file exists and is readable), –w (file exists and is writable), and –x (file exists and is executable).
The filetest may be preceded by the symbol ! to indicate that the condition should be negated.
That is, the test –r foo.txt asks if foo.txt is readable, whereas ! –r foo.txt asks if foo.txt is not
readable. Some example conditions follow. Notice the blank spaces between each part of the
condition. Without these blank spaces, your script will generate an error and not execute.

426 ◾ Information Technology

[$NAME == “Frank”]
[$X –gt $Y]
[$X –eq 0]
[$STUDENT1 ! = $STUDENT2]
[-x $FILENAME]
[! –r $FILE2]

A complete example is shown below. In this if–then statement, the variable $NAME is
tested against the value “Frank”, and if they are equal, the instruction both outputs the
message “Hi Frank” and adds 1 to the variable X. The fi at the end states that this ends the
if-statement.

if [$NAME == “Frank”]; then echo Hi Frank; $X=$((X+1)); fi

In some cases, a condition requires more than one comparison, combined with a Boolean
AND or OR. For example, to test to see if a variable’s value lies between two other values,
you would have to test the variable against both values. If we want to see if the value
stored in the variable X is between 0 and 100, we would test $X –ge 0 AND $X –le 100.
The syntax becomes even more peculiar in this case. Such a conditional is called a com-
pound conditional and requires an additional set of [] around the entire condition. The
symbols used for AND and OR are the same as are used in C and Java, && for AND,
and || for OR. To test X between 0 and 100, we would use the following: [[$X –ge 0 &&
$X –le 100]].

An else clause can be added to the if-statement, in which case the word “else” appears
after the action(s) in the then clause, followed by the else clause action(s). The “fi” appears
only after the else clause. Below are three examples. Notice that the second example really
makes no sense because there are no floating point computations in Linux, so the opera-
tion $((1/X)) would not provide a true reciprocal.

if [$X –gt $Y]; then Y=0;
 else X=0;
fi
if [$X –ne 0]; then Y=$((1/X)); echo The reciprocal of $X is $Y;
 else echo Cannot compute the reciprocal of 0;
fi
if [$NAME == “Frank”]; then echo “Hi Frank”; X=$((X+1));
 else echo Who?; X=0;
fi

Note that you do not have to place the else clause or the fi statement on separate lines,
they are written this way here for readability purposes.

programming ◾ 427

There is also a nested if–then–else statement, where the “else if” is written as elif. The
structure looks like this:

if [condition];
 then
 action(s);
 elif [condition]
 then
 action(s);
 elif [condition]
 then
 action(s);
 …
 else
 action(s);
fi

If you refer back to Figure 14.5, there is an if–then–else statement in Pascal. The equivalent
statement in Bash is shown in Figure 14.7.

There are two types of loops available in the Bash scripting language. The for-loop is an
iterator loop that will iterate over a list. The list can consist of one of several things. First, it
can be an enumerated list of values. Second, it can be a list that was supplied to the script
as a list of parameters (this is discussed later in this section). Third, it can be a list generated
by globbing, that is, file name expansion.

The basic form of the Bash for loop is:

for variable in list; do statement(s); done

Here, variable is the loop index. The loop index takes on each value in the list, one at a time.
The loop index can then be referenced in the statements in your loop body. For instance,

for I in 1 2 3 4 5; do echo $I; done

will output each of 1, 2, 3, 4, and 5 on separate lines, one per loop iteration.

if [$grade –ge 90];
 then letter=A;
elif [$grade –ge 80];
 then letter=B;
elif [$grade –ge 70];
 then letter=C;
elif [$grade –ge 60];
 then letter=D;
else letter=F;
fi

fIguRe 14.7 Nested if–then–else in Bash.

428 ◾ Information Technology

The for loop is primarily used for two purposes. The first is to iterate through the items
in a directory, taking advantage of globbing. The second is to iterate through parameters in
order to process them. Again, we will hold off on looking at parameters until later in this
section. The following loop is an example of using globbing. In this case, the loop is merely
performing a long listing on each item in the current directory. This could more easily be
accomplished using ls –l *.*.

for file in *.*; do ls –l $file; done

Globbing in a for loop becomes more useful when we place an if–then statement in the
loop body, where the if–then statement’s condition tests the file using one of the filetest
conditions. The following for loop example examines every text file in the directory and
outputs those that are executable.

for file in *.txt; do
 if [-x $file];
 then echo $file;
 fi
done

The indentation is not necessary, but adds readability. This loop iterates through all .txt
files in the current directory and displays the file names of those files that are executable.

The other type of loop is a conditional loop. This loop is similar to the while loop of C.
You specify a condition, and while that condition remains true, the loop body is executed.
The syntax for the Bash while loop is:

while [condition]; do statement(s); done

Recall that a while loop can be an infinite loop. Therefore, it is critical that the loop body
contain code that will alter the condition from being true to false at some point. One com-
mon use of a while loop is to provide user interaction that controls the number of loop
iterations. For instance, we might want to perform some process on a list of filenames. We
could ask the user to input the file name. In order to control whether the loop continues
or not, we could ask the user to enter a special keyword to exit, such as “quit”. In this case,
“quit” would be called a sentinel value. The following script repeatedly asks the user for file
names, outputs those files that are both readable and writable, and exits the loop once the
user enters “quit”. The if–then statement counts the number of times the condition is true
for a summary output at the end of the code.

#!/bin/bash
COUNT=0
echo Enter a filename, quit to exit
read FILENAME

programming ◾ 429

while [$FILENAME ! = quit]; do
 if [[–r $FILENAME && –w $FILENAME]];
 then ls –l $FILENAME; COUNT=$((COUNT+1));
 fi
 echo Enter a filename, quit to exit
 read FILENAME
done
echo There were $COUNT files that were both readable and writable

Notice in the previous example that two instructions appeared both before the loop and
at the end of the loop. Why do you suppose the echo and read statements had to appear in
both locations? Consider what would happen if we omitted the two statements from before
the loop. When the loop condition is reached, $FILENAME returns no value, so the loop
is never entered. Therefore, we must provide an initial value to filename. If we omitted
the echo and read from inside of the loop, then whatever file name you entered initially
remains in the variable FILENAME. Thus, the while loop’s condition is always true and we
have an infinite loop!

You would tend to use a while loop when either you wanted to perform some task on a
number of user inputs, waiting for the user to enter a value that indicates an exiting condi-
tion (like the word quit), or when you wanted to do a series of computations that should
halt when you reached a limit. The former case is illustrated in the previous code. The fol-
lowing example computes the powers of 2 less than 1000, and outputs the first one found
to be greater than or equal to 1000.

#/bin/bash
VALUE=1
while [$VALUE –lt 1000];
 do
 VALUE=$((VALUE*2));
 done
echo The first power of two greater than 1000 is $VALUE

Bash scripts can be passed parameters. These are entered at the command line prompt
after the script name. A script is executed using the notation ./script <enter>. Parameters
can be added before the <enter>, as in ./script 5 10 15 <enter>. The parameters can then
be used in your script as if they were variables, initialized with the values provided by the
user. There are three different ways to reference parameters. First, $# stores the number
of parameters provided. This can be used in an if statement to determine if the user has
provided the proper number of parameters. Second, each individual parameter is accessed
using $1, $2, $3, and so forth. If you are expecting two parameters, you would access them
as $1 and $2. Finally, $@ returns the entire list of parameters. You would use $@ in a for
loop as the list. The following script outputs the larger of two parameters. If the user does
not specify exactly two parameters, an error message is provided instead.

430 ◾ Information Technology

#!/bin/bash
if [$# -ne 2];
 then echo This script requires two parameters;
 elif [$1 –gt $2];
 then echo Your first parameter is larger;
 else echo Your second parameter is larger;
fi

The following script expects a list of file names. If no such list is provided, that is, if $# is
0, it outputs an error message. Otherwise, it iterates through the list and tests each file for
executable status and provides a long listing of all of those files that are executable. Notice
that this script has an if–then–else statement where the else clause has a for loop and the
for loop has an if–then statement. Because of the two if–then statements in the script, there
is a need for two fi statements.

#/!bin/bash
if [$# -eq 0]; then
 echo No parameters provided, cannot continue;
else
 for FILE in $@; do
 if [-x $FILE]; then
 ls –l $FILE;
 fi
 done
fi

Let us conclude with a script that will expect a list of numbers provided as parameters.
The script will compute and output the average of the list. Assuming that the script is called
avg, you might invoke it from the command line by typing

./avg 10 381 56 18 266 531

#!/bin/bash
if [$# -eq 0]; then echo No parameters, cannot compute average;
else
 SUM=0;
 for NUMBER in $@; do
 SUM=$((SUM+NUMBER));
 done
 AVERAGE=$((SUM/$#));
 echo The average of the $# values is $AVERAGE;
fi

Notice in this example that all of the numbers input were specified at the time the user
executed the script. What if we want to input the values from the keyboard (using the read

programming ◾ 431

command)? How would it differ? This problem is left to an exercise in the review section.
However, here are some hints. You would use a while loop. Let us assume all numbers
entered will be positive. The condition for the while loop would be [$NUMBER –gt 0]
so that, once the user input a 0 or negative number, the while loop would terminate. You
would have to add both an echo statement (to prompt the user) and read statement before
and in the while loop to get the first input, and to get each successive input.

One last comment on Bash shell scripting. The use of the semicolon can be very confus-
ing. In general, you do not need it if all of your instructions are placed on separate lines.
This requires moving the words such as “then”, “do”, and “else” onto separate lines. The
above script could also be rewritten as follows:

#!/bin/bash
if [$# -eq 0]
 then
 echo No parameters, cannot compute average
 else
 SUM = 0
 for NUMBER in $@
 do
 SUM=$((SUM+NUMBER))
 done
 AVERAGE=$((SUM/$#))
 echo The average of the $# values is $AVERAGE
 fi

As an introductory shell scripter though, it is always safe to add the semicolons.

ms-Dos

In this section, we examine the commands and syntax specific to MS-DOS. You should
read The Bash Shell Language before reading this section as some of the concepts such as
loops will not be repeated here. Instead, it is assumed that you will already know the con-
cepts so that we can limit our discussion to the commands, syntax, and examples.

As with the Bash language, DOS allows variables, which can store strings and integer
numbers. There are three types of variables: parameters that are provided from the com-
mand line when the script is executed, environment variables (defined by the operating
system or the user), and for-loop index variables. Parameters are denoted using %n, where
n is the number of the parameter. That is, the first parameter is %1, the second is %2, up
through %9 for the ninth parameter. Although you are not limited to nine parameters,
using more parameters is tricky (it is not as simple as referencing %10, %11, and so on).
Environment variables appear with the notation %name% (with the exception of numeric
values, see the examples that follow). For-loop variables appear with the notation %name.

To assign a variable a value, the assignment statement uses the word set, as in “set x =
hello”. To assign a variable a value stored in another variable, use the notation “set x =%y%”.
The percent signs around the variable name tell the interpreter to return the variable’s

432 ◾ Information Technology

value; otherwise, the interpreter literally uses the name, for example, “set x = y” would set
x to store the value “y”, not the value stored in the variable y. However, this differs if we are
dealing with arithmetic values as described in the next paragraph.

By default, values in variables are treated as strings, even if the values contain digits.
Consider the following two instructions

set a=5
set b=%a%+1

seem to store the value 6 in the variable b. But instead, the instructions store the string
5 + 1 in b. This is because the items on the right-hand side of the equal sign are treated
as strings by default and therefore the notation %a%+1 is considered to be a string con-
catenation operation by combining the value stored in a with the string “+1”. To override
this default behavior, you have to specify /a in the set statement to treat the expression as
an arithmetic operation rather than a string concatenation. Thus, the second statement
should be “set /a b =%a%+1”, which would properly set b to 6. For arithmetic statements
like this, you can omit the percent signs from around variables, so “set /a b = a+1” will
accomplish the same thing.

Input uses the set command as well, with two slight variations. First, the parameter /p
is used to indicate that the set statement will prompt the user. Second, the right-hand side
of the equal sign will no longer be a value or expression, but instead will be a prompting
message that will be output before the input. If you omit the right-hand side, the user only
sees a blinking cursor. The following example illustrates how to use input.

set /p first=Enter your first name
set /p middle=Enter your middle initial
set /p last=Enter your last name
set full=%first% %middle% %last%

Notice that spaces are inserted between each variable in the last set statement so that the
concatenation of the three strings has spaces between them, as in Frank V Zappa.

Output statements in DOS use the echo command, similar to Linux. Output statements
will combine literal values and variables. To differentiate whether you want a literal value,
say Hello, or the value stored in a variable, you must place the variable’s name inside of
percent signs. Assuming that the variable name stores Frank Zappa, the statement “echo
hello name” will literally output “hello name”, whereas “echo hello %name%” will output
“hello Frank Zappa”.

A DOS script is set up to output each executable statement as it executes. In order to
“turn this feature off”, you need to add @echo off. To send output to a file rather than the
screen, add “> filename” in your echo statement to write to the file and “>> filename” to
append to the file. For example, assuming again that name stores Frank Zappa. The follow-
ing three output statements show how to output a greeting message to the screen, to the file
greetings.txt and to append to the file greetings.txt.

programming ◾ 433

echo hello %name%
echo hello %name% > greetings.txt
echo hello %name% >> greetings.txt

The if-statement permits three types of conditions. You can test the error level as pro-
vided by the last executed program, compare two variables/values, and test if a file exists.
For each of these types of conditions, you can precede the condition with the word not.
Comparison are equ (=), neq (not equal), lss (<), leq (< =), gtr (>), and geq (>=) for numeric
comparisons and = = for strings. The if-statement has an optional else clause. The entire
if-statement (including the optional else clause) must appear on a single line of the script,
thus it limits the amount of actions that the then clause or else clause can perform. If you
use the optional else, place both the then clause and the else clause inside of (). The word
“then” is omitted, as it is in C. Here are some examples of if-statements.

If errorlevel 0 echo Previous program executed correctly
If %x% gtr 5 (echo X is greater than 5) else (echo X is not greater than 5)
If %x% lss 0 set/a x = 0-%x%
If not %name% = = Frank (echo I do not know you)
If Exist c:\users\foxr\foo.txt del c:\users\foxr\foo.txt

DOS contains a for-loop but no while loop. The for-loop is an iterator loop like Linux’s for-
loop. It only iterates over a list of values. The format is as follows:

for options %var in (list) do command

The following example will sum up the values in the list. It uses no options in the for
loop.

for %i in (1 2 3) do set /a sum=sum+%i

Aside from providing a list to iterate over, you can specify a command such as dir so that
the for-loop iterates over the result from the dir command. To do this, you must include
the option /f in the for-loop. For example, the following will output the items found when
performing a dir command, one at a time.

for /f %file in (‘dir’) do echo %file

Unfortunately, combining the for-loop with the (‘dir’) command may not work as expected
because the dir command provides several columns’ worth of items, and the echo state-
ment only picks up on the first item (column) of each line (which is the date of the last
modification). The command dir /b gives you just the item names themselves. To modify
the above instruction, you would specify

for /f %file in (‘dir /b’) do echo %file

434 ◾ Information Technology

As with Linux, DOS commands can be placed in DOS shell scripts. This includes such
commands as del (delete), move, copy, ren (rename), dir, type (similar to Linux’ cat), print
(send to a printer), rmdir, mkdir, cd, and cls (clear screen). So you might write scripts, for
instance, to test files in the file system, and delete, rename, or move them if they exist or
have certain attributes.

fuRTHeR ReaDIng

•	 Blum, R. and Bresnahan, C. Linux Command Line and Shell Scripting Bible. New
Jersey: Wiley and Sons, 2011.

•	 Dietel, P. and Dietel, H. C++: How to Program. Upper Saddle River, NJ: Prentice Hall,
2011.

•	 Glass, R. In the Beginning: Personal Recollections of Software Pioneers. New Jersey:
Wiley and Sons, 1997.

•	 Kelley, A. and Pohl, I. A Book on C: Programming in C. Reading, MA: Addison Wesley,
1998.

•	 Kernighan, B. and Ritchie, D. The C Programming Language. Englewood Cliffs, NJ:
Prentice Hall, 1988.

•	 Liang, Y. Introduction to Java Programming. Boston, MA: Pearson, 2013.

•	 Mitchell, J. Concepts in Programming Languages. UK: Cambridge, Cambridge
University Press, 2003.

•	 Newham, C. Learning the bash Shell: Unix Shell Programming. Massachusetts:
O’Reilly, 2005.

•	 Reddy, R., and Ziegler, C. FORTRAN 77 with 90: Applications for Scientists and
Engineers, St. Paul, MN: West Publishing, 1994.

•	 Robbins, A. and Beebe, N. Classic Shell Scripting. Massachusetts: O’Reilly, 2005.

•	 Sebesta, R. Concepts of Programming Languages. Boston, MA: Pearson, 2012.

•	 Tucker, A. and Noonan, R. Programming Languages: Principles and Paradigms. New
York: McGraw Hill, 2002.

•	 Venit, S., and Subramanian, P. Spotlight on Structured Programming with Turbo
Pascal. Eagan, MN: West Publishing, 1992.

•	 Webber, A. Modern Programming Languages: A Practical Introduction. Wilsonville,
OR: Franklin, Beedle and Associates, 2003.

•	 Weitzer, M. and Ruff, L. Understanding and Using MS-DOS/PC DOS. St. Paul, MN:
West Publishing, 1986.

programming ◾ 435

RevIew TeRms
Terms introduced in this chapter:

Ada LISP

ALGOL Logical error

Assembler Loop body

Assembly language Loop index

Assignment statement Machine language

Byte code Modular programming

COBOL Object-oriented programming

Compiler Output statement

Condition Parameter

Conditional loop Pascal

Counting loop PL/I

Done (Linux) Portability

Dot net (.net) Read (Linux)

Echo (Linux and DOS) Run-time error

Elif (Linux) Scripting language

Else clause Selection statement

Fi (Linux) Sentinel value

FORTRAN Set (DOS)

GO TO Spaghetti code

High-level language Syntax error

Infinite loop Subroutine

Input statement Subroutine call

Interpreter Then clause

Iteration Type mismatch

Iterator loop Unconditional branch

Java virtual machine Variable declaration

Language translator Visual programming

436 ◾ Information Technology

REviEw QuEstiONs

 1. In what ways are high level programming languages easier to use than machine lan-
guage and assembly language?

 2. What is the difference between a compiled language and an interpreted language?

 3. Name three improvements to high level programming languages between the first
language, FORTRAN, and today.

 4. What is spaghetti code and what type of programming language instruction creates
spaghetti code?

 5. What is the difference between a conditional loop and a counting loop?

 6. What is the difference between a counting loop and an iterator loop?

 7. You have a high level language program written in the language C. You want to be
able to run the program on three different platforms. What do you need to do? If your
program were written in Java, what would differ in how you would get the program
to run?

 8. For each of these languages, explain why it was created (what its purpose was):
FORTRAN, COBOL, LISP, PL/I, Simula, SNOBOL.

 9. What significant change occurred with the creation of Pascal and C?

 10. What significant change occurred with the creation of Smalltalk?

 11. What is the .Net platform?

REviEw PRObLEms

 1. Write a Linux script that will receive two parameters and output whether the two
parameters are the same or not.

 2. Rewrite #1 so that, in addition, the script will output an error message if exactly two
parameters were not provided.

 3. Rewrite #1 as a DOS script assuming the two parameters are strings.

 4. Rewrite #3 assuming the two parameters are numbers.

 5. Write a DOS script that will test the last program for error level 0 and output an ok
message if the error level was 0 and an error message if the error level was not 0.

 6. Write a Linux script that will receive a directory name as a parameter and will output
all of the subdirectories found in that directory.

programming ◾ 437

 7. Write a DOS script that will receive a directory name as a parameter and will output
all items found in that directory.

 8. Write a Linux script that will compute the average of a list of values that are input,
one at a time from the keyboard, until the user ends the input with a 0 or negative
number. Hint: use a while loop and the read statement.

 9. If you have successfully solved #8, what would happen if you did not have the read
statement before the while loop? What would happen if you did not have the read
statement inside of the while loop?

 10. Recall that you can use regular Linux commands in a Linux script. Write a Linux
script that will iterate through the current directory and delete any regular file that
is not readable. This requires the use of rm –f and the filename. If your loop index is
called file, the command might look like rm –f $file. Rewrite your program to use rm
–i instead of –f. What is the difference?

DiscussiON QuEstiONs

 1. In your own words, explain the problem with unconditional branches (e.g., the GO
TO statement in FORTRAN). How did structured programming solve this problem?

 2. Examine various code segments provided in Types of Instructions. Just in looking
at the code, which language is easiest to understand, FORTRAN, C, Pascal, or Java?
Which language is most difficult to understand? Explain why you feel this way.

 3. As a computer user, is there any value in understanding how to write computer pro-
grams? If so, explain why.

 4. As a system administrator, would you prefer to write code in the bash scripting lan-
guage, Python, Ruby, C, Java, or other language? Explain.

This page intentionally left blankThis page intentionally left blank

439

C h a p t e r 15

Information

The textbook has primarily emphasized technology. In this chapter, the focus turns to the
information side of IT. Specifically, the chapter examines the types of information that
organizations store and utilize along with the software that supports information pro-
cessing. The chapter then examines information security and assurance: the ability of an
organization to ensure that their information is protected. Toward that end, the chapter
describes numerous forms of attacks that an organization must protect against, along with
technological methods of security information. The chapter examines hardware solutions
such as RAID storage and software solutions including encryption. The chapter ends with
a look at legislation created to help protect the information technology and individuals’
privacy.

The learning objectives of this chapter are to

•	 Discuss the various forms that information comes in with an introduction to the
Data–Information–Knowledge–Wisdom hierarchy.

•	 Describe the use of databases, database management systems, and data warehouses.

•	 Introduce the field of information security and assurance and the processes used in
risk analysis.

•	 Discuss the threats to information and solutions in safeguarding information.

•	 Describe encryption technologies.

•	 Introduce U.S. legislation that facilitates the use of information and protects indi-
viduals privacy.

Up to this point of the textbook, we have concentrated mostly on the technology side of
information technology (IT). We have viewed computer hardware, software, operating sys-
tems, programming, and some of the underlying theories behind their uses and functions.
In this chapter, we look at the other side of IT, information.

440 ◾ Information Technology

WhaT Is InformaTIon?
Information is often defined as processed data. That is, raw data are the input and informa-
tion is the output of some process. In fact, more generically, we should think of information
as any form of interpreted data. The data can be organized, manipulated, filtered, sorted,
and used for computation. The information is then presented to humans in support of
decision making. We might view data and information as a spectrum that ranges from raw
data, which corresponds to accumulated, but unorganized findings, to intellectual prop-
erty, which includes such human produced artifacts as formulas and recipes, books and
other forms of literature, plans and designs, as well as computer programs and strategies.

From an IT perspective, however, although information is often the end result of IT
processes, we need to consider more concretely the following issues:

•	 How the information should be stored

•	 How (or if) the information should be transmitted

•	 What processes we want to use on the data to transform it into information

•	 How the information should be viewed/visualized

•	 What the requirements for assuring the accuracy of the data and information are

•	 What the requirements for assuring the accessibility and security of the data and
information are

Information itself is not the desired end result of information processing. Researchers
in Information Science have developed the “DIKW Hierarchy”. This hierarchy defines the
transition of data to information to knowledge to wisdom. Each level of the hierarchy is
defined in terms of the previous level.

Data are the input directly received by the human (or computer). Data typically are
thought of as signals. For a human, this might be the signals received by the senses (sight,
sound, smell, taste, feel). For a computer, data might be the values entered by the user
when running an application, although in today’s computing, data might also be received
through camera, microphone, bar code reader, sensor, or pen tablet, to name but a few. The
input is generally not usable until it has been converted into a relevant form. For a com-
puter, that would be a binary representation.

In the hierarchy, information is the next level. Information is often defined in the hier-
archy as having been inferred from data. The term inferred (or inference) means that one
or more processes have been applied to the data to transform it into a more useful form.
Implicit in any process applied is that the resulting information is more structured and
more relevant than the data by itself. The idea here is that data tend to be too low level for
humans to make use of directly. A list of numbers, for instance, may not itself be useful in
decision making, whereas the same list of numbers processed through statistical analysis
may provide for us the mean, median, standard deviation, and variance, which could then
tell us something more significant.

Information ◾ 441

Knowledge is a more vague concept than either information or data. Knowledge is
sometimes defined as information that has been put to use. In other cases, knowledge is a
synthesis of several different sources of information. One way to think of knowledge is that
it is information placed into a context, perhaps the result of experience gained from using
information. Additionally, we might think of knowledge as being refined information such
that the user of the knowledge is able to call forth only relevant portions of information
when needed. As an example, one may learn how to solve algebraic problems by studying
algebraic laws. The laws represent information, whereas the practice of selecting the proper
law to apply in a given situation is knowledge.

Finally, wisdom provides a social setting to knowledge. Some refer to wisdom as an
understanding of “why”—whether this is “why things happened the way they did” or
“why people do what they do”. Wisdom can only come by having both knowledge and
experience. Knowledge, on the other hand, can be learned from others who have it.
Wisdom is the ultimate goal for a human in that it improves the person’s ability to func-
tion in the modern world and to make informed decisions that take into account beliefs
and values.

In some cases, the term understanding is added to the hierarchy. Typically, understand-
ing, if inserted, will be placed between knowledge and wisdom. Others believe that under-
standing is a part of wisdom (or is required for both the knowledge and wisdom levels).

In the following section, we focus on data and one of its most common storage forms,
the database. We also examine data warehouses and the applications utilized on data ware-
houses. We then focus on two primary areas of concern in IT: information assurance and
information security. Among our solutions to the various concerns will be risk manage-
ment, disaster planning, computer security, and encryption. We end this chapter with a
look at relevant legislation that deals with the use of IT.

DaTa anD DaTabases
Information takes on many different forms. It can be information written in texts. It can
be oral communications between people or groups. It can also be thoughts that have yet to
be conveyed to others. However, in IT, information is stored in a computer and so must be
represented in a way that a computer can store and process. Aside from requiring a binary
form of storage, we also want to organize the information in a useful manner. That is, we
want the information stored to model some real-world equivalent. Commonly, informa-
tion is organized as records and stored in databases.

A database is an organized collection of data. We create, manipulate, and access the data
in a database through some form of database management system (DBMS). DBMSs include
Microsoft Access, SQL and its variations (MySQL, Microsoft SQL, PostgreSQL, etc.), and
Oracle, to name a few.

The typical organizing principle of a database is that of the relation. A relation describes
the relationship between individual records, where each record is divided into attribute
values. For instance, a relation might consist of student records. For each student, there is a
first name, a last name, a student ID, a major, a minor (optional), and a GPA (Grade Point
Average).

442 ◾ Information Technology

The relation itself is often presented as a table (see Table 15.1). Rows of the table represent
records: individuals of interest whether they are people, objects, or concepts (for instance,
a record might describe a customer, an automobile, or a college course). Formally, the
records (rows) are called tuples. All records of the relation share the same attributes. These
are called fields, and they make up the columns of the relation. Typically, a field will store a
type of data such as a number, a string, a date, a yes/no (or true/false) value, and within the
type there may be subtypes, for instance, a number might be a long integer, short integer,
real number, or dollar amount.

In Table 15.1, we see a student academic relation. In this relation, student records con-
tain six fields: student ID, first name, last name, major, minor, and GPA. Each of the entries
is a string (text that can combine letters, punctuation marks, and digits) except for GPA,
which is a real number. Student ID could be a number, but we tend to use numbers for data
that could be used in some arithmetic operation. Since we will not be adding or multiply-
ing student IDs, we will store them as strings.

The fields of a relation might have restrictions placed on the values that can be stored.
GPA, for instance, should be within the range 0.000–4.000. We might restrict the values
under Major and Minor to correspond to a list of legal majors and minors for the univer-
sity. Notice for one record in the relation in Table 15.1 that there is no value for Minor. We
might require that all records have a Major but not a Minor.

Given a relation, we might wish to query the database for some information such as
“show me all students who are CIT majors”, “show me all students who are CIT majors
with a GPA > = 3.0”, “show me all students who are CIT majors or CSC major with a GPA
> = 3.0”. These types of queries are known as restrictions. The result of such a query is a list
of those records in the relation that fit the given criteria. That is, we restrict the relation to
a subset based on the given criteria. We can also refer to this type of operation as filtering
or searching.

Queries return data from the database although they do not have to be restrictions.
That is, they do not have to restrict the records returned. A projection is another form of
query that returns all of the records from the relation, but only select attributes or fields.
For instance, we could project the relation from Table 15.1 to provide just the first and last
names.

Another operation on a relation is to sort the records based on some field(s). For instance,
the records in Table 15.1 are sorted in ascending order by last name followed by first name
(thus, Ian Underwood precedes Ruth Underwood).

TabLe 15.1 Example Database Relation

Student ID First Name Last Name Major Minor GPA
11151631 George Duke MUS PHY 3.676
10857134 Mike Keneally MUS CHE 2.131
19756311 Ian Underwood MUS HIS 3.801
18566131 Ruth Underwood MUS MAT 3.516
18371513 Frank Zappa MUS 2.571

Information ◾ 443

We could also perform insert operations (add a record), update operations (modify
one or more attributes of one or more records), and delete operations (delete one or more
records). By using some filtering criteria with the update or delete, we are able to modify
or remove all records that fit some criteria. For instance, being a generous teacher, I might
decide that all CIT majors should have a higher GPA, so an update operation may specify
that GPA = GPA * 1.1 where Major = “CIT”. That is, for each record whose Major is “CIT”,
update the GPA field to be GPA * 1.1.

A database will consist of a group of relations, many of which have overlapping parts.
In this way, information can be drawn from multiple relations at a time. For instance, we
might have another student relation that consists of student contact information. So, the
relation presented in Table 15.1 might be called the student scholastic information, whereas
the student contact information might look like that shown in Table 15.2.

Given the two relations, we can now use another database query called a join. A join
withdraws information from multiple relations. For instance, we can join the two relations
from Tables 15.1 and 15.2 to obtain all student records, providing their student ID, first and
last names, majors, minors, GPA addresses, and phone numbers.

We can combine joins with restrictions and/or projections. For instance, a join and
projection could provide the phone numbers and first and last names of all students. A join
and a restriction could provide all records of students who are CIT majors who live in OH.
Combining all three operations could, for instance, yield the first and last names of all CIT
majors who live in OH.

There are additional operations available on a database. These include set operations
of union, intersection, and difference. Union combines all records from the relations
specified. Intersection retrieves only records that exist in both (or all) relations specified.
Difference returns those records that are not in both (or all) relations specified.

Notice that data in the various relations can have repeated attribute values. For instance,
there are three students from OH, two students with the last name of Underwood, and five
students who are Music majors. For a database to work, at least one of the attributes (field)
has to contain unique values. This field is known as the unique identifier or the primary key.
In the case of both relations in Tables 15.1 and 15.2, the unique identifier is the student ID.

The DBMS will use the unique identifier to match records in different relations when
using a join operation. For instance, if our query asks for the phone numbers of students
with a GPA ≥ 3.0, the DBMS must first search the scholastic information for records whose
GPA matches the criteria, and then withdraw the phone numbers from the contact rela-
tion. To identify the students between the relations, the unique identifier is used. Also

TabLe 15.2 Another Database Relation

Student ID Address City State Zip Phone
10857134 8511 N. Pine St Erlanger KY 41011 (859) 555-1234
11151631 315 Sycamore Dr Cincinnati OH 45215 (513) 555-2341
18371513 32 East 21st Apt C Columbus OH 43212 (614) 555-5511
18566131 191 Canyon Lane Los Angeles CA 91315 (413) 555-1111
19756311 32 East 21st Apt C Columbus OH 43212 (614) 555-5511

444 ◾ Information Technology

notice that the records in Table 15.2 are ordered by the student ID (as opposed to last name
as the records are ordered in the relation from Table 15.1).

The relational database is only one format for database organization, although it is by far
the most common form. Since the 1980s, research has explored other forms of databases. A
few of the more interesting formats are listed here.

•	 Active database—responds to events that arise either within or external to the data-
base, as opposed to a static relational database that only responds to queries and other
database operations.

•	 Cloud database—as described in Chapter 12, the cloud represents a network-based
storage and processing facility, so the cloud database is simply a database that exists
(is stored) within a cloud and thus is accessible remotely.

•	 Distributed database—a database that is not stored solely within one location. This
form of database will overlap the cloud and network databases and quite likely the
parallel database.

•	 Document database—a database whose records are documents and which performs
information retrieval based on perhaps less structured queries (such as keyword que-
ries as entered in a search engine). Document databases are often found in libraries,
and search engines such as Google could be considered a document database.

•	 Embedded database—the database and the DBMS are part of a larger application that
uses the database. One example is a medical diagnostic expert system that contains
several components: a natural language interface, a knowledge base, a reasoner, and
a patient records database.

•	 Hierarchical database—a database in which data are modeled using parent–child
relationships. Records are broken up so that one part of a record is in one location
in the database, and another part is in a different branch. For instance, an employee
database might, at the highest level, list all of the employees. A child relation could
then contain for a given employee information about that employee’s position (e.g.,
pay level, responsibilities) and another child relation might include information
about that employee’s projects.

•	 Hypermedia database—the database comprises records connected together by hyper-
media links. The World Wide Web can be thought of as a hypermedia database where
the “records” are documents. This is not a traditional database in that the records are
not organized in any particular fashion, and the relations are not an organized col-
lection of records.

•	 Multidimensional database—a database relation is usually thought of as a table: a
two-dimensional representation. The multidimensional database stores relations that
consist of more than two dimensions. Such a relation might organize data so that the
third dimension represents a change in time. For instance, we might have a group of

Information ◾ 445

relations like that of Table 15.1, where each relation represents the students enrolled
in a particular semester. Although we could combine all of these relations together
and add a semester field, the three-dimensional relation provides us with a more
intelligent way to view the data because it contains a more sensible organization.

•	 Network database—this is not the same as a distributed database; instead, the term
network conveys a collection of data that are linked together like a directed graph
(using the mathematical notion of a graph). The network database is somewhat simi-
lar to the hierarchical database.

•	 Object-oriented database—rather than defining objects as records placed into vary-
ing relations, an object’s data are collected into a single entity. Additionally, following
on from object-oriented programming, the object is encapsulated with operations
defined to access and manipulate the data stored within the object. In essence, this is
a combination of databases and object-oriented programming.

•	 Parallel database—this is a database operated upon by multiple processors in parallel.
To ensure that data are not corrupted (for instance, changed by one processor while
another processor is using the same data), synchronization must be implemented on
the data.

•	 Spatial or temporal database—a database that stores spatial information, temporal
information, or both. Consider, for instance, medical records that contain patient
records as sequences of events. Specialized queries can be used to view the sequences.
Did event 1 occur before event 2? Or did they overlap or correspond to the same
period? The spatial database includes the ability to query about two- and three-
dimensional interactions.

A database is a collection of records organized in some fashion. The relational database
uses relations. As listed above, other organizations include object-oriented, hierarchical,
hypermedia, network, spatial, and temporal. A database can consist of a few records or
millions. The larger the collection of data, the more critical the organization be clearly
understood and represented. As databases grow in their size and complexity, we tend to
view the database as not merely a collection of data, but a collection of databases. A collec-
tion of organized databases is called a data warehouse. The typical data warehouse uses an
ETL process.

•	 Extract data—data comes from various sources, these sources must be identified,
understood and tapped.

•	 Transform data—given that the data come from different sources, it is likely that the
data are not organized using the same collection of attributes. Therefore, the data
must be transformed to fit the model(s) of the data warehouse. This will include alter-
ing data to relations or objects (or whichever format is preferred), recognizing the
unique identifier(s), and selecting the appropriate attributes (fields).

446 ◾ Information Technology

•	 Load data—into the storage facility, that is, the transformed data must be stored in
the database using the appropriate representation format.

For a business, the data for the data warehouse might come from any number of sources.
These include:

•	 Enterprise resource planning systems

•	 Supply chain management systems

•	 Marketing and public relations reports

•	 Sales records

•	 Purchasing and inventory records

•	 Direct input from customers (e.g., input from a web form or a survey)

•	 Human relations records

•	 Budget planning

•	 Ongoing project reports

•	 General accounting data

Once collected and transformed, the data are stored in the data warehouse. Now, the
data can be utilized. There are any number of methods that can be applied, and the pro-
cessed results can be stored back into the warehouse to further advance the knowledge of
the organization as described below. These methods are sometimes called data marts—the
means by which users obtain data or information out of the warehouse.

Data warehousing operations range from simple database management operations to
more sophisticated analysis and statistical algorithms. In terms of the traditional DBMS,
a user might examine purchasing, inventory, sales, and budget data to generate predicted
manpower requirements. Or, sales and public relations records might help determine
which products should be emphasized through future marketing strategies.

In OLAP (Online Analytical Processing), data are processed through a suite of analysis
software tools. You might think of OLAP as sitting on top of the DBMS so that the user can
retrieve data from the database and analyze the data without having to separate the DBMS
operations from the more advanced analysis operations. OLAP operations include slicing,
dicing, drilling down (or up), rolling-up, and pivoting the data.

Slicing creates a subset of the data by reducing the data from multiple dimensions to one
dimension. For instance, if we think of the data in our database as being in three dimen-
sions, slicing would create a one-dimensional view of the data. Dicing is the same as slicing
except that the result can be in multiple dimensions, but still obtaining a subset of the data.
For instance, a dice might limit a three-dimensional collection of data into a smaller three
dimensional collection of data by discarding certain records and fields.

Information ◾ 447

Drilling up and down merely shifts the view of the data. Drilling down provides more
detail, drilling up provides summarized data. Rolling up is similar to drilling up in that it
summarizes data, but in doing so, it collapses the data from multiple items (possible over
more than one dimension) into a single value. As an example, all HR records might be
collapsed into a single datum such as the number of current employees, or a single vector
that represents the number of employees in each position (e.g., management, technical,
support).

Finally, a pivot rotates data to view the data from a different perspective. Consider a
database that contains product sales information by year and by country. If the typical
view of the data is by product, we might instead want to pivot all of the data so that our
view first shows us each year. The pivot then reorganizes the data from a new perspective.
We could also pivot these data by country of sale instead.

Figure 15.1 illustrates, abstractly, the ideas behind slicing, dicing, and pivoting. Here,
we have a collection of data. Perhaps each layer (or plane) of the original data represents
a database relation from a different year. For example, the top layer might be customer
records from 2012, the next layer might be customer records from 2011, and the bottom
two layers are from 2010 and 2009, respectively. A slice might be an examination of one
full layer, say that of 2010. A dice might be a subset in multiple dimensions, for instance,
restricting the data to years 2012, 2011, and 2010, records of those customers from Ohio,
and fields of only last name, amount spent, and total number of visits. The pivot might
reorganize the data so that, rather than first breaking the data year by year, the data are
first broken down state by state, and then year by year.

OLAP analysis has existed since the 1960s. Today, however, OLAP becomes more
important than ever because the data warehouse is far too large to obtain useful responses
from mere database operations.

Another suite of tools that can be applied to a data warehouse is data mining. Unlike
OLAP, data mining is a fairly recent idea, dating back to the 1990s as an offshoot of artifi-
cial intelligence research. In data mining, the idea is to use a number of various statistical

Slicing

Pivoting
Dicing

fIGUre 15.1 Demonstrating OLAP (Online Analytical Processing) analysis techniques.

448 ◾ Information Technology

operations on a collection of data and see if the results are meaningful. Unlike OLAP,
which is driven by the human, data mining attempts somewhat random explorations of
the data. There is no way to know in advance if the results will be worthwhile. There are a
number of different algorithms applied in data mining. Here, we look at a few of the most
common techniques.

In clustering, data are grouped together along some, but not all, of the dimensions (fields).
If you select fields wisely, you might find that the data clump together into a few different
groups. If you can then identify the meaning of each clump, you have learned something
about your data. In Figure 15.2, you can see that data have been clustered using two dimen-
sions. For instance, if these data consist of patient records, we might have organized them
by age and weight. Based on proximity, we have identified three clusters, with two outlying
data. One of the outlying data might belong to cluster 2, the other might belong to cluster
3, or perhaps the two data belong to their own cluster. Perhaps cluster 2 indicates those
patients, based on age and weight, who are more susceptible to a specific disease.

In order to identify clusters automatically, the computer determines distances between
individual records. It finds a center among groups and then adds other data elements one
by one by determining which cluster it comes closest to.

In forming clusters, we might find that our original selection of fields did not give us any
useful groupings. For instance, if we chose weight and height instead of weight and age,
we might not have identified any useful characteristics. Imagine that we want to identify
patients who might be particularly susceptible to type 2 diabetes. Fields such as age, height,
and income level would probably be useless. However, weight (or at least body mass index),
ethnicity, and degree of job stress might find more meaningful clusters.

This leads to a problem. Whereas age, height, weight, and even income are easy enough
to graph, how do we graph job stress and ethnicity? We must find a way to convert data
from categories into numeric values.

Cluster 1

Cluster 3

Outliers

Cluster 2

fIGUre 15.2 Results of clustering data.

Information ◾ 449

Clustering is a very common data analysis technique, but as implied here, there are
problems. Computationally, we might need to try to cluster over a variety of different com-
binations of fields before we find any useful clusters. As the number of fields increase, the
number of combinations increases exponentially. For instance, with 10 fields, there are
1024 different combinations that we might try, but with 20 fields, the number of combina-
tions increases to more than 1 million!

A variation of clustering is to identify nearest neighbors. A nearest neighbor is the datum
that lies closest in proximity as computed by some mathematical equation (such as the
Euclidean distance formula).* The nearest neighbor algorithm can be used in clustering
to position records and identify clusters by those whose distance is less than some preset
amount. The k-nearest neighbor algorithm computes distances along k of the fields. The
selection of which k is another computationally intensive problem. For instance, if there
are 10 fields and k = 6, we might want to try using all combinations of six fields out of 10 to
determine a nearest neighbor.

Association rule learning searches data for relationships that might be of interest, and
provides them as if–then types of rules. For instance, in analyzing 10,000 grocery store
receipts, we find that 4000 of the receipts show that someone bought peanut butter, and
3600 of those 4000 receipts show that the person also bought bread. This becomes a rule:

if customer buys peanut butter then they buy bread

The rule also has a frequency of 90% (3600 out of 4000). The frequency describes how
often the rule was true. The frequency, however, did not tell us how useful the rule might
be. Consider that we find 12 people (out of 10,000) bought sushi and all of those 12 people
also bought white wine. Even though the frequency is very high (100%), the rule is not very
useful.

We can use the association rule to help us make decisions such as in marketing and
sales. We might, for instance, decide to move the peanut butter into the bread aisle, and
we might decide to put on a sale to promote the two products by saying “buy bread and
get a jar of peanut butter for 25% off”. The result of association rule learning, like clus-
tering, may or may not be of value. The sushi rule would probably not convince us to do
anything special about sushi and wine. Or, imagine another rule that tells us that people
who buy wine do not typically also buy beer. Is there any value in knowing this correla-
tion? The advantage of association rule learning is that we can provide the receipt data to
the data mining tool and let it find rules for us. We might tell the tool to only return rules
whose frequency is greater than 80%. Then, it is up to management to decide how to use
the rules.

Another product of data mining is a decision tree. A decision tree is a tree structure that
contains database fields as nodes such as age, sex, and income. The branches of the tree rep-
resent different possible values of the fields. For instance, if a node has the field sex, it will

* The Euclidean distance formula between two data, 1 and 2, is () () ()a a b b c c1 2
2

1 2
2

1 2
2− + − + − assuming that our

data has three attribute values, a, b, and c.

450 ◾ Information Technology

have two branches, one for male and one for female (a third branch is possible if the datum
for sex is not known or available). For a field such as age, rather than providing a branch for
every possible value, values are grouped together. So, for instance, there might be a branch
for adolescent ages (0 to 12 years old), a branch for teenage years, a branch for young adults
(e.g., 20 to 32), a branch for middle age (e.g., 33 to 58), and a branch for retirement age (e.g.,
59 and older). The leaf nodes of the decision tree represent the decisions that we want to

Data Mining to the Rescue

Data mining is now a tool of business in that it can help management make decisions and
predictions. however, data mining has been found to be useful far beyond profits. here are
a few interesting uses of data mining.

The minnesota Intrusion Detection system analyzes massive amounts of data pertaining
to network traffic to find anomalies that could be intrusions of various types into computer
systems. experiments on more than 40,000 computers at the University of minnesota have
uncovered numerous break-in attempts and worms.

In bioinformatics, data mining is regularly used to help sift through literally billions of
pieces of data pertaining to the human genome. recent applications have led to improved
disease diagnoses and treatment optimizations and better gene interaction modeling. In addi-
tion, biostorm combines data mining and web information to track possible pandemic and
bioterrorist incidents.

The national security agency has used data mining on more than approximately 1.9 tril-
lion telephone records looking for links between known terrorists and citizens. other data
mining techniques have been used to create the Dark Web, a group of tools and links to
websites of suspected terrorist organizations.

Law enforcement agencies are using data mining to identify possible crime hot spots in
their cities, to predict where future crimes are likely to occur, and to track down criminals
from previous crimes.

search engines and recommender sites regularly use data mining to find links of interest
based on your input queries. Google and amazon are both pioneers in data mining.

Income level

<25K >45K
25K..35K 35K..45K

Do not loan

Do not loan

Current debt? Current debt? Current debt?

yes yes yes

yes

yesyesyes

no

no
no no no

no no

High risk

High risk

High risk Low riskLow risk No risk

No risk

Medium risk Medium risk

Collateral? Collateral?Collateral?Collateral?

fIGUre 15.3 Decision tree generated from bank loan data.

Information ◾ 451

make. The decision tree then represents a process of making a decision by following the
proper branches of the tree.

Figure 15.3 provides a common example for a decision tree. Given banking decisions of
previous loans granted or not granted, we want to automate the process. In this case, we
construct the decision tree from records of customers given their income level, whether
they have current debt or not, and if they have collateral. For our tree, these three fields
represent our nodes (indicated in the figure with boxes). Branches are annotated with the
possible values for each field. We have broken down income level into four possible values,
“< 25K”, “25K...35K”, “35K…45K”, and “>45K”. The other two fields, current debt and col-
lateral, have yes/no responses. The leaf nodes represent loan decisions made in the past.
These nodes are indicated with ovals. For example, a person who has no current debt and
an income of more than $45,000 has no risk, whereas a person whose income is less than
$25,000 should not be given a loan under any circumstances. A person whose income is
between $25,000 and $35,000 and has no debt will still need collateral to receive a loan, but
even then is considered a high risk.

Decision trees can be automatically generated from database data. However, as implied in
the previous example, if a field has more than just a few values (e.g., age, income), then the
data should first be segmented. This can be done by a human or the data mining algorithm.
In either event, decision tree generating algorithms are also computationally intensive
because the algorithm must decide which fields to use in the decision tree (sex and age were
not used in the tree in Figure 15.3) and the order that the fields are applied. Given a database
relation of 10 fields, there are 1024 different combinations that the fields can be used, not to
mention millions of potential orderings of fields (from top to bottom in the tree).

Today, data warehouses are a very common way to organize and utilize data for large
organizations. Data warehousing is utilized by corporations, financial institutions, uni-
versities, hospitals and health care providers, telecommunications companies, the airline
industry, the intelligence community, and many government agencies. Along with cloud
computing (introduced in Chapter 12), data warehousing denotes a shift in the scale of IT
in support of what many are now calling “Big Data”.

This discussion of databases and data warehouses lacks one important characteristic.
Although databases and data warehouses are stored using IT, they actually are classified as
forms of information systems. What is the difference? An information system is a system
that stores and permits the processing of information (and data). However, the idea of an
information system is neutral to technology. Although it is true that nearly all information
systems today are stored by computer and utilize software to process the information, it
does not have to be this way. An information system might be a card catalog system of a
library stored on 3 × 5 index cards, or a database of a company’s inventory stored by paper
in a filing cabinet. In fact, the term information system has existed for a lot longer than
computers. Aside from databases and data warehouses, people often view expert systems
and decision support systems, geographic information systems, and enterprise systems
as forms of information system. The term information technology describes technology
infrastructure, which itself might support information systems but could also support
many other types of systems such as telecommunications systems, sensor networks, and

452 ◾ Information Technology

distributed processing to name but a few, which are distinct from information systems. We
briefly examine information systems as a career option in Chapter 16.

InformaTIon assUrance anD secUrITy
Information assurance and information security are often described together as informa-
tion assurance and security (IAS). In this section, we introduce the concepts behind IAS.
We leave some of the details of information security to the section Threats and Solutions.
The IAS model combines the three components of IT—communications, hardware, and
software—with the information utilized by the three components. Focusing on how infor-
mation is utilized, IAS proscribes three goals, commonly referred to as CIA: confidential-
ity, integrity, and availability.

Confidentiality requires that data be kept secure so that they are not accidentally
provided to unauthorized individuals and cannot be obtained by unauthorized users.
Confidentiality goes beyond security mechanisms as it deals with policy issues of who is
an authorized user of the data, how data should be kept and stored, and privacy policies. As
an example, we discussed earlier in the chapter the need for a unique identifier. An organi-
zation may have a policy that employee records will use social security numbers as unique
identifiers. However, such a policy violates the employee’s freedom to protect their social
security number (which should only be made available for payroll purposes).

Additionally, security mechanisms must go far beyond those that protect against unau-
thorized access over computer network. For instance, confidentiality must ensure that
either sensitive data are not available on laptop computers, or that those laptop computers
should not be accessible to unauthorized individuals. A theft of a laptop should not violate
the confidentiality of the organization.

Integrity requires that data are correct. This requires at a minimum three different efforts.
First, data gathering must include a component that ensures the accuracy of the collected
data. Second, data must be entered into the system accurately. But most importantly, data
modification must be tracked. That is, once data are in a database, changes to that data
must leave behind a record or trace to indicate who made the change, when the change was
made, and what the change was. This permits auditing of the data and the ability to roll the
data back if necessary. Furthermore, if a datum is being used by one individual, the datum
should be secure from being altered by another. A lack of proper data synchronization
could easily lead to corrupt data, as has been discussed previously in this text.

Finally, availability requires that information is available when needed. This seems like
an obvious requirement, but it conflicts to some extent with both confidentiality and integ-
rity. We would assume that most organizations will make their information available in a
networked fashion so that users can obtain the data from computers positioned all over the
organization, including remote access from off-site locations. To maintain confidentiality,
proper security measures must then be taken including secure forms of login, encryption/
decryption, and proper access controls (e.g., file permissions). Additionally, if one user is
accessing some data, to maintain integrity, other users are shut out of accessing that data,
thus limiting their availability. To promote integrity, timely backups of data need to be

Information ◾ 453

made, but typically during the time that files are being backed up, they are not available.
An additional complication for availability is any computer downtime, caused when doing
computer upgrades, power outages, hardware failures, or denial of service attacks.

Two additional areas that are proscribed by some, but not all, in IAS are authenticity and
non-repudiation. These are particularly important in e-commerce situations. Authenticity
ensures that the data, information, or resource is genuine. This allows a valid transaction
to take place (whether in person or over the Internet). Authenticity is most commonly
implemented by security certificates or other form of digital signature. We examine these
in more detail in Threats and Solutions. Non-repudiation is a legal obligation to follow
through on a contract between two parties. In e-commerce, this would mean that the cus-
tomer is obligated to pay for the transaction and the business is obligated to perform the

Y2K

Data integrity is a worthy goal, but what about the integrity of the software? There have been
numerous software blunders but probably none more well known than y2K itself. What is
y2K, and why did it happen?

back in the 1960s and 1970s, it was common for programmers to try to save as much memory
space as possible in their programs because computers had very limited main memory sizes. one
way to save space was to limit the space used to store a year. rather than storing a four-digit num-
ber, they would usually store years as two-digit numbers. so, for instance, January 31, 1969 would
be stored as 01, 31, and 69. no one realized that this would be a problem until around 1997.

With the year 2000 approaching, programmers began to realize that any logic that involved
comparing the current year to some target year could suddenly be incorrect. consider the
following piece of code that would determine whether a person was old enough to vote:

If (currentyear – birthyear >= 18) …

now let us see what happens if you were born in 1993 and it is currently 2013. Using
four-digit years, we have:

If (2013 – 1993 >= 18) …

This is true. so the code works correctly. but now let us see what happens with two-digit years:

If (13 – 93 >= 18) …

This is false. even though you are old enough to vote, you cannot!
y2K was a significant threat to our society because it could potentially prevent people from

receiving their social security checks, cause banking software to compute the wrong interest, and
even prevent students from graduating! but no one knew the true extent of the problem and we
would not know until January 2000. Would missile silos suddenly launch their missiles? Would
power companies automatically shut down electricity to their customers? Would medical equip-
ment malfunction? Would planes fall out of the sky or air traffic control equipment shut down?

so programmers had to modify all of the code to change two-digit years to four. In the
United states alone, this effort cost more than $100 billion!

454 ◾ Information Technology

service or provide the object purchased. As these two areas only affect businesses, they are
not acknowledged as core IAS principles by everyone.

IAS is concerned primarily with the protection of IT. IAS combines a number of prac-
tices that define an organization’s information assets, the vulnerabilities of those assets, the
threats that can damage those assets, and the policies to protect the assets. The end result
of this analysis, known as strategic risk analysis, is security policies that are translated into
mechanisms to support information security. We will focus on the risk management process.

To perform risk management, the organization must first have goals. These goals are
utilized in several phases of risk management. Goals are often only stated at a very high
level such as “the organization will provide high-quality service to members of the com-
munity with integrity and responsiveness”. Goals may be prioritized as some goals may
conflict with others. For instance, a goal of being responsive to customers may conflict
with a goal to ensure the integrity of data as the former requires a quick response, whereas
the latter requires that data be scrutinized before use.

Now the organization must perform a risk assessment. The first step in a risk assessment
is to identify the organization’s information assets. These are physical assets (e.g., computers,
computer network, people), intellectual property (ideas, products), and information (gath-
ered and processed data). Aside from identifying assets, these can be categorized by type
(e.g., hardware, process, personnel) and prioritized by their importance to the organization.

In the case of information, security classifications are sometimes applied. A business
might use such categories as “public”, “sensitive”, “private”, and “confidential” to describe
the data that they have gathered on their clients. Public information might include names
and addresses (since this information is available through the phone book). Sensitive infor-
mation might include telephone numbers and e-mail addresses. Although this is not public
information, it is information that will not be considered a threat to a person’s privacy if oth-
ers were to learn of it. Private information is information that could be a threat if disclosed
to others such as social security and credit card numbers, or health and education infor-
mation. This information is often protected from disclosure by federal legislation. Finally,
confidential information consists of information that an organization will keep secret, such
as patentable information and business plans. The government goes beyond these four cat-
egories with a group of classified tags such as confidential, secret, and top secret.

The next step in risk assessment is to identify vulnerabilities of each asset. Vulnerabilities
will vary between assets, but many assets will share vulnerabilities based on their categorized
type. For instance, imagine in risk assessment, that the three types of assets are managers,
technical staff, and clerical staff. These are all people, and some of their vulnerabilities will
be the same. Any person might be recruited away to another organization by a higher paying
salary, and any person might be vulnerable to social engineering attacks (covered in Threats
and Solutions). Similarly, most hardware items will share certain vulnerabilities such as being
vulnerable to power outage and damage from power surge, but not all hardware will have vul-
nerabilities from unauthorized access because some hardware may not be networked.

Once vulnerabilities are identified, risk assessment continues with threats. That is, given
a vulnerability, what are the possible ways that vulnerability can be exploited? As stated
in the previous paragraph, a person may be vulnerable to a social engineering attack.

Information ◾ 455

However, such an attack on someone with access to confidential files is a far greater threat
than an attack on someone without such access. Similarly, unauthorized access to a file
server storing confidential data is a far greater threat than unauthorized access to a printer
or a laptop computer that is only used for presentation graphics.

With the risk assessment completed, the organization moves forward by determining
how to handle each risk. Risks, like goals, must be prioritized. Here, the organizational
goals can help determine the priorities of the risks. For instance, one organizational goal
might be to “recruit the best and brightest employees”, but a goal of “high quality service”
is of greater importance. Thus, risks that threaten the “service” goal would have a higher
priority than risks that threaten the “employee” goal.

In prioritizing risks, risk management may identify that some risks are acceptable. It
might, for instance, be an acceptable risk that employees be recruited away to other organi-
zations. However, some risks may be identified that can critically damage the organization
such as attacks to the organization’s web portal (e.g., denial of services) that result in a loss
of business for some length of time. The risks, in turn, require the creation of policies that
will reduce the threats. Policies must then be enacted. Policies might involve specific areas
of the organization such a hiring practices for human resources, management practices for
mid-level management, and technical solutions implemented by IT personnel.

Once the risk management plan is implemented, it must be monitored. For instance,
after 6 months have elapsed, various personnel may examine the results. Such an examina-
tion or self-study of the organization could result in identifying areas of the plan that are
not working adequately. Thus, the risk management process is iterative and ongoing. The
time between examinations will be based on several criteria. Initially, iterations may last
only a few months until the risk management plan is working well. Iterations may then last
months to years depending on how often new assets, vulnerabilities, and threats may arise.

A risk management plan may include a wide variety of responses. Responses can vary
from physical actions to IT operations to the establishment of new procedures. Physical
actions might include, for instance, installing cameras, sensors, and fire alarms; locking
mechanisms on computers; and hiring additional staff for monitor or guard duty. IT oper-
ations are discussed in the next section such as firewalls. New procedures might include
hiring processes, policies on IT usage and access control, management of information
assets, maintenance, and upgrade schedules.

One other component of a risk management plan is a disaster recovery plan. A disaster
recovery plan is a plan of action for the organization in response to a disaster that impacts
the organization to the point that it has lost functionality. There are several different types
of disasters, and a recovery plan might cover all (or multiple) types of disasters, or there may
be a unique recovery plan for each type of disaster. Disasters can be natural, based on severe
weather such as tornados, hurricanes, earthquakes, and floods. Disasters can be man-made
but accidental such as a fire, an infrastructure collapse (e.g., a floor that collapses within
the building), a power outage that lasts days, or a chemical spill. Disasters can also be man-
made but purposeful such as a terrorist attack or act of war. Here are examples of the latter
two categories. The power outage that hit the East Coast in 2008 was deemed accidental, yet
the outage lasted several days for some communities. And, of course, on September 11, 2001,

456 ◾ Information Technology

terrorists crashed four planes in New York City, Washington, DC, and Pennsylvania, caus-
ing a great deal of confusion and leading to airline shutdowns for several days.

A disaster recovery plan should address three things. First, preventive measures are needed
in an attempt to avoid a disaster. For instance, a fire alarm and sprinkler system might help pre-
vent fires from spreading and damaging IT and infrastructure. Proper procedures when deal-
ing with chemical spills might include how to handle an evacuation including how to quickly
shut down any IT resources or how to hand off IT processing capabilities to another site. Simple
preventative measures should include the use of uninterrupted power supplies and surge pro-
tectors to ensure that computers can be shut down properly when the power has gone out, and
to protect against surges of electricity that could otherwise damage computers. Second, there
needs to be some thought to how to detect a disaster situation in progress. Obviously, a tornado
or a hurricane will be noticeable, but a power surge may not be easily detected. Finally, the
disaster recovery plan must address how to recover from the disaster itself.

Focusing on IT, the best approaches for preparing for and handling disasters are these.
First, regular and timely backups of all data should be made. Furthermore, the backed up
data should be held off-site. Redundancy should be used in disk storage as much as possible.
This is discussed in more detail in the next section. Simple measures such as uninterrupted
power supplies and surge protectors on the hardware side, and strong password policies
and antiviral software should always be used. Monitoring of equipment (for instance, with
cameras) and logging personnel who have access to equipment that stores sensitive data
are also useful actions. And, of course, fire prevention in the form of fire alarms, fire extin-
guishers, fire evacuation plans, and even fire suppression foam are all possible.

Preparation is only one portion of the disaster recovery plan. Recovery is the other half.
Actions include restoring backed up data, having spare IT equipment (or the ability to
quickly replace damaged or destroyed equipment) and having backup services ready to go
are just some of the possible options. In many large organizations, IT is distributed across
more than one site so that a disaster at one site does not damage the entire organization.
During a disaster, the other site(s) pick up the load. Recovery requires bringing the original
site back up and transferring data and processes back to that site.

The risk management plan is often put together by management. But it is critical for
any organization that relies on IT to include IT personnel in the process. It is most likely
the case that management will not have an understanding of all of the vulnerabilities and
threats to the technology itself. Additionally, as new threats arise fairly often, it is impor-
tant to get timely input. Do not be surprised if you are asked to be involved in risk manage-
ment at times of your career.

ThreaTs anD soLUTIons
Information security must protect at its core the data/information of the organization.
However, surrounding the data are several layers. These are the operating system, the
applications software, the computer and its resources, the network, and the users. Each
of these layers has different threats, and each will have its own forms of security. As some
threats occur at multiple levels, we will address the threats rather than the layers. However,
information security is not complete without protecting every layer.

Information ◾ 457

Social engineering is a threat that targets users. The idea is that a user is a weak link in
that he or she can be tricked, and often fairly easily. A simple example of a social engi-
neering attack works like this. You receive a phone call at home one evening. The voice
identifies itself as IT and says that because of a server failure, they need your password to
recreate your account. Without your password, all of your data may be lost. You tell them
your password. Now they can break into your account because they are not IT but in fact
someone with malicious intent.

Social engineering has been used to successfully obtain people’s passwords, bank account
numbers, credit card numbers, social security numbers, PIN (personal identification num-
ber) values, and other confidential information. Social engineering can be much more subtle
than a phone call. In a social setting, you are far more likely to divulge information that a
clever hacker could then use to break your password. For instance, knowing that you love
your pet cats, someone may try to obtain your cats’ names to see if you are using any of them
as your password. Many people will use a loved one’s name followed by a digit for a password.

A variation on social engineering is to trick a user by faking information electronically.
Phishing involves e-mails to people to redirect them to a website to perform some operation.
The website, however, is not what it seems. For instance, someone might mock up a website
to make it look like a credit card company’s site. Now an e-mail is sent to some of the credit
card company customers informing them that they need to log into their accounts or else
the accounts will be closed. The link enclosed in the e-mail, however, directs them to the
mocked up website. The user clicks on the link and is taken to the phony website. There,
the user enters secure information (passwords, credit card number, etc.) but unknowingly,
this information is made available to the wrong person.

Another class of threat attacks the computer system itself whether the attack targets the
network, application software, or operating system. This class includes protocol attacks, soft-
ware exploits, intrusion, and insider attacks. In a protocol attack, one attempts to obtain access
to a computer system by exploiting a weakness or flaw in a protocol. There are, for instance,
known security problems in TCP/IP (Transmission Control Protocol/Internet Protocol).
One approach is called TCP Hijacking, in which an attacker spoofs a host computer in a net-
work using the host computer’s IP address, essentially cutting that host off from its network.

Many forms of protocol attacks are used as a form of reconnaissance in order to obtain
information about a computer network, as a prelude to the actual attack. An ICMP
(Internet Control Message Protocol) attack might use the ping program to find out the IP
addresses of various hosts in a computer network. Once an attacker has discovered the IP
addresses, other forms of attack might be launched. A smurf attack combines IP spoofing
and an ICMP (ping) attack where the attacker spoofs another device’s IP address to appear
to be a part of the network. Thus, the attacker is able to get around some of the security
mechanisms that might defeat a normal ICMP attack.

Software exploits vary depending on the software in question. Two very popular forms of
exploits are SQL injections and buffer overflows. In the SQL injection, an attacker issues an
SQL command to a web server as part of the URL. The web server, which can accept queries
as part of the URL, is not expecting an SQL command. A query in a URL follows a “?” and
includes a field and a value, such as www.mysite.com/products.php?productid = 1. In this

458 ◾ Information Technology

case, the web page products.php most likely accesses a database to retrieve the entry pro-
ductid = 1. An SQL injection can follow the query to operate on that database. For instance,
the modified URL www.mysite.com/products.php?product = 1; DROP TABLE products
would issue the SQL command DROP TABLE products, which would delete the relation
from the database. If not protected against, the web server might pass the SQL command
onto the database. This SQL command could potentially do anything to the database from
returning secure records to deleting records to changing the values in the records.

The buffer overflow is perhaps one of the oldest forms of software exploit and is well
known so that software engineers should be able to protect against this when they write
software. However, that is not always the case, and many pieces of software are still sus-
ceptible to this attack. A buffer is merely a variable (typically an array) that stores a collec-
tion of values. The buffer is of limited size. If the software does not ensure that insertions
into the buffer are limited to its size, then it is possible to insert into the buffer a sufficient
amount so that the memory locations after the array are filled as well. Since memory stores
both data and code, one could attempt to overflow a buffer with malicious code. Once

White hat veRsus BlacK hat

The term hacker conveys three different meanings:

•	 someone who hacks code, that is, a programmer
•	 a computer hobbyist
•	 someone who attempts to break into computer systems

historically, the hacker has been a person who creates software as a means of protest. for
instance, early hackers often broke into computer-operated telephone systems to place free
long distance calls. They were sometimes called phreakers.

In order to differentiate the more traditional use of hacker, a programmer, with the deroga-
tory use of someone who tries to break into computer systems, the term cracker has been
coined. The cracker attempts to crack computer security. but even with this definition, we
need to differentiate between those who do this for malicious purposes from those who do
it either as a challenge or as an attempt to discover security flaws so that the security can be
improved.

The former case is now referred to as a black hat hacker (or just a black hat). such a person
violates security in order to commit crime or terrorism.

The latter case of an individual breaking security systems without malicious intent is
referred to as a white hat hacker (or just a white hat). however, even for a white hat, the
action of breaking computer security is still unethical.

as a case in point, the organization of crackers who call themselves anonymous purport
to violate various organization’s computer systems as a means of protest. They have attacked
the Vatican in protest over the catholic church’s lack of response to child abuse claims. They
have attacked sites run by the Justice Department, the recording Industry association of
america, and motion Picture association of america to protest antipiracy legislature. and
they attacked the sites of PayPal, mastercard, and Visa when those companies froze assets of
Wikileaks. although touting that these attacks are a form of protest, they can also be viewed
as vigilante operations violating numerous international laws.

Information ◾ 459

stored in memory, the processor could potentially execute this code and thus perform the
operations inserted by the attacker.

Intrusion and other forms of active attacks commonly revolve around first gaining unau-
thorized access into the computer system. To gain entrance, the attacker must attempt to
find a security hole in the operating system or network, or obtain access by using someone
else’s account. To do so, the attacker will have to know a user’s account name and password.

As stated above, there are social engineering and phishing means of obtaining pass-
words. Other ways to obtain passwords include writing a program that continually attempts
to log in to a user’s account by trying every word of the dictionary. Another approach is to
simply spy on a person to learn the person’s password, perhaps by watching the person type
it in. Or, if a person is known to write passwords down, then you can look around their
computer for the password if you have access to that person’s office. You might even find
the password written on a post-it note stuck to the computer monitor!

Another means of obtaining a password is through packet sniffing. Here, the attacker
examines message traffic coming from your computer, for instance e-mail messages. It is
possible (although hopefully unlikely) that a user might e-mail a password to someone else
or to him/herself.

Aside from guessing people’s passwords, there are other weaknesses in operating sys-
tems that can be exploited to gain entrance to the system. The Unix operating system used
to have a flaw with the telnet program that could allow someone to log into the Unix system
without using a password at all. Once inside, the intruder then can unleash their attack.
The active attack could potentially do anything from deleting data files, copying data files,
and altering data files to leaving behind malicious code of some kind or creating a back-
door account (a hidden account that allows the attacker to log in at any time).

An even simpler approach to breaking through the security of an IT system is through
an inside job. If you know someone who has authorized access and either can be bribed or
influenced, then it is possible that the attacker can delete, copy, or alter files, insert mal-
ware, or otherwise learn about the nature of the computer system through the person. This
is perhaps one of the weakest links in any computer system because the people are granted
access in part because they are being trusted. That trust, if violated, can cause more signifi-
cant problems than any form of intrusion.

Malware is one of the worst types of attacks perpetrated on individual users. The origi-
nal form of malware was called a Trojan horse. The Trojan horse pretends to be one piece
of software but is in fact another. Imagine that you download an application that you think
will be very useful to you. However, the software, while pretending to be that application,
actually performs malicious operations on your file system. A variation of the Trojan horse
is the computer virus. The main differences are that the virus hides inside another, execut-
able, file, and has the ability to replicate itself so that it can copy itself from one computer to
another through a floppy disk (back when we used them), flash drive, or e-mail attachment.

Still other forms of malware are network worms that attack computer networks (see,
e.g., Morris’ Internet worm discussed in Chapter 12) and spyware. Spyware is often down-
loaded unknown to the user when accessing websites. The spyware might spy on your
browsing behavior at a minimum, or report back to a website sensitive information such as

460 ◾ Information Technology

a credit card number that you entered into a web form. Still another form of malware will
hijack some of your software. For instance, it might redirect your DNS information to go
to a different DNS, which rather than responding with correct IP addresses provides phony
addresses that always take your web browser to the wrong location(s).

One final form of attack that is common today, particularly to websites, is the denial
of service attack. In the denial of service attack, one or more attackers attempts to flood a
server with so many incoming messages that the server is unable to handle normal busi-
ness. One of the simplest ways to perform a denial of service attack is to submit thousands
or millions (or more) HTTP requests. However, this only increases the traffic; it does not
necessarily restrict the server from responding to all requests over time. A UDP attack can
replace the content of a UDP packet (defined in Chapter 12) with other content, inserted by
the attacker. The new content might require that the server perform some time-consuming
operation. By performing UDP flooding, large servers can essentially be shut down. Other
forms of denial of service utilize the TCP/IP handshaking protocol, these are known as
TCP SYN and TCP ACK flood attacks.

The above discussion is by no means a complete list of the types of attacks that have
been tried. And, of course, new types of attacks are being thought of every year. What we
need, to promote information security, are protection mechanisms to limit these threats to
acceptable risks. Solutions are brought in from several different approaches.

First, the organization’s users must be educated. By learning about social engineer-
ing, phishing, and forms of spying, the users can learn how to protect their passwords.
Additionally, IT policies must ensure that users only use strong passwords, and change
their passwords often.

In some cases, organizations use a different approach than the password, which is some-
times referred to as “what you know”. Instead, two other approaches are “what you have”
and “who you are”. In the former case, the access process includes possession of some kind
of key. The most common form of key is a key card (swipe card). Perhaps this can be used
along with a password so that you must physically possess the key and know the password
to log in. In the latter case, the “who you are” constitutes some physical aspect that cannot
be reproduced. Biometrics are used here; whether in the form of a fingerprint, voice iden-
tification match, or even a lip print, the metric cannot be duplicated.

Next, we need to ensure that the user gains access only to the resources that the user
should be able to access. This involves access control. Part of the IT policy or the risk man-
agement plan must include a mechanism whereby a user is given access rights. Those rights
should include the files that the user is expected to access while not including any files that
the user should not be accessing. Access rights are usually implemented in the operating
system by some access control list mechanism (see Chapter 6 for a discussion on this). In
Windows and Linux, access control is restricted to file and directory access per user using
either lists (Windows, Security Enhanced Linux) or the 9-bit rwxrwxrwx scheme (Linux).

Many advanced DBMS use role-based access control. In such a system, roles are defined
that include a list of access methods. For instance, the supervisor may be given full access
to all data, whereas managers are given access to their department’s data. A data analyst
may only be given read access to specific relations. Once roles are defined, individuals are

Information ◾ 461

assigned to roles. One person may have different roles allowing the person to have a collec-
tion of access rights.

Most of the other forms of attack target the computer system. Protection will be a
combination of technologies that protect against unauthorized access and other forms of
intrusion, denial of service attacks, software exploits, and malware. Solutions include the
firewall to prevent certain types of messages from coming into or out of the network, anti-
viral software to seek out malware, and intrusion detection software. Resolving software
exploits require first identifying the exploits and then modification of the source code of
the software. If the software is a commercial product or open source, usually once the
exploit is found, an update is released to fix it within a few days to a few weeks. Denial of
service attacks and intrusions are greater challenges, and the IT staff must be continually
on guard against these.

Two types of threats arise when communicating secure information over the Internet
whether this involves filling out a web form or sending information by e-mail. First,
Internet communications are handled with regular text. If someone can intercept the mes-
sages, the secure information is open to read. Second, the sender must be assured that the
recipient is who they say they are, that is, the recipient should be authenticated. To resolve
the former problem, encryption can be used. To resolve the second problem, we might use
a third party to verify the authenticity of the recipient. To handle both of these solutions,
we turn to digital signatures and certificates.

The idea behind a certificate or digital signature is that a user (organization, website)
creates a sign to indicate who they are. This is just data and might include for instance an
e-mail signature, a picture, or a name. Next, the data are put together into a file. Encryption
technology (covered in the next section) is used to generate a key. The key and the data are
sent to a certificate authority. This is a company whose job is to ensure that the user is who
they claim to be and to place their stamp of approval on the data file. The result is a signed
certificate or digital signature. The signed document is both the authentication proof and
the encryption information needed for the sender to send secure information without con-
cern of that information being intercepted and accessed.

If a user receives a certificate or signature that is out of date, not signed, or whose data
do not match the user’s claimed identity, then the recipient is warned that the person may
not be whom they claim. Figure 15.4 shows two certificates. The one on the left is from a
university and is self-signed. You might notice near the top of this certificate the statement
“Could not verify this certificate because the issuer is not trusted.” This indicates that the
site that uses the certificate did not bother to have a certificate authority sign their cer-
tificate. Any user who receives the certificate is warned that doing business with that site
may be risky because they are not authenticated. Fortunately, the certificate is not used to
obtain secure information so that a user would not risk anything substantial. The certifi-
cate on the right side of the figure is from Visa and is signed by SSL Certificate Authority,
thus the site can be trusted.

Information security attempts to ensure the confidentiality, integrity, and availabil-
ity of information when it is stored, processed, and transmitted (across a network). The
approaches listed above primarily target the transmission of information by network

462 ◾ Information Technology

and processing of information. We have to use another solution to ensure proper storage:
redundancy. Redundancy provides a means so that data are available even when storage
devices are damaged or offline. There are two common approaches to promote redun-
dancy. The first is through backups of the file system. The second is through redundant
storage, particularly RAID.

Backups date back to the earliest computer systems. A backup is merely a copy of a
collection of data. Backups used to be stored onto magnetic tape. Backup tapes would be
stored in separate rooms to ensure that if anything damaged the computer system, the
tapes should be protected. Thus, the data would be easily available for restoration if needed.
Ironically, many of the tapes used for data storage dating back to the 1950s have long
degraded, and the data have been lost.

Floppy disks and optical disks eventually replaced tape for backup purposes. However,
with the low cost of hard disk storage today, many users will back up their file system to
an external hard disk, or use cloud storage. Backups can either be of the entire file system,
or of those portions of the file system that have been modified since the last backup. In
the latter case, this is known as an incremental backup. Operating systems can be set up
to perform backups automatically. As part of the risk management plan, a backup policy
is required.

RAID stands for redundant array of independent disks (alternatively, the “I” can also
stand for inexpensive). The idea behind RAID is to provide a single storage device (usu-
ally in the form of a cabinet) that contains multiple coordinated hard disks. Disk files are

fIGUre 15.4 Two certificates, one self-signed (left) and one signed (right).

Information ◾ 463

divided into blocks as usual, but a block is itself dividing into stripes. A disk block is then
stored to one or more disk surfaces depending on the size of the stripe. A large stripe will
use few disks simultaneously whereas small stripes will use many disks simultaneously.
Thus, the stripe size determines how independent the disks are. For instance, if a disk block
is spread across every disk surface, then access to the disk block is much faster because all
disk drives are accessed simultaneously and thus each surface requires less time to access
the bits stored there. On the other hand, if a RAID cabinet were to use say eight sepa-
rate disk drives and a stripe is spread across just two drives, then the RAID cabinet could
potentially be used by four users simultaneously.

Although the “independent” aspect of RAID helps improve disk access time, the real
reason for using RAID is the “redundancy”. By having multiple drives available, data
can be copied so that, if a disk sector were to go bad on one disk drive, the informa-
tion might be duplicated elsewhere in the cabinet. That is, the redundant data could
be used to restore data lost due to bad sectors. Redundancy typically takes on one of
three forms. First, there is the mirror format in which one set of disks is duplicated
across another set of disks. In such a case, half of the disk space is used for redundancy.
Although this provides the greatest amount of redundancy, it also is the most expensive
because you lose half of the total disk space, serving as a backup. Two other approaches
are to use parity bits (covered in Chapter 3) and Hamming codes for redundancy. Both
parity bits and Hamming codes provide a degree of redundancy so that recovery is pos-
sible from minimal damage but not from large-scale damage. The advantage of these
forms of redundancy is that the amount of storage required for the redundancy infor-
mation is far less than half of the disk space, which makes these forms cheaper than the
mirror solution.

RAID technology has now been in existence since 1987 and is commonplace for large
organizations. It is less likely that individual users will invest in RAID cabinets because
they are more expensive. RAID itself consists of different levels. Each RAID level offers dif-
ferent advantages, disadvantages, and costs. RAID levels are identified by numbers where
a larger number does not necessarily mean a better level of RAID. Here is a brief look at
the RAID levels.

RAID 0 offers no redundancy, only the independent access by using multiple drives and
stripes. RAID 1, on the other hand, is the mirror format where exactly half of the disks are
used as a mirror. Thus, RAID 0 and RAID 1 offer completely opposite spectrums of redun-
dancy and cost: RAID 0, which uses all disk space for the files, is the cheapest but offers
no redundancy. RAID 1, which uses half of the disk space for redundancy, is the most
expensive but offers the most redundancy. RAID 2 uses Hamming codes for redundancy
and uses the smallest possible stripe sizes. RAID 3 uses parity bits for redundancy and
the smallest possible stripes sizes. Hamming codes are complex and time consuming to
compute. In addition, RAID 2 requires a large number of disks to be successful. For these
reasons, RAID 2 is not used.

RAID 4, like RAID 3, uses parity bits. But unlike RAID 3, RAID 4 uses large stripe
sizes. In RAID 4, all of the parity bits are stored on the same drive. Because of this, RAID
4 does not permit independent access. For instance, if two processes attempted to access

464 ◾ Information Technology

the disk drive at the same time, although the two accesses might be two separate stripes on
two different disk drives, both accesses would collide when also accessing the single drive
containing the parity information. For this reason, RAID 4 is unused. RAID 5 is the same
as RAID 4 except that parity information is distributed across drives. In this way, two pro-
cesses could potentially access two different disk blocks simultaneously, assuming that the
blocks and their parity information were all on different disk drives. RAID 6 is the same
as RAID 5 except that the parity information is duplicated and distributed across the disks
for additional redundancy and independence.

In Figure 15.5, RAID 4, 5, and 6 are illustrated. In RAID 4, all parity data are on one and
only one drive. This drive would become a bottleneck for independent accesses. In RAID 5,
the parity data are equally distributed among all drives so that it is likely that multiple disk
operations can occur simultaneously. In RAID 6, parity data are duplicated and distrib-
uted so that not only is the redundancy increased, but the chance of simultaneous access
is increased. You will notice that RAID 6 has at least one additional disk drive and so is
more expensive than either of RAID 4 or RAID 5 but offers more redundancy and possibly
improved access.

More recently, hybrid RAID levels have come out that combine levels 0 and 1, known
as RAID 0+1 or RAID 10, and those that combine 3 and 5, called RAID 53. With backups
and/or RAID cabinets, we can ensure the redundancy of our files and therefore ensure
availability and integrity of storage. However, this does not resolve the issue of confiden-
tiality. In order to support this requirement, we want to add one more technology to our
solution: encryption. Through encryption, not only can we ensure that data are held con-
fidential, but we can also transmit it over an open communication medium such as the
Internet without fear of it being intercepted and understood. Since encryption is a complex
topic, we will present it in the next section.

cryPToGraPhy
Cryptography is the science behind placing information into a code so that it can be
securely communicated. Encryption is the process of converting the original message into
a code, and decryption is the process of converting the encrypted message back into the

Raid 4

Raid 5

Raid 6

Data 1

Data 1

Data 1

Data 2

Data 2

Data 2

Data 3

Data 3

Data 3

Data 4

Data 5

Data 5 Data 6

Data 4

Data 4

Parity 1-4

Parity 2

Parity 2, 3 Parity 3, 4 Parity 4, 5 Parity 5, 6 Parity 6, 1 Parity 1, 2

Parity 3 Parity 4 Parity 5 Parity 1

fIGUre 15.5 Parity data stored in RAID 4, 5, and 6.

Information ◾ 465

original message. The key to encryption is to make sure that the encrypted message, even
if intercepted, cannot be understood.

The use of codes has existed for centuries. In the past, codes, or what is sometimes called
classic encryption, were largely performed by pencil and paper. A message was written in
code, sent by courier, and the recipient would decode it. If the courier was intercepted (or
was not trustworthy), the message could not be read because it was in code.

A simple code merely replaces letters of the alphabet with other letters. For instance,
a rotation code moves each letter down in the alphabet by some distance. In rotation+1,
an ‘a’ becomes a ‘b’, a ‘b’ becomes a ‘c’, and so forth, and a ‘z’ wraps around to an ‘a’.
During World War II, both German and Allied scientists constructed computing devices
in an attempt to break the other sides’ codes. Today, strong encryption techniques are used
because any other form of encryption can be easily broken by modern computers.

There are two general forms of cryptography used today: symmetric key and asymmet-
ric key. Both forms of encryption are based on the idea that there is a key, a mathematical
function, that will manipulate the message from an unencrypted form into an encrypted
form, and from an encrypted form back into the unencrypted form. In symmetric-key
encryption, the same key is used for both encryption and decryption. This form of encryp-
tion is useful only if the message (or file) is not intended for others, or if the recipients
can be given the key. So, for instance, you might use this form of encryption to store a file
such that no one else can view the file’s contents. You would not share the key with others
because that would let others view the file.

Consider the case of e-commerce on the Internet. You want to transmit your credit card
number from your web browser to a company’s web server so that they can charge you for
a purchase (well, you may not “want” to transmit the number, but you do want to make the
purchase). The company you are doing business with wants you to trust them, so they use
an encryption algorithm to encrypt your credit card number before it is transmitted. To do
this, your web browser must have the key. However, if they provide your web browser with
the key, you can also obtain the key. If you have the key, you could potentially intercept
other messages to their server and break the encryption, thus obtaining other customers’
credit card numbers.

Therefore, for e-commerce, we do not want to use symmetric-key encryption. In its
place, we move on to asymmetric-key encryption. In this form of encryption, the original
organization generates a key. This is the private key. Now, using the private key, they can
create a public key. The public key can be freely shared with anyone. Given the public key,
you can encrypt a message. However, you are unable to use the public key to decrypt a
message. The organization retains the private key to themselves so that they can decrypt
incoming messages. We usually refer to symmetric-key encryption as private key encryp-
tion because it only uses one key, a private (or secret) key. Asymmetric-key encryption is
often called public key encryption, using two keys, a private key and a public key. Both of
these forms of encryption are illustrated in Figure 15.6.

Both public and private key encryption use the notation of a block. The block is merely a
sequence of some number of characters—in the case of computers, we will use a sequence
of bits. So, we take some n bits of the message that we want to transmit and convert those

466 ◾ Information Technology

n bits using the key. We do this for each n-bit sequence of the block, putting together a
new message. The recipient similarly decomposes the received message into n-bit blocks,
decrypting each block. As a simple example, let us assume the message is “Hello”. In ASCII,
this message would consist of five 8-bit sequences (we add a 0 to the 7-bit ASCII character
to make each character take up 1 byte). This gives us: 01001000 01100101 01101100 01101100
01101111. Now we take these 40 bits and divide them up into n-bit sequences. For our
example, we will use n = 13. This gives us instead four sequences of bits: 0100100001100
1010110110001 1011000110111 1. Because the last sequence is only a single bit, we will pad
it with 0s to become 1000000000000.

The key will treat each block as a binary number. It will apply some mathematical
operation(s) to the binary number to transform it into a different number. One approach is
to use a list of integer numbers, for instance, 1, 2, 5, 9, 19, 41, 88, 181, 370, 743, 1501, 3003,
6081. Since there are 13 integer numbers, we will add each of these integer numbers together
if the corresponding bit in the 13-bit sequence is a 1. For instance, for 0100100001100, we
will add 2, 19, 743, and 1501 together (because the only 1 bits in the block are the second,
fifth, 10th and 11th, and 2, 19, 743, and 1501 are the second, fifth, 10th, and 11th in the
sequence). The sum is 2265. So, our key has transformed 0100100001100 into 2265, which
we convert back into binary to transmit.

Notice that our sequence of 13 integer numbers is not only in increasing order, but for
any number, it is greater than the sum of all numbers that precede it. For instance, 88 > 41
+ 19 + 9 + 5 + 2 + 1. This is crucial to being able to easily decrypt our number. To decrypt
a number requires only finding the largest number in our key less than or equal to the
number, subtracting that value, and then repeating until we reach 0. So, to decrypt 2265,
we do the following:

Largest value < = 2265: 1501. 2265 – 1501 = 764.

Largest value < = 764: 743. 764 – 743 = 21.

Largest value < = 21: 19. 21 – 19 = 2.

Largest value < = 2: 2. 2 – 2 = 0. Done.

12345678901234567

12345678901234567

#A1c8eF!7ab8zzeiZ2*Mp3

#A1c8eF!7ab8zzeiZ2*Mp3

12345678901234567

12345678901234567

Original message

Original message Original message

Original message

key key

Encrypted message

Encrypted message

public key private key

fIGUre 15.6 Private key encryption (top) versus public key encryption (bottom).

Information ◾ 467

So we have decrypted 2265 into 1501, 743, 19, and 2, or the binary value 0100100001100.
For public key encryption, we have to apply some additional mathematics. First, we use

the original list of numbers (our private key) to generate a public key. The public key num-
bers will not have the same property of increasingly additive. For instance, the public key
might be 642, 1284, 899, 1156, 643, 901, 1032, 652, 1818, 940, 2266, 552, 723. The numbers
in our public key are our private key numbers having been transformed using two addi-
tional values, some large prime numbers.

We can hand out our public key to anyone. Given the public key, the same process is used
to compute a sum given a binary block. For our previous binary block (0100100001100),
we add up the corresponding numbers in the public key rather than the private key. These
numbers, again corresponding to the second, fifth, 10th, and 11th numbers, are 1284, 643,
940, and 2266. This sum is 5133. Instead of transmitting 2265, we transmit 5133. Using the
public key, 5133 is very difficult to decrypt because our public key numbers do not have
that same increasing, additive property. In fact, since the numbers are not in this order,
to decrypt a number requires trying all possible combinations of values in our public key.
There are 213 different combinations of these 13 numbers. For instance, we might try the
first public key number by itself, 642. That is not equal to 5133, so we can now try the first
two numbers, 642 + 1284. That is not equal to 5133 so we next try the first and third num-
bers, 642 + 899. This is still not 5133, so now we try the first three numbers, 642 + 1284 +
899. Ultimately, we may have to try all 213 different combinations before we hit on the
proper solution.

You might recall from Chapter 3 that 213 equals 8192. For a human, trying all of these
combinations to decrypt the one number, 5133, would take quite a while. A computer,
however, would be able to try all 8192 combinations in far less than a second. For this rea-
son, our strongest encryption technologies today use blocks of at least 200 bits instead of
something as short at 13 bits. With 200 bits, it would require testing at least 2200 different
combinations in order to decrypt our number. This value, 2200, is an enormous number. It
is greater than 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,
000,000,000!

If our encrypted value is so difficult to decrypt, how does the recipient decrypt it?
Remember that the recipient has the private key. We have to transform the received num-
ber first by applying the two prime numbers. This would convert 5133 into 2265. And now
we use our private key to easily and quickly decrypt the number. Whether the key uses
block sizes of 13 or 200, decryption takes almost no time at all.

Not explained above is the use of the prime numbers to create the public key and to
transform the received numbers. We apply a mathematical operation known as a hash
function. A hash function maps a large series of values into a smaller range. Hash func-
tions have long been used to create hash tables, a form of data storage in memory for quick
searching, and are also used to build caches, filters, and error correction information
(checksums). The idea is to take the original value and substitute it with an integer. This
is already done for us using public key encryption, but if we were to convert say a person’s
name, we might add up the ASCII values of the characters in the name. Next, we use the
modulo operator to divide the integer number by a prime number. Recall modulo (mod)

468 ◾ Information Technology

performs division and gives us the integer remainder. For instance, if our prime number is
1301, then 5133 mod 1301 = 1230. The result from our mod operation will be a new integer
between 0 and the prime number minus one (in this case, a number between 0 and 1300).

There are many popular encryption strategies used today. Here, we touch on a few of
them. The following are all private key encryption algorithms.

•	 Data Encryption Standard (DES)—developed in the 1970s, this algorithm uses 56-bit
block sizes. It was used by the national security agency but is now considered to be
insecure.

•	 Advanced Encryption Standard (AES)—the follow-up from DES, it uses a substitu-
tion-permutation network that can be easily implemented in software and hardware
for fast encryption and decryption. It uses a 128-bit block size but keys can take on
sizes from 128 bits to 256 bits, in 32-bit increments.

•	 Triple DES—although DES is considered insecure because it can be broken in just
hours, Triple DES uses three DES keys consecutively to encrypt and decrypt a mes-
sage. For instance, if the keys are K1, K2, and K3, encrypting a message is done by
applying K3(K2–1(K1(message)), where K2–1 means to use K2 to decrypt the message.
Decryption is then performed by using K3–1(K2(K1–1(encrypted message))). Each key
is 56 bits in size and operates on 64-bit blocks. However, the application of three keys
as shown here greatly increases the complexity of the code, making it far more chal-
lenging to break. In spite of the challenge, the result is roughly equivalent to a 112 bit
key, which can also be broken with today’s computers.

•	 Message-Digest Algorithm (MDn)—the most recent version is MD5. This 128-bit
encryption algorithm uses a hash function applying a 32-digit hexadecimal hash
number. However, between the limited size of the key and flaws discovered starting
in 1996, MD5 is no longer in use and has been superseded by SHA-1.

•	 SHA-0 and SHA-1 are similar algorithms that are based on 160-bit blocks. As with
MD5, they are message digest algorithms that apply a hash function. And although
they do not have the flaws found in MD5, they still have their own weaknesses. Today,
SHA-2 is used by the federal government, improving on SHA-1 by combining four
different hash functions whose sizes are upward of 224 bits apiece. SHA-3 is being
introduced in 2012.

Two of the most commonly used public key encryption algorithms are RSA and DSA
(digital signature algorithm). RSA, named after the three men who wrote the algorithm in
1978, uses two large prime numbers to generate the public key from the private key. These
two prime numbers, along with the private key, must be kept secure. DSA is a more com-
plex algorithm than RSA. DSA is the standard algorithm used by the U.S. government for
public key encryption.

These algorithms are used in a number of different software and protocols. Here, we
take a brief look at them.

Information ◾ 469

•	 WEP (Wired Equivalent Privacy) was released in 1999 as a means to permit encrypted
wireless transmission equivalent to what can be found in a wired network. Using
twenty-six 10-digit values as a key, it has been found to have numerous flaws and has
been replaced first by WPA and then WPA2.

•	 WPA and WPA2 (Wi-Fi Protected Access) are protocols used to encrypt commu-
nication between resources in a wireless network. WPA2 replaced WPA around
2004. WPA2 is based on the AES algorithm. WPA and WPA2 were designed to
work with wireless hardware produced before the releases of the protocols so that
the protocols are backward compatible with older hardware. There are known
security flaws with both WPA and WPA2, particularly in using a feature called
Wi-Fi Protected Setup. By avoiding this feature, both WPA and WPA2 are far more
secure.

•	 SSH is the secure shell in Linux, a replacement of the insecure telnet, rlogin, and
rsh communication protocols. It uses public key encryption. Several versions have
existed, generally referred to as SSH (or SSH-1), SSH-2, and OpenSSH. SSH uses port
22 whereas telnet uses port 23. SSH is also used to provide secure file transfer with
SCP (secure copy). An alternate form of SSH is SFTP, secure file transfer protocol.
This differs from using FTP within an SSH session.

•	 SSL and TLS are Secure Socket Layers and Transport Layer Security, respectively.
TLS has largely replaced SSL. These communication protocols are used to enhance
the transport layer of TCP/IP by providing encryption/decryption capabilities that
are missing from TCP/IP. Communication can be done by private key encryption
or public key encryption. In the latter case, the keys are provided during the TCP/
IP handshake and through a certificate sent by the server. SSL and TLS are used in
a number of different protocols including HTTPS, SMTP (e-mail), Session Initiation
Protocol (SIP) used in Voice over IP, and VPN communication.

•	 HTTPS is the secure form of HTTP using port 431 instead of port 80. HTTPS
requires the transmission of a certificate from the server to the client (refer back to
Figure 15.4). The certificate is used in two ways. First, it contains the public key so
that the client can encrypt messages. Second, if signed by a certificate authority, it
authenticates that the server is who it claims to be. An out-of-date certificate, a self-
signed certificate, or no certificate at all will prompt the client’s web browser to issue
a warning.

LaWs
We wrap up this chapter by examining several important legislations enacted by the U.S.
government worth noting because of their impact on information security. This is by no
means a complete list, and a website that contains more complete listing is provided in the
Further Reading section. This list does not include legislation from other countries, but
you will find similar laws in Canada and the United Kingdom.

470 ◾ Information Technology

•	 Privacy Act of 1974—the earliest piece of legislature that pertains to the collection
and usage of personal data, this act limits actions of the federal government. The act
states that:

 No agency shall disclose any record which is contained in a system of records
by any means of communication to any person, or to another agency, except
pursuant to a written request by, or with prior written consent of, the individual
to whom the record pertains….*

 The act also states that federal agencies must publicly make available the data that
they are collecting, the reason for the collection of the data, and the ability for any
individual to consult the data collected on them to ensure its integrity. There are
exemptions to the law such as for the Census Bureau and law enforcement agencies.

•	 The Family Educational Rights and Privacy Act of 1974 (FERPA)—gives students
the right to access their own educational records, amend those records should
information be missing or inaccurate, and prevent schools from disseminating
student records without prior authorization. This is an important act because it
prevents faculty from sharing student information (e.g., grades) with students’ par-
ents unless explicitly permitted by the students. In addition, it requires student
authorization to release transcripts to, for instance, graduate schools or prospective
employers.

•	 Foreign Intelligence Surveillance Act of 1978—established standards and procedures
for the use of electronic surveillance when the surveillance takes place within the
United States.

•	 Electronic Communication Privacy Act of 1986—similar to the Foreign Intelligence
Surveillance Act, this one establishes regulations and requirements to perform elec-
tronic wiretapping over computer networks (among other forms of wiretapping).

•	 Computer Matching and Privacy Protect Act of 1988—amends the Privacy Act of
1974 by limiting the use of database and other matching programs to match data
across different databases. Without this act, one agency could potentially access data
from other agencies to build a profile on a particular individual.

•	 Drivers Privacy Protection Act of 1994—prohibits states from selling data gathered
in the process of registering drivers with drivers’ licenses (e.g., addresses, social secu-
rity numbers, height, weight, eye color, photographs).

•	 Health Insurance Portability and Accountability Act of 1996 (HIPPA)—requires
national standards for electronic health care records among other policies (such as
limitations that a health care provider can place on an employee who has a preex-
isting condition). Similar to FERPA, HIPPA prohibits agencies from disseminating
health care information of an individual without that individual’s consent. This is

* You can find the full law on the Department of Justice’s website at http://www.justice.gov/opcl/privstat.htm.

Information ◾ 471

one reason why going to the doctor today requires first filling out paperwork dealing
with privacy issues.

•	 Digital Millennium Copyright Act of 1998 (DMCA)—implements two worldwide
copyright treaties that makes it illegal to violate copyrights by disseminating digi-
tized material over computer. This law includes clauses that make it illegal to post
on websites or download from websites copyrighted material whether that mate-
rial originally existed as text, sound, video, or program code. Additionally, the act
removes liability from Internet Service Providers who are providing Internet access
for a criminal prosecuted under this act. As a result of this law, YouTube was not held
liable for copyrighted content posted to the YouTube site by various users; however,
as a result, YouTube often orders the removal of copyrighted material at the request
of the copyright holder.

•	 Digital Signature and Electronic Authentication Law of 1998 (SEAL)—permits the use
of authenticated digital signatures in financial transactions and requires compliance
of the digital signature mechanisms. It also places standards on cryptographic algo-
rithms used in digital signatures. This was followed 2 years later with the Electronic
Signatures in Global and National Commerce Act.

•	 Security Breach Notification Laws—since 2002, most U.S. states have adopted laws that
require any company (including nonprofit organizations and state institutions) notify
all parties whose data records may have been compromised, lost, or stolen in the event
that such data has been both unencrypted and compromised. For instance, if files were
stored on a laptop computer and that computer has gone missing, anyone who poten-
tially had a record stored on files on that computer must be notified of the action.

•	 Intelligence Reform and Terrorism Prevention Act of 2004—requires, as much as is
possible, that intelligence agencies share information gathered and processed per-
taining to potential terrorist threats. This act was a direct response to the failures of
the intelligence community to prevent the 9/11 terrorist attacks.

In addition to the above acts and laws, the U.S. government has placed restrictions on
the export of cryptographic technologies. For instance, an individual or company is not
able to sell or trade certain cryptographic algorithms deemed too difficult to break by the
U.S. government. The government has also passed legislature to update many laws to bring
them up to the computer age. For instance, theft by computer now is considered theft and
not some other category. There are also laws that cover censorship and obscenity with
respect to the Internet and e-mail.

fUrTher reaDInG
The analysis of the data, information, knowledge, and wisdom hierarchy is specifically
an IT topic; you might find it useful background in order to understand the applications
that IT regularly uses. A nice book that provides both practical and theoretical views of

472 ◾ Information Technology

the application of the hierarchy is Information Lifecycle Support: Wisdom, Knowledge,
Information and Data Management, by Johnson and Higgins (The Stationery Office,
London, 2010). Jennifer Rowley provides a detailed examination of the hierarchy in
her paper, “The wisdom hierarchy: representations of the DIKW hierarchy” (Journal of
Information Science, 33(2), 63–180, 2007).

Information System texts vary widely just like Computer Science texts. Here, we focus
on IS texts related directly to databases and DBMS. As an IT student, you will no doubt
have to learn something about databases. Database design, DBMS usage, relational data-
base, and DBMS administration are all possible topics that you will encounter. The list
below spotlights a few texts in each of these topics along with a couple of texts on data
mining and data warehouses.

•	 Cabral, S. and Murphy, K. MySQL Administrator’s Bible. Hoboken, NJ: Wiley and
Sons, 2009.

•	 Elmasri, R. and Navathe, S. Fundamentals of Database Systems. Reading, MA:
Addison Wesley, 2010.

•	 Fernandez, I. Beginning Oracle Database 11g Administration: From Novice to
Professional. New York: Apress, 2009.

•	 Golfarelli, M. and Rizzi, S. Data Warehouse Design: Modern Principles and
Methodologies. New York: McGraw Hill, 2009.

•	 Halpin, T. and Morgan, T. Information Modeling and Relational Databases. San
Francisco, CA: Morgan Kaufmann, 2008.

•	 Han, J., Kamber, M., and Pei, J. Data Mining: Concepts and Techniques. San Francisco,
CA: Morgan Kaufmann, 2011.

•	 Hoffer, J., Venkataraman, R. and Topi, H. Modern Database Management. Upper
Saddle River, NJ: Prentice Hall 2010.

•	 Janert, P. Data Analysis with Open Source Tools. Cambridge, MA: O’Reilly, 2010.

•	 Knight, B., Patel, K., Snyder, W., LoForte, R., and Wort, S. Professional Microsoft SQL
Server 2008 Administration. New Jersey: Wrox, 2008.

•	 Lambert III, J. and Cox, J. Microsoft Access 2010 Step by Step. Redmond, WA:
Microsoft, 2010.

•	 Rob, P. and Coronel, C. Database Systems: Design, Implementation, and Management.
Boston, MA: Thomson Course Technologies, 2007.

•	 Shmeuli, G., Patel, N., and Bruce, P. Data Mining for Business Intelligence: Concepts,
Techniques and Applications in Microsoft Office Excel with XLMiner. New Jersey:
Wiley and Sons, 2010.

•	 Whitehorn, M. and Marklyn, B. Inside Relational Databases with Examples in Access.
Secaucus, NJ: Springer, 2006.

Information ◾ 473

IAS encompasses risk management, network and computer security, and encryption.
As with databases, thousands of texts exist on this widespread set of topics. This list pri-
marily emphasizes computer and network security as they are more important to the IT
professional.

•	 Ciampa, M. Security+ Guide to Network Security Fundamentals. Boston, MA:
Thomson Course Technologies, 2011.

•	 Cole, E. Network Security Bible. Hoboken, NJ: Wiley and Sons, 2009.

•	 Easttom, W. Computer Security Fundamentals. Indiana: Que, 2011.

•	 Gibson, D. Management Risk in Information Systems. Sudbury, MA: Jones and
Bartlett, 2010.

•	 Jang, M. Security Strategies in Linux Platforms and Applications, Sudbury, MA: Jones
and Bartlett, 2010.

•	 Oriyano, S, and Gregg, M. Hacker Techniques, Tools and Incident Handling. Sudbury,
MA: Jones and Bartlett, 2010.

•	 Paar, C., Pelzl, J. and Preneel, B. Understanding Cryptography: A Textbook for Students
and Practitioners. New Jersey: Springer, 2010.

•	 Qian, Y., Tipper, D., Krishnamurthy, P. and Joshi, J. Information Assurance:
Dependability and Security in Networked Systems. San Francisco, CA: Morgan
Kaufmann, 2007.

•	 Schneier, B. Applied Cryptography: Protocols, Algorithms, and Source Code in C.
Hoboken, NJ: Wiley and Sons, 1996.

•	 Solomon, M. Security Strategies in Windows Platforms and Applications. Sudbury,
MA: Jones and Bartlett, 2010.

•	 Stallings, W. and Brown, L. Computer Security: Principles and Practices. Upper Saddle
River, NJ: Prentice Hall, 2011.

•	 Stewart, J. Network Security, Firewalls, and VPNs. Sudbury, MA: Jones and Bartlett,
2010.

•	 Vacca, J. Computer and Information Security Handbook. California: Morgan
Kaufmann, 2009.

Many laws related to IT are described on different websites. Issues pertaining to privacy
and civil liberty can be found on the Department of Justice website at http://www.justice
.gov/opcl/ and issues and laws regarding cybercrime at http://www.justice.gov/criminal/
cybercrime/. Other IT related laws are provided on the U.S. Government’s cio.gov website.
Your rights with respect to computer usage and free speech are always a confusing topic.
Many people believe that the first amendment gives them the right to say anything that

474 ◾ Information Technology

they want over the Internet. The book Cyber Rights: Defending Free Speech in the Digital
Age (New York: Times Book, 2003) by M. Godwin provides a useful background and his-
tory to free speech on the Internet.

reVIeW Terms
Terminology used in this chapter:

Asymmetric key encryption Phishing

Availability Projection (database)

Backup Protocol attack

Buffer overflow Public key

Certificate Public key encryption

Certificate authority Private key

Clustering Private key encryption

Confidentiality Query (database)

Database RAID

Data mining Record (database)

Data warehouse Redundancy

Decision tree Restriction (database)

Denial of service Relation

Disaster recovery Relational database

Field (database) Risk assessment

Information Risk management

Information asset Social engineering

Integrity Software exploit

Intrusion SQL injection

Join (database) Symmetric key encryption

Malware Threat

OLAP Vulnerability

Information ◾ 475

RevIew QueStIoNS

 1. What is the difference between data and information?

 2. Information can come in many different forms, list five forms.

 3. How does a database differ from a relation?

 4. Given the relations in Tables 15.1 and 15.2, answer the following:

 a. Show the output of a restriction on the relation in 15.1 with the criteria GPA > 3.0.

 b. Show the output of a restriction on the relation in 15.1 with the criteria Minor =
“Physics” or Minor = “Chemistry”.

 c. Show the output of a projection on the relation in 15.1 of First Name, Major, and
Minor.

 d. Show the output of a join on the relations in 15.1 and 15.2 with a projection of
First Name, Last Name, and State with the criteria of GPA > 3.0.

 5. What is the difference between a database and a data warehouse?

 6. Refer back to Figure 15.3. If someone has an income of $40,000, no debt, and no
collateral, what conclusion should we draw regarding the risk of a loan? What if the
person has an income of $30,000, no debt, and no collateral?

 7. What type of vulnerability might an employee of a bank have toward the bank’s risk
management? What type of vulnerability might a bank’s database files and comput-
ers have?

 8. What is the best defense from social engineering?

 9. Would a buffer overflow be considered a phishing attack, software exploit, protocol
attack, or intrusion attack?

 10. Would packet sniffing be considered a phishing attack, software exploit, protocol
attack, or intrusion attack?

 11. List four forms of malware.

 12. What is a self-signed certificate? What happens in your web browser if you receive a
self-signed certificate when using https?

 13. How does RAID 0 differ from the other levels of RAID?

 14. Which RAID level provides the greatest amount of redundancy?

 15. How is RAID 5 an improvement over RAID 4? How is RAID 6 an improvement over
RAID 5?

476 ◾ Information Technology

 16. Rewrite the message “hello” using rotation+1.

 17. How does symmetric-key encryption differ from asymmetric-key encryption?

 18. Given the private key numbers from Threats and Solutions, encrypt the binary value
0001100100101.

 19. Given the private key numbers from “Threats and Solutions”, decrypt the value 6315.

 20. Assume you have received the value 4261. Why would it be difficult to decrypt this
value using the public key from Threats and Solutions?

 21. Are your grades protected such that a teacher is not allowed to freely announce or
give away that information? Is your medical history protected?

DISCuSSIoN QueStIoNS

 1. Assume we have the following 10 pieces of data (here, we only examine two fields of
the data, given as integer numbers). Each is listed by name (a letter) and the values of
the two fields, such as a(10,5). Graph the 10 pieces of data and see if you can identify
reasonable clusters. How many clusters did you find? Are there any outliers?

 a(10,5), b(3,6), c(9,7), d(8,4), e(9,3), f(1,8), g(3,7), h(2,4), i(2,8), j(10,2)

 2. Consider your own home. Define some of your information assets. What vulner-
abilities and threats do you find for those assets? For instance, one information asset
is your checking account number and the amount of money there. Vulnerabilities
include that the account information should be kept secret and that you must be
aware of the amount of money in the account. Threats include someone forging your
signature on a check or overdrawing on your account. Attempt to define five other
assets and their vulnerabilities and threats.

 3. List three man-made disasters that have occurred in your area of the country in the
past year. List three natural disasters that have occurred in your area of the country
in the past year. From your list, which ones might impact a nearby company’s IT?

 4. As a computer user, how might you use encryption with respect to storing data? How
might you use encryption with respect to Internet access?

 5. Why does the U.S. government have laws against exporting certain types of encryp-
tion technology?

 6. Stop Online Piracy Act (SOPA) was a proposed piece of legislation that was eventu-
ally removed from consideration. Explore what SOPA attempted to do and why it was
abandoned. Provide a brief explanation.

Information ◾ 477

 7. SOPA is not the only piece of legislation proposed to stop online piracy. Research
this topic and come up with other pieces of legislature. Of those you have discovered,
which ones were similarly removed from consideration and which remain under
consideration?

 8. Research the Anonymous cracker group. Do you find their actions to be justified or
not? Explain.

This page intentionally left blankThis page intentionally left blank

479

C h a p t e r 16

Careers in Information
Technology

IT Careers
The textbook ends where it began: by examining IT careers and careers related to the IT
field. In this chapter, the various areas of IT are examined with an emphasis on the specific
roles that each area requires. Among the details shared are forms of certifications that an
IT person might seek and recent salaries. As students of IT may have not given a great deal
of thought to their careers as they start college, the text describes a variety of topics that
may extend the reader’s interest. These include topics such as IT ethics as well as social
concerns in the digital world such as the digital divide, Internet censorship, and Internet
addiction. The chapter ends by discussing various forms of continuing education for the
IT person.

The learning objectives of this chapter are to

•	 Discuss careers in IT.

•	 Describe forms of continuing education in IT.

•	 Introduce social concerns related to IT.

•	 Discuss ethical conduct in the IT field.

Are you interested in IT because of the money? Perhaps. More likely, you have grown up as
a technology user. Your interest may have started because of social media or from school-
work or through computer games. Or perhaps you got interested because of friends and
family. Whatever interests led you into technology, you are most likely interested in IT
because you have fallen in love with using technology. You are probably an analytical per-
son, a problem solver. It is a common path that leads to an IT career. Fortunately for you,

480 ◾ Information Technology

careers in IT are not only readily available, but can lead to high-paying and satisfying
careers!

Here, we focus on IT career paths. Later in the chapter, we examine some of the aspects
of an IT career that you may not have thought of. Beyond the technology, beyond the need
to continually upgrade your knowledge and improve your skills, there are issues that you
might face: legal, ethical, social.

Careers in IT are high paying, and the outlook for job growth is tremendous for many
years to come. Table 16.1 illustrates job growth projections and salary information for a
number of different computer-related careers. Notice that computer programmer positions
are expected to decrease as the software development field moves from a demand for pro-
grammers to a demand for software engineers.

Of the careers listed in Table 16.1, the latter three are careers that an IT major might
consider. Database administrators, network administrators, and system administrators are
all projected for high growth through 2018, and there is no reason to expect that this trend
will not continue further into the future. Other careers not listed here include web devel-
oper, website administrator, network architect, and computer security specialist.

All of these careers require a high degree of technical skill. These skills include an under-
standing of computer systems, operating systems, software, and hardware. Additionally, it
is expected that IT personnel be problem solvers. They should also be self-starters and
lifelong learners. It is also very important for all IT professionals to be proficient in written
and verbal communication, team collaboration, and leadership, have a firm understanding
of IT ethics, and the desire to continue to develop their own skills and education. A foun-
dation in business practices can help further an IT specialist’s career.

Today, most organizations looking to hire IT personnel prefer graduates of 4-year accred-
ited university programs. Graduates of these programs have received a much broader edu-
cation than those who have only focused on technical skills (as found in 2-year technical,
vocational, or community colleges). However, 4-year IT degrees are still somewhat rare, so
organizations looking to hire IT personnel will sometimes look to related disciplines such

TaBLe 16.1 U.S. Computer Career Job Growth (Numbers in Thousands)

Title 2008 2018 (Est.) Inc. Inc. %
Median 2008

Salary
Computer programmers 426.7 414.4 –12.3 –2.87 $69,620
Computer software engineers, applications 518.4 689.9 175.1 34.01 $85,430
Computer software engineers, systems
software

394.8 515.0 120.2 30.44 $92,430

Computer systems analysts 532.2 640.3 108.1 20.31 $75,500
Database administrators 120.4 144.7 24.4 20.26 $69,740
Network and computer systems
administrators

339.5 418.4 78.9 23.23 $66,310

Network systems and data
communications analysts

292.0 447.8 155.8 53.36 $71,100

Source: U.S. Bureau of Labor Statistics, www.bls.gov/emp/tables.htm.

Careers in Information Technology ◾ 481

as computer science, business administration or management information systems (IS),
and information science. Students whose degrees do not fit the IT profile may still be desir-
able if they have taken appropriate coursework in computer systems, networks, databases,
and so forth, or have picked up suitable experience.

The breadth of responsibility in these careers is often dependent on the size of the orga-
nization. In large organizations, you may find individuals whose sole responsibility is in an
IT specialty area, for example, network security or web server administration. In smaller
organizations, it is not uncommon for a single individual to have responsibility for several
IT roles. Here, we focus on each of the types of positions that an IT specialist may have
and the roles and responsibilities of each of those positions. Additionally, we will examine
forms of certification (if any) and salary expectations.

Network administration

Network administrators are responsible for the installation and maintenance of hardware
and software that make up a computer network. Network hardware includes specialized
network devices such as switches, routers, hubs, firewalls, adaptive security appliances,
wireless access points, and voice-over-IP (VoIP) phones. Network software comprises the
various operating systems installed on those hardware devices, the protocols to commu-
nicate over the network, and the applications. This includes routing protocols, access lists,
trunking protocols, spanning tree protocols, virtual LANs, virtual private networks, IPv4,
IPv6, and intrusion detection systems. Network administrators may be responsible for
installing, configuring, and maintaining such software. Network administrators may also
require securing the network; this task may be accomplished in conjunction with other IT
personnel such as system administrators.

If the network slows or shuts down, a network administrator may occasionally find him-
self or herself in a high-pressure troubleshooting role. The administrator must use his or
her skills and knowledge to diagnose the issues, identify potential solutions, and imple-
ment the selected solution. A solution should solve the given problem most effectively in
terms of user convenience, efficient access, and reasonable cost. In addition, issues and
solutions should be well documented.

Higher level network administration positions, sometimes referred to as network archi-
tects or network engineers, are often responsible for designing networks that meet the per-
formance and capacity needs of an organization. This job includes choosing appropriate
network hardware and planning the allocation of network addresses across an organization.

Network administrators all require a basic knowledge of the TCP/IP stack as well as
other network protocols that follow the Open Systems Interconnect (OSI) model. However,
network administrators often focus on specialties such as network security, wireless
administration, VoIP, management of internet service providers, and network reliability
and capacity planning.

From this list of duties, it is obvious that network administrators require a significant
amount of training and experience to be successful in their roles. Because of the chang-
ing nature of technology, network administrators must constantly learn new technolo-
gies through trade journals, conferences, publications, and continuing education. Various

482 ◾ Information Technology

career certifications in these specialty areas are a valuable addition to a network adminis-
trator’s resume. Among the most sought-after certifications are the CCNA (Cisco Certified
Network Associate), CCNP (Cisco Certified Network Professional), Novell CNE (Certified
Novell Engineer), CWNA (Certified Wireless Network Administrator), and CompTia’s
Network +.

Salaries for network administrators (as of 2008) range from $41,000 to as high as
$104,000 and a median average salary of $66,310. Management of company networks cur-
rently pays around $3000 more than working for telecommunications carriers, which pays
substantially better than similar jobs working for schools of any level.

systems administration

Whereas network administrators are responsible for the performance of networking hard-
ware and software, systems administrators are responsible for the installation and mainte-
nance of the resources on that network. The system administrator’s role covers hardware,
software, and system configuration. Computers might include mainframe, minicomput-
ers, and personal computers, as well as network servers. The system administrator should
also be familiar with multiple operating systems as it is likely that the organization has
computers of several platforms.

The responsibilities are varied and will vary by organization. The system administrator
will, at a minimum, be required to install and configure operating systems on the orga-
nization’s machines, install new hardware, perform software upgrades and maintenance,
handle user administration, perform backup and recovery, and perform system monitor-
ing, tuning, and troubleshooting. The system administrator may also be involved with
application development and deployment, system security, and reliability, and have to work
with networked file systems. The system administrator would most likely have to perform
some programming through shell scripting so that repetitive tasks can be automated. A
greater amount of programming might be required depending on the organization’s size
and staff. Policy creation and IT infrastructure planning may also be tasks assigned to
system administrators.

The system administrator’s role may overlap or completely subsume the requirements of
a network administrator depending on the size of the organization and the need. Smaller
organizations will hire fewer IT staff, and thus duties may be more diverse. On the other
hand, smaller organizations will likely have lesser needs because of small networks, fewer
computer resources, and perhaps fewer situations that require a system administrator’s
attention. The knowledgeable system administrator will turn to any number of web forums
available whereby system administrators discuss recent problems and look for solutions.

As with a network administrator, the system administrator will require a great deal of
training and experience to ensure that the computer systems run efficiently, effectively,
and securely. The system administrator should be proactive in his or her continuing
development. Like the network administrator, there are several chances for certification
as well as trade journals, conferences, and publications. The certification opportunities
include Microsoft’s MCSA (Microsoft Certified Systems Administrator), MCSE (Microsoft
Certified Solutions Expert), and MCITP (Microsoft Certified IT Professional), Red Hat’s

Careers in Information Technology ◾ 483

RHCE (Red Hat Certified Engineer) and RHCSS (Red Hat Certified Security Specialist),
and Novell’s CNA (Certified Novell Administrator) as well as the network certifications
mentioned earlier.

Salaries for system administrators are in the same basic range as those of network admin-
istrators. The two job categories combined promise to see increasing demand through at
least 2018 with tens of thousands of new positions opening up.

Web administration

The web administrator, also known as a webmaster, but more precisely referred to as a web
server administrator, is responsible for maintaining websites. This differs from the devel-
opment of websites (see Web Developer, in Related Careers). Specifically, the web admin-
istrator must install, configure, maintain, secure, and troubleshoot the web server. The
web server is software that runs on one or more computers. The web administrator may or
may not be responsible for the hardware. Typically, the web administrator is not a system
administrator on that or those computers. Therefore, the web administrator will have to
work with the system administrator on some aspects of installation and configuration.

Configuration involves setting up configuration files to specify such directives as where
the web pages will be located, who can access them, whether there is any authorization
requirements, what forms of security might be implemented, whether and what docu-
ments will be encoded, for instance, using encryption, and what scripting languages the
server may execute.

Monitoring the web server’s performance permits the administrator to fine-tune aspects
of the server. This might include, for instance, installing larger capacity or more hard disks,
adding file compression, and reducing the number of server side scripts. Additionally,
monitoring via automatically generated log files provides the administrator with URL
requests that could be data mined to discover client browsing behavior.

Securing the web server becomes critical for businesses. The web administrator may be
required to set up password files and establish locations where server scripts can be stored
and tested. Security may be implemented directly through the web server software, or
added through the operating system, or some combination. Security issues may be discov-
ered by analyzing the same log files that are used for data mining.

Web server software is made up of various lesser programs. These programs handle any
number of server-related tasks from the simple retrieval of files of URL requests to log-
ging to error handling to URL redirections. There are free web servers such as Apache as
well as popular commercial web servers such as IBM WebSphere, Oracle WebLogic, and
Microsoft IIS. The web administrator may or may not be involved in the selection of the web
server software, but it is the web administrator’s job to understand the software selected
and make recommendations on how best to support the software with adequate hardware.
Hardware decisions might involve whether the server should be distributed across numer-
ous physical computer servers, whether the server requires multiple IP addresses, and what
type of storage system should be used. In monitoring the web server’s performance, the
web administrator can make informed recommendations on upgrades and improvements
to the hardware.

484 ◾ Information Technology

Web server administrators may be required to either perform application development
themselves or to support the developers. Support might be in the form of installation of
additional web server modules such as those that can execute Perl or PHP code. There may
also be policy decisions that impact development, such as the requirement that all scripts
execute outside the web server on another computer or all scripts being stored in a com-
mon cgi-bin directory.

Although the web server administration may work for a large organization that wishes
to have a presence on the Internet, there are also opportunities to work for companies
that host websites. In such a case, a single server might be used to host multiple websites
of different companies. The administrator has the added challenges of ensuring the web
server(s) performance and dealing with several groups of web developers.

Web master salaries can vary greatly from $40,000 to $90,000 with an average around
$55,000. There are fewer certifications available for web administrators. The primary form
is known as a Certified Internet Webmaster Server Administrator. This is one of many
under the abbreviation CIW, but most of the CIWs involve web development.

Database administration

Like web administrators and system administrators, database administrators have a long
list of important responsibilities, but with a focus on the design, development, and support
of database management systems (DBMSs). Tasks will include installation, maintenance,
performance analysis, and troubleshooting as with the other administrative areas. There
are specific applications, performance tuning parameters, account creation, and proce-
dures associated with the DBMS that are separate from those of system administrators and
web administrators. The database administrator may also be involved with the integration
of data from older systems to new. As many or most database systems are now available
over the Internet (or at least over local area networks), the administrator must also ensure
proper security measures for remote access.

There are many different types of DBMSs. The most popular are relational databases
such as Oracle, MySQL, or Microsoft SQL Server. But other types of database technology
are on the rise including NoSQL databases and databases focused on cloud computing. As
with all areas of technology, the continued growth of new database technology requires
database administrators to be in a pattern of constant learning and self-improvement.

Unlike a web administrator who will probably not be involved in web development, a
database administrator is often expected to play a role in application design and develop-
ment. This may be by assisting the application developers with the design of the databases
needed to effectively support those applications. This requires a unique set of skills that
include database modeling, schema development, normalization, and performance tuning.

Because of the more specialized nature of the database administrator, salaries are higher
than in the other IT roles listed above. Median average salaries are around $70,000 with
the highest salaries being over $110,000. Certifications are primarily those of particular
DBMS software such as the Microsoft Certified Database Administrator, Oracle Certified,
and MySQL Certification.

Careers in Information Technology ◾ 485

Computer support specialist

Computer support specialist is somewhat of an umbrella term. Certainly, some of the roles
of the support specialist could be a responsibility of a system administrator. The support
specialist primarily operates as a trainer and troubleshooter. Training tasks may include
the production of material such as technical manuals, documentation, and training scripts.
Training may take on numerous forms from group training, individual training, training
videos, and the production of training videos and software.

Troubleshooter might involve working the help desk (see below), training help desk per-
sonnel, and overseeing the help desk personnel. It might also involve helping out other
IT personnel such as the system administrator(s) and network administrator(s). Tasks for
the computer support specialist may be as mundane as explaining how to log in or how to
start a program, stepping a user through some task such as connecting to the network file
server or a printer, or as complex as discovering why organizational members are unable
to access a resource.

At an entry level, the computer support specialist serves on the help desk. Such a per-
son will answer phone calls and e-mails of questions from users. The types of questions
posed to a help desk person will vary depending on the organization that the person works
for. For instance, if you were on the help desk for an Internet Service Provider, you might
receive phone calls from clients who cannot connect or have slow Internet connections. As
a help desk person, you would have to be able to answer common questions and know how
to locate answers for less common questions or be able to refer clients to others who have
more specialized knowledge. You would also hear a lot of questions that might cause you
to laugh. Be prepared to talk to some ignorant (technologically speaking) people! Here are
some examples of (reportedly) true help desk conversations.*

•	 “What kind of computer do you have?” “A white one.”

•	 Customer: “Hi, this is Rose. I can’t get my diskette out.” Helpdesk: “Have you tried
pushing the button?” Customer: “Yes, sure, it’s really stuck.” Helpdesk: “That doesn’t
sound good; I’ll make a note.” Customer: “No. Wait a minute. I hadn’t inserted it yet.
It’s still on my desk. Sorry.”

•	 Helpdesk: “Click on the ‘My Computer’ icon on to the left of the screen.” Customer:
“Your left or my left?”

•	 Helpdesk: “Good day. How may I help you?” Male customer: “Hello, I can’t print.”
Helpdesk: “Would you click on start for me.” Customer: “Listen pal; don’t start get-
ting technical on me! I’m not Bill Gates, you know!”

•	 Customer: “Hi, good afternoon, this is Martha, I can’t print. Every time I try, it says,
‘Can’t find printer’. I’ve even lifted the printer and placed it in front of the monitor,
but the computer still says it can’t find it.”

* Taken from the website http://www.funny2.com/computer.htm.

486 ◾ Information Technology

•	 Helpdesk: “Your password is the small letter ‘a’ as in apple, a capital letter ‘V’ as in
Victor, and the number ‘7’.” Customer: “Is that ‘7’ in capital letters?”

•	 Customer: “I have a huge problem. A friend has put a screensaver on my computer,
but every time I move the mouse, it disappears!”

•	 Helpdesk: “How may I help you?” Customer: “I’m writing my first e-mail.” Helpdesk:
“Okay, and what seems to be the problem?” Customer: “Well, I have the letter ‘a’ in
the address, but how do I get the circle around it?”

With remote desktop access, a computer support specialist is able to “take control” of a
person’s computer remotely. This allows the specialist to better understand, diagnose, and
resolve problems. It also allows the specialist to work with little input from the person who
is having difficulty. This can save time if the person is unknowledgeable about the com-
puter or the problem.

Unlike the administrative careers, support specialists may not have a 4-year degree nor
specialized skills other than those necessary to work at the help desk. However, those with a
4-year degree are more likely to receive promotions and move on to more challenging, and
probably more enjoyable, tasks. Salaries vary especially since support specialists can be part-
time or full-time employees. Salary ranges can be as low as $25,000 and as high as $70,750,
although support specialists more commonly make in the $30,000 to $45,000 range.

IT Management

In addition to requiring strong and often specialized technical skills, all of the IT careers
described here require communication and collaboration skills. These soft skills permit
the IT specialist to work well with end users, application developers, and upper manage-
ment. This is one of the reasons why employers are now seeking IT personnel among those
potential employees who have a 4-year IT degree that provides a well-rounded education,
beyond merely technical training.

Those IT personnel who can demonstrate interpersonal communication, leadership,
and understanding of business practices may find themselves well positioned for future IT
management positions. The IT Manager is one who understands both the technical side
of the IT infrastructure in order to understand the problems that need resolving as well as
the management side of the business in order to oversee technical staff and communicate
readily with upper management. An IT Manager will be a project manager who will have
to establish deadlines, work with external constituents, handle and possibly propose bud-
gets, and make decisions regarding the project(s) being managed. Additionally, hiring and
firing may be part of the IT Manager’s responsibilities.

The management positions are typically at a higher pay rate than the technical fields
described earlier. If your goal ultimately is to obtain such a management position, you
would be best served by increasing your opportunities during your college education. These
opportunities include joining college clubs and organizations, participating in student
governance, and taking additional classes in business areas such as project management,

Careers in Information Technology ◾ 487

economics, accounting, and leadership. Oftentimes, a student who is seeking further
career advancement will return to school for an advanced business degree such as an MBA
or MIS, or an advanced technical degree such as a Master’s Degree in CIT. IT Managers
could potentially make salaries twice that of technical employees.

reLaTeD Careers
There are other careers that overlap the content covered in a 4-year IT degree. The follow-
ing list discusses a few of these.

Computer Forensics

Typically, a person who enters a career in computer forensics will have either a computer
forensics degree itself, or will have a technical degree with additional background in crimi-
nal justice. The technical degree might be computer science, IT, or computer engineering.
As computer forensics is a new and growing field, there are few undergraduate programs
that offer a complete curriculum in the topic. However, many computer science and IT
programs are adding computer forensics classes or minors. Additionally, graduate pro-
grams in computer forensics, or the related IS security, are on the rise.

Aside from technical skills learned in IT or computer science programs, one would need
practical knowledge in operating systems, computer security, computer storage, software
applications, cryptology, and possibly both programming languages and software engi-
neering. Additionally, strong analytical skills are an essential.

Soft SkillS

so what are these soft skills being referred to? What follows are some of the cited soft skills
demanded by recent employers:

•	 articulate and observant
•	 a good listener
•	 able to write and document work
•	 Time management skills
•	 Problem solving, critical thinking, and organizational skills
•	 Has common sense
•	 strong work ethic, motivated, hardworking, has integrity
•	 Positive attitude
•	 Team player
•	 Confident, courteous, honest, reliable
•	 Flexible, adaptable, trainable
•	 Desire to learn, able to learn from criticism
•	 self-supervising
•	 Can handle pressure and stress
•	 Makes eye contact with people, has good personal appearance
•	 a company person (cares about the company’s success), politically sensitive
•	 Can relate to coworkers
•	 able to network (in social settings)

488 ◾ Information Technology

A person who works in computer forensics is not just securing computer systems or
looking for evidence of break-ins and tampering. Instead, one must provide evidence in
computer crime cases to the law enforcement agencies that might hire you. Therefore, you
must understand how to build a case and how to identify, collect, preserve, and present
evidence in a legal manner.

Job opportunities in computer forensics abound today. Options include working directly
for law enforcement, consulting with law enforcement, or working for organizations that
have a vested interest in protecting their data and prosecuting violators, such as banks and
corporations. Salaries are substantially higher presently than those of other IT careers, with
annual salaries being in the $75,000–$115,000 range and an average of $85,000. However,
without the specific degree in computer forensics, your options may be more limited than
students who have obtained the full 4-year degree.

Web Development

There are many different roles that one might play in web development. An organization
might hire a single individual to get their company “up on the web” or a company may
hire a staff of web developers. Therefore, the specific role that a web developer might play
could vary depending on the company and the situation. What is clear, however, is that
the web developer has different skills than the website administrator discussed in Web
Administration.

Web developer skills include the ability to use HTML, CSS (cascaded style sheets) and
various scripting languages. Scripting might be done in JavaScript, Ruby, Python, Java
Applets, Active Server Pages (ASP), Visual Studio .Net (including Visual Basic, C++, or
C#), Perl, and PHP. Although a web developer would not be expected to know all of these
languages, it is likely that the web developer would use several of them. While the pro-
gramming aspect of the web developer is important, the web developer would not neces-
sarily require a computer science degree (although we do tend to see a lot of computer
scientists as web developers).

A web developer may need to know how to build aesthetically pleasing web pages with
the use of proper color, layout, graphics, animation, and so forth. The web developer would
also need to understand many of the technical and societal issues related to the Internet.
For instance, understanding the nature of network communication, bandwidth speeds,
disk caching, and the use of proxy servers would help a web developer build a more efficient
and easier to download website. Understanding societal issues can be critical in securing a
website from attacks, ensuring data integrity of the website, and ensuring that the website
content is politically correct. There are also a number of accessibility concerns so that peo-
ple with various types of handicaps can still visit and maneuver around the site without
complication. It is now a federal law that websites of federal agencies and agencies funded
by the government be accessible to people with handicap.

Web development itself includes several different tasks that incorporate graphic design
and art, business, database access, telecommunications, human–computer interaction,
and programming. Specifically, web application development involves writing server-side

Careers in Information Technology ◾ 489

scripts and other server applications in support of dynamic web pages and interactions
with the server and database.

Web developer positions are in high demand these days. On the other hand, they have a
tremendous salary range, possibly reflecting the wide range of companies that are looking
to create a web portal for their companies. Salaries can be as low as $30,000 and as high as
the mid $70,000 range. There are also a number of certifications available to improve your
status. These include the Microsoft Certified Professional Developer, several CIW Web
Developer certificates (see the “Web Administration”), HTML Developer Certification,
and Sun Certified Web Component Developer, to name a few.

Programming/software engineer

Historically, computer programmers have come from any number of disciplines including
the sciences, mathematics, and business. The computer science degree became popular
starting around 1980. Today, companies do not hire programmers, they hire graduates of
computer science programs (or in some cases, computer engineering). With the increased
emphasis on software engineering, some schools now have software engineering programs,
which are similar in many ways to computer science programs.

The computer science discipline provides a different type of foundation than that of IT.
For the computer scientist, a mathematical grounding is necessary to study topics in comput-
ability and solvability. These topics give the computer scientist the tools to measure how chal-
lenging a given problem is to solve (or whether it is solvable at all). The computer scientist also
studies computer organization and operating systems to understand the under lying nature
of the computer system. The computer scientist also studies a wide variety of algorithms and
data structures and implements programs in a number of programming languages.

As with the IT individual, the computer scientist/software engineer must keep up with
the field. However, whereas the IT specialist will largely study the latest operating systems,
their features, tools, and security measures, the computer scientist will study new lan-
guages and programming techniques. There are certifications for programmers although
with a 4-year degree in the field, the certifications may not be very necessary. Salaries, as
shown in Table 16.1, tend to be higher in computer science/software engineering than they
do in other IT areas, with the notable exception of IT management.

One particularly potent mixture of coursework is to combine the IT degree with com-
puter science coursework. This provides the IT individual with an excellent programming
foundation. Alternatively, the computer scientist is well served by taking additional IT
courses to gain an improved understanding of operating systems, networks, and computer
security.

Information systems

As described in Chapter 15, IS have existed for longer than computers. An information sys-
tem is in essence a collection of data and information used to support management of an
organization. Most commonly, the organization is some sort of business although it does
not have to be. The field of IS is somewhat related to computer science in that IS includes

490 ◾ Information Technology

the study of computer hardware, software, and programming. However, the emphasis on
software revolves around business software (e.g., DBMSs, spreadsheets, statistical software,
transaction processing software), and the study of hardware often revolves around net-
works and to a lesser extent, storage. The IS discipline covers a number of business topics
including introductory accounting and economics and quite often includes several courses
in management as well as soft skills that are less emphasized in computer science.

The IS employee might take on any number of roles within an organization from proj-
ect management to systems development to research. As a project manager, a person is in
charge of planning, designing, executing, monitoring, and controlling the project. During
the planning and design phases, a manager will be required to produce specifications, and
time and cost estimations. The manager may be required to hire employees to support the
project. During execution, monitoring, and control phases, the manager coordinates with
each project implementation group to keep tabs on progress, determine problems, and
resolve the problems by obtaining additional resources. Although the IS manager does not
have to have the technical skills of the employees that he or she is managing, it is essential
that the IS manager understand the underlying technology.

In IS development, the IS employee is part of the implementation team. Implementation
may require programming in a high level language (e.g., Visual Basic, COBOL, or Java) but
is just as likely or more likely to use tools that provide the IS person with a greater degree of
abstraction over the specific details of the computer code. Many of these tools are referred
to as 4th Generation Languages (4GLs), implying that these are programming languages
developed during the fourth generation of computing. These languages include report
generators, form generators, and data managers such as Excel, Access, SAS, SPSS, RPG,
Mathematica, and CASE Tools, and more recently XBase++, Xquery, and Oracle Reports.

IS research examines IS modeling approaches and IS tools. In modeling, one attempts to
identify a way to represent some organizational behavior, whether it is the transactions used
in an organization’s IS or the way that knowledge is transmitted between organizational
units or some process in between. Given a model, the researcher defines methods to per-
form some task on the model. The model and methods must be specific enough so that the
researcher is able to simulate the organization’s processes sufficiently to demonstrate that
the model and methods capture the expected behavior. Given the model, the researcher can
then attempt to define improvements to the organization’s processes and policies.

Computer Technician

The computer technician is often someone who will work directly on computer hardware
installation, repair, and troubleshooting. Commonly, a 2-year technical degree is enough
to train a person for such a position. Experience and skill may be gained in other ways such
as by putting together computers from parts as a hobby. The computer technician will have
to understand the role of the various pieces of hardware in a computer system and under-
stand the electrical engineering technology behind it—such as testing whether a device is
receiving power. Skills might include wiring/soldering, using various electrical tools, and
troubleshooting. Computer technicians are often not paid very well as there is both less
need for computer technicians today and because the skills are not highly specialized.

Careers in Information Technology ◾ 491

IT eTHICs
As computers play an increasingly important role in our society, IT specialists must become
aware of the impacts that computers, and IT in general, have on society. The issues include
maintaining proper ethical conduct, understanding legal issues, enforcing IT-related poli-
cies, maintaining data integrity and security, and identifying risks to data and employees.
Not only will you have to understand these for yourself, but you may also be responsible for
the development, implementation, and education of company policies.

Figure 16.1 lists the 10 Commandments of computer ethics, as published by the
Computer Ethics Institute, Washington, DC.* Computer ethics is nothing new (the con-
cept originated in 1950, although most of the emphasis on computer ethics has targeted
proper ethics for programmers). But with IT as a growing field, the notion of ethical con-
duct must be expanded to include those in charge of computer systems rather than those
who create computer systems. The primary concern regarding IT specialists is that they
have greater privileges with respect to the computer systems—they have access to all or
many resources. Therefore, they must act in an appropriate manner so that they do not
violate the trust that the employers place in them to supervise these systems.

Aside from the 10 Commandments, as listed in Figure 16.1, other organizations have
provided computer ethics codes of conduct. These include the Association for Computing
Machinery (ACM), the British Computer Society, and the Institute of Electrical and Electronics

* The Computer Ethics Institute has a website at http://computerethicsinstitute.org/home.html, which includes a number
of white papers that discuss cyberethics, the 10 Commandments listed in Figure 16.1 and numerous other issues.

 1. Thou shalt not use a computer to harm other people.

 2. Thou shalt not interfere with other people’s computer work.

 3. Thou shalt not snoop around in other people’s computer files.

 4. Thou shalt not use a computer to steal.

 5. Thou shalt not use a computer to bear false witness.

 6. Thou shalt not copy or use proprietary software for which you have not paid.

 7. Thou shalt not use other people’s computer resources without authorization or
proper compensation.

 8. Thou shalt not appropriate other people’s intellectual output.

 9. Thou shalt think about the social consequences of the program you are writing or
the system you are designing.

 10. Thou shalt always use computers in ways that insure consideration and respect for
fellow humans.

FIGUre 16.1 The 10 Commandments of computer ethics.

492 ◾ Information Technology

Engineers (IEEE). These codes of conduct primarily relate to programmers and emphasize
professional competence, understanding the laws, accepting professional review of their work,
providing a thorough risk assessment of computer systems, honoring contracts, striving to
improve one’s understanding of computing and its consequences, and so forth. These codes
combine notions of ethics as they pertain to technology as well as ethics of being a professional.

There are a number of issues that any organization must tackle with respect to proper
computer ethics, and in particular, the role of administrators. These include notions of
privacy, ownership, control, accuracy, and security.

•	 Privacy—under what circumstances should an administrator view other people’s
files? Under what circumstances should a company use the data accumulated about
their customers?

•	 Ownership—who owns the data accumulated and the products produced by the
organization?

•	 Control—to what degree will employee actions be monitored?

•	 Accuracy—to whom does the responsibility of accuracy fall, specific employees or all
employees? To what extent does the company work to ensure that potential errors in
data are eliminated?

•	 Security—to what extent does the company ensure the integrity of their data and
systems?

In this section, we will focus first on ethical dilemmas that might arise for an IT profes-
sional. Afterward, we briefly examine some policy issues that an IT professional might be
asked to provide in an organization.

For the following situations, imagine yourself in the given position. What would you do?

•	 Your boss has asked you to monitor employee web surfing to see if anyone is using
company resources to look at or download pornography. Is it ethical for you to moni-
tor the employees?

•	 Your boss has asked you to examine a specific employee’s file space for illegally down-
loaded items. Is this ethical?

•	 You find yourself with some downtime in your job. You decide to brush up on your
knowledge by visiting various technology-related websites. Among them, you read
about hacking into computer systems. Is it ethical for you to be reading about hack-
ing? Is it ethical for you to be reading about hacking during work hours?

•	 You have noticed that the e-mail server is running out of disk space. You take it upon
yourself to search all employee e-mail to see if anyone is using company e-mail for
personal use. Is this ethical?

Careers in Information Technology ◾ 493

•	 You have installed a proxy server for your organization. The server’s primarily pur-
pose is to cache web pages that other users may want to view, thus saving time.
However, the proxy server also creates a log of all accesses. Is it ethical for you to view
those accesses to see what sites and pages fellow employees have been viewing?

•	 You are a web administrator (not a web developer). One of the sites that your com-
pany is hosting contains content that you personally find offensive. What should
you do? If the content is not obscene by the community’s standards, would this
alter your behavior? What if you feel the content would be deemed obscene by your
community?

•	 You are a web developer. You have been asked by the company to produce some web
pages using content that they provide you. You believe the content is copyrighted.
What should you do?

•	 You work for an organization that is readying a product for delivery. Although you
are not part of the implementation team, being an IT person, you know that the
product is not yet ready but management is pressuring them to release the product
anyway, bugs and all. What should you do?

•	 Your boss asks you to upgrade the operating system to a newer version that has known
security holes. Is it ethical to do so?

•	 You fear that your boss is going to fire you because of a number of absences (all of
which you feel were justified). You decide, as a precaution, to set up a secret account
(a backdoor). Is this ethical? Is this legal?

•	 Your organization freely allows people to update their Facebook pages on site. You
are worried that some of your employees are putting up too much information about
themselves. Is it your place to get involved?

•	 Your organization has a policy prohibiting people from using Facebook at work. You
notice one of your colleagues has modified his Facebook page during work hours.
Should you report this?

As can be seen from these example situations, you may be asked to put yourself into a
position that violates employees’ privacy or confidence. When asked to monitor employ-
ees, you are being asked to spy on them. In order to be ethical, you need to consider many
factors. These factors include the company’s policy on employee usage of computers and
facilities and the role of the IT specialists. Without stated policies, it is difficult to justify
spying on employees. On the other hand, even if a company has policies, how well are those
policies presented to the employees? If they are unaware of the policies, the policies do little
good.

As an IT specialist, your role might include the development and implementation of IT
policies (on the other hand, the policies may be specified solely by management). Policies

494 ◾ Information Technology

should reflect the ethical stance of the company as well as the law. Policies should cover all
aspects of IT usage. Specifically, policies should define:

•	 The role that IT plays in the company

•	 Proper employee usage of IT

•	 The employee’s rights to privacy (if any)

•	 Proper usage of data

•	 Security and privacy of data

•	 Ownership of ideas developed through IT in the company (intellectual property)

•	 How the company handles copyright protection issues

Drafting policies may be a foreign concept to an IT specialist. It might be best handled
by management. However, the IT specialist must be well versed in the organization’s policy
in order to make decisions that do not violate the policy. Without knowing the policy, your
answers to the earlier questions could put you at risk.

Just as an IT specialist should understand both the policies of the organization as well
as the proper ethical stance, understanding the laws is equally important. Consider a situ-
ation in which your boss has asked you to install software that he hands to you on a CD-R.
Was this software purchased legally? Are there licenses with it? If not, do you go ahead
with the installation? Just because your employer has asked you to perform a task does not
mean that the task is either ethical or legal. Knowing the law can not only protect you but
can also help you inform your employer about potentially illegal situations. Unfortunately,
understanding the laws that regulate IT and software can be challenging. Even if you can
identify the laws, they are often written vaguely and in legalese.

Consider as an example that your company has created a policy whereby all employees
will be known by their social security number. That is, the social security number will serve
as their unique identifier for database entries. As such, it is also used in their log in pro-
cess. Because it is part of their log in, social security numbers are stored in world- readable
files in the operating system (for instance, /etc/passwd). As the system administrator, what
will you do? Is the use of social security numbers a violation of a company policy? No. Is it
illegal? Not strictly speaking. Is it unethical? Probably.

You convince management that using the social security number for log in purposes is a
bad idea, and therefore these secure data are removed from any world-readable file. Yet, the
values are still available in company databases of which you and the database administra-
tors and database managers still have access. Is this unethical? No, because those who have
access are those that the company decrees as having a legitimate need to access such data.
However, how can the company assure their employees that the information is secure?
The people who have access to secure data need additional training in understanding the
sensitivity of such data. The IT staff have the added responsibility of protecting devices that
store this sensitive data, such as laptop computers.

Careers in Information Technology ◾ 495

OTHer sOCIaL CONsIDeraTIONs
The IT professional must understand the consequences of IT decisions. Thus, beyond eth-
ics and law, beyond organizational policy, the IT specialist should also understand key
social concerns. Some of the concerns that our society faces are described in this section.

Digital divide. There are gaps in access to computers and the Internet. These gaps
impact races, genders, income levels, and geographical locations. The gender gap
has been greatly reduced in most societies, especially with the popularity of social
networks. But the gaps that occur between technologically advanced and wealthy
nations over poor nations continue to grow. Because the Internet has afforded those
who have access a tremendous amount of information at their fingertips, those
without access become even more disadvantaged with respect to an informed life,
a healthy lifestyle, education, and employment. Governments and multinational
corporations have addressed the digital divide, but it continues to be a concern.
Although, as an IT specialist, you may never have to deal with the ramifications of
the digital divide, understanding it might help your organization create reasonable
policies.

flame and Stuxnet

as this book is being readied for publication, news has come out about a new virus called
Flame. First, some background. In 2009, the stuxnet virus (thought to be a product of a
U.s.–Israeli partnership), attacked various Iranian computers, particularly those involved in
Iran’s uranium enrichment program. stuxnet, and another similar virus, DuQu, were small
viruses, some 500 KB in size. Both stuxnet and DuQu have been heralded as groundbreaking
malware-based sabotage.

although Flame has similar targets, computers in Iran, as well as those in other Middle east
and eastern european countries, analysis indicates that the virus was written by a completely
different organization.

Flame only came to light in 2012, but investigation of the virus has led some to believe that
some computers have been infected since as far back as December, 2007.

The Flame virus is some 20 MB in size and of far greater complexity than stuxnet. Its
primary purpose seems to be to spy on users. It can steal data (documents, files), record con-
versations by surreptitiously turning on a computer’s microphone, record keystrokes, obtain
telephone numbers from nearby Bluetooth-enabled devices, create and store screenshots,
and scan local Internet traffic to obtain usernames and passwords as they are passed across
the network for authentication. If that were not enough, the virus can also create a backdoor
account for people to log into so that they can upload more components of the virus. The
virus is programmed to transmit accumulated information to one of more than 80 different
servers on the Internet.

Flame itself is a collection of units; the initial units, when infecting a computer, are used to
upload other units. The main unit can upload, extract, decompress, and decrypt other com-
ponents. Furthermore, the virus seems capable of hiding itself from detection.

The Flame virus can spread over the network and through UsB drives. Flame has been
given several names by different organizations including Wiper, Viper, and Flamer.

496 ◾ Information Technology

Computer-related health problems. Heavy computer usage can cause a number of health
problems. The primary problems are repetitive stress injuries (RSI) and eye strain.
One of the more common forms of RSI is carpal tunnel syndrome, a muscular prob-
lem that impacts the wrist. This is often caused by extensive misuse of the keyboard
and mouse. Aside from RSI, back strain, sore shoulders and elbows, and even hip and
knee strain are often attributed to heavy computer usage. The list of problems also
includes headaches and stress. These problems are well documented, and there are a
number of solutions. Ergonomics, the study of designing equipment and devices that
better fit the human body, and HCI (human–computer interaction) have given us
better furniture, computer monitors that are easier on the eye, and less destructive
forms of interaction with the computer (e.g., a track point instead of a mouse). In spite
of ergonomics, people continue to have health problems because of poor posture or
just simply because they are not remembering to take breaks from their computer
usage. The IT specialist should understand ergonomic solutions and utilize them
when requesting computing resources.

Maintaining privacy. Threats to an individual’s privacy continue to increase. There is
already a plethora of private information about you that is made public. This includes
such facts as your date of birth, your residence, the car(s) you drive, and when and to
whom you are married. Most of this information is made publicly available because, by
itself, it does not pose a serious threat to your privacy or life. However, through social
networking, websites, and blogs, people are regularly volunteering more information.

Consider a person who tweets that he and his family are leaving town for a weeklong trip.
A clever thief could locate the person’s home and, knowing that the house will be empty for
a week, break in, and rob the person. Such publicizing of one’s own private information has
been called digital litter. Understanding the threats of such self-advertising is important to
all computer users in this age of identity theft. Informing employees of the threats may fall
on the IT personnel. However, the threats can be far more serious. Phishing attempts are
used by scammers to obtain secure information from people directly. A common example
is a phone call (or e-mail) claiming to be from an authorized IT person telling you that
IT has lost pertinent data (such as your password or social security number) and that you
must provide the caller with this information or else your account will be disabled.

Internet addiction. The number of hours that many people are now spending using com-
puters has surpassed the number of hours that they view television. This is a remark-
able change in our society. Part of the reason for this shift is that people have become
obsessed with electronic forms of communication. These include e-mail, blogging,
and social networking sites. This need to always be online has been dubbed Internet
addiction, and some people suffer so greatly that they cannot keep their hands off of
their smart phones when they are away from home. We see this in the extreme when
people are at social events (e.g., movies, out to dinner) spending more time on their
smart phones than interacting with people in person. This particular social concern

Careers in Information Technology ◾ 497

may not directly impact your organization. However, many employers have become
concerned with the diversions that impact their employees. Internet addiction can
have a tangible impact on work performance.

Obscenity and censorship. The Internet has opened up the ability for people to read and
view almost anything on the planet. Unfortunately, not everything presented on the
Internet would pass people’s moral compasses. Between pornography websites, violent
video content (viewable at sites such as YouTube), and the diatribes posted by disturbed
individuals, there is material on the Internet that people will label obscene. Obscenity
has long been an issue in our society. Rating services, the Federal Communications
Commission (FCC), and watchdog organizations attempt to police movies, television,
and radio. However, policing the Internet is an entirely different matter because of
its global nature and enormous content. Censorship might be implemented within
an organization through a firewall and/or proxy server to block specific content, or
content from specific sources. As with many of the issues discussed above, awareness

digital litter

People have gotten so used to posting their thoughts on Facebook or via Twitter or on vari-
ous blogs and message boards that they are careless with the information that they supply.
Consider the following, seemingly innocent update

“Going to a movie with the fam today, home around 3”

Imagine that this person has a “friend” who has no qualms with a little thievery, now the
friend knows when you will be gone and for how long. Why advertise that your house will
be empty? and yet people do, regularly (going on a vacation, taking the family out to dinner,
will be working all night, etc.).

If you do not believe your innocent posts can get you into trouble, do a little research.
There are a number of websites set up to obtain information about people via social media
and public record. The site spokeo.com is pretty thorough. Check it out and enter your name.
You might find that the following information has been obtained on you:

age, marital status, financial worth, politics and religion, interests/hobbies, occupation,
health, your family members’ names, location of your home, value of your home, pic-
tures of your home

If that were not enough to scare you, consider that there are dozens of sites that have simi-
lar information available about you:

•	 mylife.com
•	 whozat.com
•	 socialpulse.com
•	 peekyou.com

to list but a few!

498 ◾ Information Technology

and education are important. Policies on proper computer usage may also provide
solutions. Web developers and administrators should have familiarity with the issues
to ensure that their website complies with laws and regulations.

CONTINUING eDUCaTION
We have already used the term “lifelong learner.” What does this mean? The phrase implies
that you will continue to study throughout your life. This is critical for an IT professional
because IT continues to change. Recall the various histories presented in this text of com-
puter hardware, software, operating systems, and programming languages. Each area
(computer engineering, software engineering, systems engineering) has required that the
employees working in that field continue to learn. Without this, as newer technologies
emerge, the employee is not able to use them. The employee is now holding the company
back from improving itself. It is likely in such circumstances that the employee is deter-
mined to be a liability and eventually laid off. Therefore, continuing education in any tech-
nology-oriented field is critical. For IT professionals, continuing education is not merely a
matter of remaining valuable to your organization, but a matter of helping your organiza-
tion make informed decisions on future technology directions.

There are numerous forms of continuing education available in IT. Most of these forms
revolve around you learning on your own. There are many sources available to learn from,
but it is up to you to take the initiative to find and use those sources. Among the forums
available are trade magazines and journals, whether they are part of the popular press such
as Wired, New Scientist, Dr. Dobb’s Journal, or more academically oriented such as IEEE
and ACM publications. Table 16.2 provides a list of some of the more relevant IT publica-
tions from IEEE and ACM.*

Two problems with reading the more academically focused journals are that they tend
to emphasize cutting-edge research rather than the industry-available technology and they
are presented at a level that might be more amenable to graduate students and faculty.
Therefore, as an IT professional, you might prefer instead to research technology through
the wide variety of books and websites.

There is a large market in technology books. In fact, just about every IT topic will have
several dozen books published on it, from users’ guides to “dummy guides for” style books.
Among the more popular IT publishers are Thompson Course Technologies, O’Reilly,
Elsevier, and Springer Verlag.

Many technology-oriented websites are created and maintained by IT professionals.
They publish their knowledge as a service to others who can benefit by learning from
them. There are, for instance, a large number of websites that include information about
the Linux operating system, the Windows 7 operating system, the Internet, the Apache
web server, and so on. These sites can not only provide you with “how to” knowledge, but
also up-to-date tips on known problems and security patches.

* For more information on IEEE, see www.ieee.org, and for more information on ACM, visit www.acm.org.

Careers in Information Technology ◾ 499

If you are not very comfortable learning on your own, guided forms of continuing edu-
cation are available. These include courses (whether online, through technical schools,
through your own organization, or offered by universities) that can prepare you for cer-
tification or can broaden or deepen your knowledge. Many companies will support their
IT professionals by paying for various forms of continuing education. For instance, the
company might pay for your tuition in seeking either an advanced degree or a certificate.
A variety of certifications are listed in IT Careers. Today, there exist a very large number
of certifications in or related to the IT field. When you interview for IT jobs, you might ask
what certifications the organization finds valuable.

There are also trade conferences taking place all over the world, several times per year.
These conferences include those sponsored by Adobe, Oracle, VMware, Microsoft, and
IBM. Others cover topics such as cloud computing, web services, web 2.0, databases, net-
working, virtualization, interoperability, emerging technologies, cryptography, and IT
best practices to name but a few. As with continuing education courses, it is common for
companies to pay for their IT professionals to attend such conferences.

In essence, to continue your IT education, you have to be willing to learn. Hopefully,
you are already a self-learner and that continuing your education, whether because your
employer finds it valuable or because you are curious, will be something that you will enjoy.

TaBLe 16.2 ACM and IEEE IT-Oriented Journals

Journal Name IT-Related Topics
ACM Transactions of Information and
System Security

Cryptography, authorization mechanisms, auditing, protocols,
threats, data integrity, privacy issues

ACM Transactions on Internet Technology Digital media and digital rights, electronic commerce, Internet
crime and law, Internet performance, peer-to-peer networks,
security and privacy

ACM Transactions on Storage Storage systems and architecture, GRID storage, storage area
networks, virtualization, disaster recovery, caching

ACM Transactions on the Web Browser interfaces, e-commerce, web services, XML,
accessibility, performance, security and privacy

Communications of the ACM Communications/networking, computer systems, computers
and society, data storage and retrieval, performance, personal
computing, security

IEEE Internet Computing IT services, WWW technologies
IEEE Networks Network protocols and architectures, protocol design,

communications software, network control and implementation
IEEE Technology and Society Impacts on society, history of social aspects, professional

responsibilities
IEEE Transactions on Computers Operating systems, communication protocols, performance,

security
IEEE Transactions on Dependable and
Secure Computing

Evaluation of dependability and security of operating systems
and networks, simulation techniques, security, performance

IEEE Transactions on Wireless
Communications

Theoretical and practical topics in wireless communication
including prototype systems and new applications

IT Professional Organizing data, cross-functional systems, IT breakthroughs,
capitalizing on IT advances, emerging technologies,
e-commerce, groupware, broadband networks, security tools

500 ◾ Information Technology

FUrTHer reaDING
There are many books dealing with computer ethics. Here are a few of the more notable
ones.

•	 Edgar, S. Morality and Machines. Sudbury, MA: Jones and Bartlett, 2003.

•	 Ermann, M., Williams, M., and Shauf, M. Computers, Ethics, and Society. New York:
Oxford University Press, 1997.

•	 Johnson, D. Computer Ethics. Englewood Cliffs, NJ: Prentice Hall, 1985.

•	 Johnson, D. and Snapper, J. Ethical Issues in the Use of Computers. Belmont, CA:
Wadsworth, 1985.

•	 Spinello, R. Cyberethics: Morality and Law in Cyberspace. Sudbury, MA: Jones and
Bartlett, 2011.

•	 Spinello, R., and Tavani, H (ed.). Readings in CyberEthics. Sudbury, MA: Jones and
Bartlett, 2004.

Information on IT careers can be found at a number of websites including careerbuilder
.com, cio.com, dice.com, infoworld.com, itjobs.com, ncwit.org, techcareers.com, and ACM’s
SIGITE (Special Interest Group for Information Technology Education). IT certification infor-
mation can be found through MC MCSE certification resources at www.mcmcse.com or di -
rectly at the various websites that offer the certifications such as through Microsoft and Cisco.

reVIeW TerMs
Terminology from this chapter

Censorship Internet addiction

Certification IT manager

Computer forensics Network administrator

Computer scientist Obscenity

Computer support specialist Phishing

Computer technician Repetitive stress injuries

Database administrator Soft skills

Digital divide Software engineering

Ergonomics System administrator

Forensics Website administrator

Help desk staff Web developer

Careers in Information Technology ◾ 501

REvIEw QuESTIoNS

 1. Why is it important to earn a 4-year IT degree from an accredited institution if you
want to work in the IT field?

 2. What nontechnical skills might an IT person be required to have?

 3. What are the skills necessary to be a system administrator?

 4. What are the skills necessary to be a network administrator?

 5. What are the skills necessary to be a database administrator?

 6. What are the skills necessary to be a website administrator?

 7. How does website administration differ from web development?

 8. What are the skills necessary to be an IT manager?

 9. What types of material will a person study for a career in computer forensics that dif-
fers from IT?

 10. Why do help desk and computer technician careers require less education than other
IT areas?

 11. Which of the various IT related careers require an understanding of computer
programming?

 12. Of the various IT related careers, which one(s) would not necessarily require a 4-year
degree?

 13. What are the various forms of continuing education available to an IT professional?

 14. What types of training would a computer support specialist be asked to provide in an
organization?

 15. As a system administrator, is it your responsibility to understand current laws as they
pertain to IT? Would your answer change if you were a network administrator, data-
base administrator or web administrator?

 16. Under what circumstances might you be expected to write computer user policies for
your organization?

 17. As a system administrator, what kind of policy might you propose for disk quotas in
an organization where all employees use a shared file server? Would this policy differ
if you were the system administrator for a school/university?

 18. As an IT professional, why would you have to understand health-related problems of
computer usage?

 19. As an IT professional, why would you have to know about privacy concerns?

502 ◾ Information Technology

 20. For which of the various IT careers would an understanding of obscenity and FCC
regulations be important?

DIScuSSIoN QuESTIoNS

 1. Imagine that you have been trained (either through a formal education, on your
own, or through prior work experience) to be a system administrator. To what extent
should you learn about the other IT areas (e.g., network administration, web server
administration)?

 2. Should an IT education cover all of the various areas of IT such as computer foren-
sics, database administration, web developer, or should it concentrate on one area
(presumably system administration)?

 3. Your employer has asked you to do something that you believe is unethical but legal.
What should you do about it?

 4. Your employer has asked you to do something that is illegal. What should you do
about it?

 5. What is the difference between something being unethical and something being ille-
gal? Why are they not the same?

 6. Your best friend at the organization that you work for is doing something that vio-
lates your organization’s policies. What should you do about it?

 7. As a system administrator, under what circumstance(s) might it be ethical for you
to examine employee files and e-mails? If you discover that an employee has ille-
gally downloaded content stored on company file servers, under what circumstances
should you report this? Are there circumstances when you should not report this?

 8. To what extent should an organization seek input from the IT personnel regarding
IT policies? If management creates such policies without involvement from the IT
personnel, should the IT personnel provide a response?

 9. Assume you work for a small organization of perhaps 15–20 individuals. You would
like to have policies that address the digital divide. Try to come up with two to
three policies that either promote education about the digital divide, or might help
your organization (or your community) lessen the divide. If you worked for a large
organization of hundreds of individuals, would your answers differ?

 10. Explore one of the codes of conduct mentioned in IT Ethics. Do you find that the list-
ings pertain to IT specialists as much as they do to computer programmers?

 11. Your organization has a policy that says that work computers should never be used for
personal use. Your boss has asked you, as system administrator, to collect all employ-
ees’ Facebook passwords so that the boss can log into their Facebook accounts to

Careers in Information Technology ◾ 503

make sure that they are not accessing Facebook during work hours. Is the company’s
policy legal? What should you do?

 12. It is not necessarily an IT person’s responsibility to tackle issues covered in Other
Social Considerations (e.g., digital divide). How important is it for an IT person to be
aware of the issues?

 13. How might an organization be impacted by obscenity, Internet addiction, and the
digital divide?

 14. As an IT person, should you provide input into your organization’s IT policies in
order to help resolve such issues as the digital divide and digital litter?

 15. Continuing education is perhaps one of the most critical aspects to keeping up with
the continual evolution of IT. Explain how you hope to continue your education.

 16. Go to spokeo.com and enter your name and location. Find yourself and examine the
content that has been made available. Do you feel that a website such as spokeo.com
is doing a public service or disservice? How much of the information that you found
there do you feel threatens your privacy? Do you feel that you should be able to do
something about it like protest or have the information removed?

 17. Given the privacy threats that a site like spokeo.com point out because of the Internet
and social media, discuss the pros and cons of social media. Do the benefits outweigh
the privacy concerns?

This page intentionally left blankThis page intentionally left blank

505

Appendix A: Glossary of Terms

Abacus—earliest computing device; invented thousands of years ago.
Absolute path—directory path starting from the root of the file system. In Linux, this path

would start with a /; in Windows it would start with the partition letter such as C:\.
Access control list—means of controlling user permissions to access system resources,

commonly, the list contains user names and access types such as read, read/write,
execute; applied to files and directories.

Accessibility—the capacity of hardware, software, or website to be accessible by people
with impairments.

Accumulator (AC)—a register in the CPU that stores data.
Ada—high-level programming language developed by the U.S. government named after

Lady Ada Augusta Lovelace (a mathematician from the early nineteenth century
considered to be the world’s first programmer).

Address bus—a portion of the computer’s bus used by the CPU to pass addresses to mem-
ory and I/O devices.

Administrator—a special user, the administrator is given access to all aspects of the com-
puter system.

Alias—instance where two or more names point to the same entity such as hard links and
soft links pointing to the same file.

ALU—arithmetic/logic unit of the CPU that performs all arithmetic and logic operations
in the computer.

Analytical Engine—designed by Charles Babbage in the early 1830s to automate the com-
putation of many mathematical equations. It was designed to be powered by a
steam engine and perform all four parts of the IPOS cycle, making it a general-
purpose computer. Babbage never completed it as he ran out of funds, but analyti-
cal engines have been constructed since then as proofs of the concept. Lady Ada
Lovelace wrote programs for the Analytical Engine.

Anonymous user—a designation given to individuals who log into an FTP server with no
account. They are given limited access.

Apache—open source web server that has become the most commonly used web server.
Application software—computer programs that users run to accomplish some task.
Archive—a bundled collection of files and directories.
ARPANET—Wide Area Network developed in 1968 connecting four computers in the

western United States that eventually grew into the Internet.

506 ◾ Appendix A

ASCII—the American Standard Character Interchange Interface, a 7-bit representation
for storing characters (letters of the alphabet, digits, punctuation marks) in binary.

Assembler—a computer program that translates an assembly language program into
machine language.

Assembly language—a primitive programming language which uses mnemonics (abbre-
viations of operation names) and variable names to make it easier to use than
machine language.

Assignment statement—a type of program instruction that assigns a value to a variable.
Asymmetric key encryption—a form of encryption where the key to encrypt the message

differs from the key to decrypt the message.
Attribute—a field (column) in a database relation; for a student relation, examples might

include “last name”, “major” and “GPA”.
Availability—a feature of information assurance and security that requires that data be

available when that information is needed.
Background—a process that operates as the CPU has time for it, and does not require

direct interaction with the user. Background processes essentially do not interfere
with the user’s interaction with the computer.

Backup—storing a copy of files in the file system (perhaps the entire file system) elsewhere
for security purposes. Backups used to be performed on magnetic tape, but today
it is common to use an external hard disk or disk storage space available over the
Internet.

Backward compatibility—the ability for a newer computer to run older software or for a
new piece of software to be able to access files created by an older version of the
software. Backward compatibility allows users of newer Windows-based comput-
ers to still run software from old Windows and DOS-based computers.

Bandwidth—the amount of data that can be transmitted over a unit of time, such as bits
per second. Bandwidth is used to measure the performance of a computer net-
work, MODEM, or other form of telecommunications.

Base—the radix of the numbering system that determines the legal digits in that num-
bering system and how those digits are interpreted. Decimal (base 10) is the pri-
mary base used by people, whereas binary (base 2), octal (base 8), and hexadecimal
(base 16) are all used by humans to represent information stored in a computer.

Batch—a form of process management that would restrict the operating system in execut-
ing only one program at a time until it completed. Furthermore, in batch pro-
cessing, all program input would have to be specified at the time the program
was submitted and all output would be saved to file so that there would be no
interaction.

Beta-release software—a release of software before a major distribution so that specific
users could test the software to identify flaws such as logical and run-time errors.

Binary—the base 2 numbering system using only 0s and 1s; computers represent all infor-
mation in binary.

Appendix A: Glossary of Terms ◾ 507

BIOS—the basic input/output system is a program that computers use to communicate
to their basic input and output devices such as the keyboard. Today, the BIOS is
almost always stored in ROM.

Bit—the smallest unit of storage in a computer, a bit is either a 0 or a 1.
Bitmap—a type of image file.
Block—the physical unit of disk storage; all files are broken into fixed-sized blocks.
Boot Loader—a program used to load an operating system into memory when the com-

puter is booted up.
Booting—the process of starting up the computer; booting tests the CPU and makes sure

it can communicate with the various devices like memory and disk drive, and then
runs the boot loader to load and start the operating system.

Brace expansion—a feature of the Linux Bash shell in which files and directories listed in
{ } are expanded before the instruction executes so that the instruction executes on
all of the items in the expanded list.

Buffer overflow—a flaw in some programs that causes values to be placed in memory
outside of a buffer; if the overflow are program instructions, it could potentially
allow the processor to run what is in the overflow area, allowing an attacker to take
control of the processor.

Bug—a slang term for an error found in a program.
Bus—the device in the computer that connects the hardware components together so that

they can communicate with each other; the bus is made up of wires over which
electrical current travels.

Bus network—a form of computer network in which devices are connected to a single
communication line through T-connectors; the bus network is the simplest and
cheapest form of network but is often inefficient because of message contention.

Byte—8 bits used to store a single piece of information which can be a number from –128
to +127, a number from 0 to +255, or a character in ASCII or EBCDIC.

Byte code—an intermediate form of code that is produced by a compiler so that a later
virtual machine can interpret it. The Java programming language compiles source
code into byte code permitted it to be platform independent as long as the platform
has a Java Virtual Machine. Microsoft’s.net (dot net) platform can also compile
into byte code.

Certificate—a means of identification used by websites as a digital signature to assure the
client that the website is legitimate. The certificate may also include a public key
for encryption.

Certificate authority—an organization that can sign certificates for authenticity.
Certification—an acknowledgement received by a person who successfully passes a class

or examination in some IT-related area; often used as a means of advancing one’s
career in IT.

Checksum—a means of ensuring that data received from telecommunications is correct.
Child process—a process that was spawned by another process (the parent).

508 ◾ Appendix A

Circuit switching—a form of network in which the pathway from source to destination is
established at the beginning of communication and retained until communication
terminates; the public telephone network uses circuit switching.

Client—the name given to a computer (or user) requesting a service from another computer.
Client–server network—a network that consists of devices specifically designated as cli-

ents and servers.
Cloud computing—a recent development in computer networks where an organization

offers services available over the Internet. The services include storage space and
distributed processing.

Clustering—a form of data mining used to see how instances of data group together into
possible categories.

Coaxial cable—a form of media used in telecommunications. Cable TV signals are com-
monly carried over coaxial cable. Using coaxial cable provides users with poten-
tially larger bandwidth than twisted wire pair.

COBOL—Common Business Oriented Language, one of the earliest high-level languages,
developed by the U.S. government for use in business. The language’s most unique
feature is that it reads like English.

Collision detection—the ability of a computer network to detect if two or more messages
have been placed on the network at the same time.

Command line—in some operating systems, commands can be entered by keyboard as
textual commands rather than by using pointing devices and a GUI interface.
Linux, Unix, and DOS all have command line interfaces.

Command line editing—a feature of the Bash interpreter that allows the user to edit the
current command through a series of keystrokes.

Compatibility—software that can run on multiple platforms.
Competitive multitasking—a form of concurrent process management in which a timer

interrupts the CPU to force it to perform a context switch from one process to
another.

Compilation—the process of translating a high-level language program into machine lan-
guage so that it can be executed.

Compiler—a program that translates high-level language programs into machine lan-
guage. A specific compiler is needed for each language and each platform.

Compression—a means of reducing file sizes. Two forms of compression are lossy com-
pression, in which data is lost in order to reduce the file size, and lossless compres-
sion, in which the file is not accessible until it is uncompressed.

Computer—a programmable device that performs the IPOS cycle; computers come
in a variety of sizes, capabilities, and costs from supercomputers to handheld
devices.

Computer forensics—an area of study (and career) that combines legal knowledge of law
enforcement, evidence gathering, and courtroom processes with technical knowl-
edge of computer functionality to support prosecution of computer crimes.

Computer scientist—an area of study (and career) that revolves around software devel-
opment and software engineering; the field combines programming, computer

Appendix A: Glossary of Terms ◾ 509

organization, data structures, programming languages, mathematical concepts
related to solvability, project management, and the software life cycle.

Computer security—providing proper mechanisms, physical and software, to ensure the
integrity and safety of computer systems.

Computer support—IT support for organization members through training, help desk,
and documentation.

Computer technician—an area of study (and career) in which a person understands the
electronic nature of computer hardware and can diagnose, repair, and replace such
components and assemble and repair computers.

Concurrent processing—a form of process management where multiple processes are
active at a time but where the CPU switches off between them.

Condition—a test, used in a program instruction, that evaluates to true or false; condi-
tions are used in selection statements (e.g., if–then, if–then–else) and loops to con-
trol the behavior of the program.

Conditional loop—a programming instruction that uses a condition to determine whether
to repeat a body of code or exit the loop.

Confidentiality—a feature of information assurance and security that specifies that the
information must not be disclosed to anyone other than authorized and legitimate
users of that information.

Configuration file—a file that dictates settings to an operating system service. Confi-
guration files are used in Linux so that, when a service is started, it reads its con-
figuration file first.

Context switch—an event that causes the CPU to switch from one process to another.
Control bus—part of the computer bus used to send control information (commands)

from the control unit to other devices in the computer, and used for devices to
send back status information to the CPU.

Control unit—the portion of the CPU that is in charge of controlling the components
within the computer by performing the fetch–execute cycle.

Cooperative multitasking—a form of concurrent process management in which processes
can voluntarily give up access to the CPU.

Core dump—a file created in Linux when a program terminates with an abnormal error;
the file contains process status information that might be useful in debugging the
program.

Counting loop—a programming language instruction that continues to repeat over a set
of code based on a starting and ending count value, such as 1 to 10 or 100 down
to 1.

CPU—central processing unit, or processor; the component in a computer that executes
programs.

CPU cooling unit—a hardware device placed on top of the CPU to keep it from overheat-
ing due to power consumption.

Cylinder—a reference to a common location (the same track and sector) across all disk
surfaces.

Daemon—a service program in Linux; see service.

510 ◾ Appendix A

Data bus—a part of the bus used to move data (and program instructions) between the
CPU and memory and I/O subsystem.

Data mining—a form of data processing that attempts to sift through huge collections of
data to discover meaningful information.

Data warehouse—a collection of many databases making up the sum total of data that an
organization may have in its holdings.

Database—a way to store data as records and relations, created and manipulated by a data-
base management system; operations include restrictions, projections and joins.

Database administrator—an IT person whose job is to manage the database management
system and database(s), and whose duties include software installation, security of
data, creation of accounts to access the database, and configuring the database to
be accessible over network.

Database server—a program, usually running on a server, that provides clients remote
access to a database.

Deadlock—a situation in a concurrent processing operating system where two or more
processes are holding on to resources that the other processes need; the result is
that none of the processes involved can progress.

Debian Linux—one of the early and most popular distributions of Linux.
Decimal—the base 10 numbering system that most people use, consisting of digits 0–9.
Decision tree—a product of data mining that creates models from a collection of data that

people can use to make decisions.
Decode—a step in the fetch–execute cycle where the machine language instruction is

decoded into microcode.
Defragmentation—a disk utility that takes disk blocks and moves them closer together on

a disk so that disk access becomes more efficient.
Delayed start—a selection by administrators whereby services in the Windows operat-

ing systems are started automatically shortly after system initialization time when
there is time to start them.

Denial of service—a type of attack on a server whereby so much message traffic is received
that the server denies legitimate client requests.

Device driver—a program added to the operating system that lets the computer commu-
nicate with a new piece of hardware.

Difference Engine—designed by mathematician Charles Babbage in the early 1800s to
perform automated computation of a certain class of math problems; it was never
constructed because Babbage abandoned it to design the Analytical Engine.

Digital divide—a phenomenon in our society whereby many in the lower class have lim-
ited or no access to computers and the Internet.

Directory—a logical division in a file system used by people to organize and collect their
files into related categories.

Disaster recovery plan—a plan to describe the efforts taken to prepare for and recover
from a disaster, whether man-made or natural.

DNS—a domain name system translates IP aliases to IP addresses; needed so that users of
the Internet do not have to remember IP addresses.

Appendix A: Glossary of Terms ◾ 511

Dot net (.net)—a programming platform developed by Microsoft that permits programs
of one .Net language to call upon components written in other .Net languages.

Download—the action of copying a file from a remote computer over a network to a local
computer. Alternatively, the file itself is sometimes referred to as a download.

DRAM—dynamic random access memory used to create the main (or primary form of)
memory of a computer; it is known as dynamic because the technology used can
only retain a charge for a short amount of time before the current is discharged
and so it must be continually refreshed. As DRAM is slower than SRAM, modern
computers use both SRAM and DRAM.

Dumb terminal—used starting in the third generation, the dumb terminal is an input/
output device with no memory or processor, allowing a user to connect to a com-
puter (mainframe or minicomputer) over a network.

EBCDIC—a form of character representation used on IBM mainframe computers; an
8-bit alternative to ASCII.

Else clause—a programming language instruction used in if statements to offer an alter-
nate action.

E-mail server—a computer (or a program) whose job is to collect e-mail messages and
let individual users view their messages and send outgoing messages to other
servers.

ENIAC—the first general-purpose, electronic computer; first started in 1946, it was a large,
expensive, and slow computer by today’s standards.

Environment variable—a variable storing a value that can be accessed by the user or run-
ning software, often used when writing Linux scripts.

Equivalence of hardware and software—the idea that any problem that can be solved
using a computer program can also be solved by implementing that solution using
computer hardware, and any problem that can be solved using computer hardware
can also be solved by a computer program.

Ergonomics—the study of how to improve devices, whether computer, furniture, car, or
other, to be easier for the human user and have less impact on the person’s health.

Ethernet—a type of local area network technology, introduced in 1980, it became one of
the most common forms of local area network.

Executable—a program stored in the computer’s native machine language that can be
executed on a computer.

Execute access—one of the levels of file/directory permissions; allows a user to execute the
file or change into the directory.

Extranet—an intranet network that is extended to permit access from off-site.
FAT—the file allocation table is used in Windows operating systems to denote the physical

location of all file blocks.
Fetch–execute cycle—the main execution cycle of the CPU, it fetches an instruction from

memory, decodes the instruction, and executes it. The CPU repeatedly performs
this cycle to execute any and all programs.

Fiber optic cable—a medium used for network communication, it carries data as light
pulses and is thus faster than any other form of network cable.

512 ◾ Appendix A

Field—attributes that make up the database relation; these are the columns of a relation
such as “first name”, “address”, “GPA”, “major”.

File—the logical unit of storage in the file system.
File extraction—removing files and directories from an archive.
File server—a computer dedicated to provide storage access over a network.
File system—the structure of storage for computers; commonly made up of one or more

hard disk drives and possibly removable storage devices.
Filename expansion—prior to a command execution, any wildcards are replaced by all

matching files; for instance, the * indicates “anything” whereas in Linux, the ?
indicates “any 1 character”.

Firewall—software (or a server running software) that prevents malicious attacks over
a computer network; the firewall consists of rules to determine what messages
should be permitted and which should be rejected.

Firmware—programs stored in hardware (chips); although firmware is more expensive to
produce and inflexible as compared to software, it executes faster than software.

Floating point—a representation to store a number with a decimal point (e.g., 123.456)
using integers to represent the mantissa and exponent.

Folder—another name for a directory, a logical division in a file system.
Foreground—running processes that can directly interact with the user.
FORTRAN—the earliest high-level programming language, developed in 1958 by IBM,

primarily used for mathematical and scientific computation.
Fragment—a leftover piece formed when contiguous allocation is used; fragments can be

formed in memory or on disk.
Free software movement—movement created by programmers working on Unix and

Linux operating system software so that software being produced would be made
freely available in source code form so that others could modify the code and make
new code available.

Freeware—a category of software that, although it may have licensing restrictions, is free
of charge.

FTP—file transfer protocol, used for file uploading and downloading across a network;
predates HTTP and web servers.

FTP server—a computer that hosts files to be transferred using FTP.
Gateway—a broadcast device used to connect different types of networks together so that

messages of one protocol can be translated to another protocol.
GHz—abbreviation for “gigahertz” that specifies the frequency of clock “pulses”; 1 GHz is

a clock pulse every 1 billionth of a second (1 nanosecond).
GIF—Graphics Interchange Format, a lossless form of image file compression that uses a

standard palette of 256 colors.
Globbing—a slang expression used to describe filename expansion in Linux using

wildcards.
GNU GPL—the General Public License, a “copyleft” (rather than a copyright) applied to

open source software as well as other works so that they can be shared among the
open source community. This license not only permits free access to the item, it

Appendix A: Glossary of Terms ◾ 513

also permits others to manipulate the item (software, image file, etc.) and share the
result for free.

GO TO—a type of program instruction, first used in FORTRAN, to permit a programmer
to specify an unconditional branch from any location in the program to any other
location; use of GO TO statements leads to spaghetti code.

Grounding strap—a tool used by computer technicians to prevent static charges from
damaging circuitry due to a static charge released when a person touches the
computer.

Group—a classification used in Linux and Windows whereby users can be given some
permission to files.

GUI—graphical user interface is the term given to windowing-based operating systems
and programs so that the user can control the software easily through a pointing
device rather than command line input.

Hard disk drive—the primary form of storage; the hard disk is sealed within the disk
drive, permitting far greater storage capacity over outdated floppy disk drives.

Hard link—a pointer in a file system from the file’s name to the file’s location.
Hardware—the physical components of a computer system which include the system unit

and its components (motherboard, fan, disk drives, CPU, memory chips) and
peripheral devices.

HCI—human–computer interaction studies how to improve our ability to use a com-
puter—both to reduce strain that might be caused by poorly designed interface
devices (such as the keyboard and mouse) and to make interaction more natural,
particularly for people who have limited physical movement or disabilities.

Help desk—a call center staffed by IT personnel to help answer user questions.
Hexadecimal—the base 16 numbering system often used to group binary bits together to

make it easier to read over binary.
High-level language—a class of computer programming language developed so that pro-

grammers would not have to write at the lower levels of machine and assembly lan-
guages; high-level languages often use English words and mathematical notation.

Hit rate—the percentage of accesses to a level of the memory hierarchy where the item
sought is found there rather than having to move further down the hierarchy.

Horizontal software—software that is used throughout departments of an organization
such as productivity software.

Host—a computer on a network that serves as a server or that can be logged into.
Hub—a type of network broadcast device that broadcasts any incoming message to all

devices attached to it.
I/O queue—waiting lines, managed by the operating system, for processes that need ser-

vicing by an I/O device.
Infinite loop—a logical error in a program where a loop never exits because the loop’s

condition is always true.
Information—processed data.
Information asset—a piece of information that an organization values and wishes to

protect.

514 ◾ Appendix A

Information Technology—the term used to describe both the computer systems that
organizations use to process their information and the information itself; also
used to refer to the collective group of people who manage the organization’s IT
infrastructure.

Initialization script—a set of instructions run after the operating system has been loaded
to bring up services and prepare the computer for use by the user.

inode—the name given to a data structure that stores information about a Linux file; the
inode also stores pointers to the file’s blocks.

Input—the process of taking information or data from outside the computer and bringing
it into the computer.

Input statement—a programming language instruction that causes the program to pause
while input is performed.

Installation—the process of adding new hardware or software to a computer.
Instruction register (IR)—a register in the CPU that stores the current machine language

instruction. The IR is used by the control unit to determine what instruction is to
be executed and what the data for the instruction are.

Integrated circuit—also known as a chip or IC, a semiconducting electronic device that
contains logic gates to perform operations when current flows through them; the
IC is used for many parts of modern computers.

Integrity—a feature of information assurance and security that requires that information
of the organization be accurate.

Interactivity—the ability of a computer system to have real-time input and output with
the user.

Internet—a global wide area computer network connecting billions of people that sup-
ports telecommunications, commerce, social networks, and numerous other
human endeavors.

Internet addiction—a recent phenomenon, in part brought on by social networks and
mobile devices, whereby a person tends to access one or more Internet accounts
often (e.g., their Facebook page, their e-mail).

Interpreter—a form of programming language translator that translates one instruction
or command immediately upon input into machine language and executes it; the
interpreter offers the user a session to work in, unlike a compiler, which translates
an entire program into machine language so that the translated program can be
used at a later time.

Interrupt—a situation in which a hardware device requires the attention of the CPU so
that the fetch–execute cycle must be interrupted, or a situation in which the soft-
ware itself generates an interrupt because the program requires the attention of the
operating system.

Interrupt handler—a part of the operating system set up to handle interrupts; each inter-
rupt handler is designed to handle one type of interrupt (e.g., mouse moved, key
pressed, disk drive fault).

Intranet—a type of local area network that uses TCP/IP so that the networked devices can
communicate over the Internet.

Appendix A: Glossary of Terms ◾ 515

Intrusion—an attack on a computer system whereby an unauthorized user has been able
to log in and/or launch processes; usually intrusions have malicious intent.

IP address—a unique identifier given to each device on the Internet so that messages can
be routed to the device; IPv4 addresses are 32 bits (4 octets) and IPv6 addresses are
128 bits.

IP alias—an English-like description of an Internet machine, used because IP addresses
are hard to memorize; IP aliases must first be converted into IP addresses before
communication can take place.

IPOS Cycle—input, processing, output, and storage, the four activities that all computers
perform.

IT manager—an IT person who has an understanding of both the management side of the
organization and the IT infrastructure so that the person can manage the IT staff
and projects; IT management often requires an advanced business degree.

Iteration—a looping behavior in a program to repeat some section of code.
Iterator loop—a type of programming language instruction that loops over a set of code

one time for each item in stored in a list.
Java virtual machine (JVM)—an interpreter that can execute Java byte code; the JVM is

built into all web browsers so that Java programs can be executed on any platform.
Join—a database operation that combines two or more database relations together to with-

draw data.
JPG—the Joint Photographic Experts Group image format (jpeg or jpg) is a form of lossy

image compression most commonly used to reduce the storage size of digitized
photographs.

Kernel—the portion of the operating system responsible for managing the computer’s
resources (CPU, memory) and execute programs.

Kill (a process)—terminating a running process, usually because the process has stopped
responding.

Language translator—a class of programs that translates a computer program from
one format to another. The most common types are compilers, interpreters, and
assemblers.

Last mile technology—a term that applies to the twisted wire cable that connects houses
to the telephone network; as twisted wire offers lower bandwidth, unless house-
holds have other forms of media (e.g., coaxial cable, fiber optic cable, satellite),
those households are limited to 56 Kbps Internet access.

Linux—an operating system that competes with Windows and MacOS; noteworthy because
it (and much of the application software available in Linux) is available for free.

LISP—an early interpreted high-level programming language developed to support artifi-
cial intelligence research.

Live CD—an optical disc storing a bootable operating system; many operating systems can
only be booted from hard disk.

Load—the operation of reading a datum from memory and moving it into the CPU.
Local area network—a network within one location/site, such as one room, one floor, one

building.

516 ◾ Appendix A

Local computer—the computer that the user is on, to differentiate it from a remote
computer.

Log file—a file of messages automatically generated from software to record meaningful
events that arise during program execution.

Logging—the process of writing information to a log file.
Logical error—a type of error in a program where the logic is incorrect, leading to the

program not functioning correctly.
Logon type—the specification of the owner of a Windows service so that it can acquire a

certain level of access.
Loop body—in a programming language’s loop, the loop body is the code to be repeated.
Loop index—for counting and iterator loops, a variable is often used to store the value of

the iteration, for instance, the count (1 to 10) or the current value in the list.
Lossless compression—a form of compression where data/content is not lost when the file

is compressed.
Lossy compression—a form of compression where data/content is purposefully discarded

in order to reduce the file’s storage size, resulting in a blurrier image or an audio
file that has a more limited range.

MAC address—the Media Access Control address is assigned to network interfaces (e.g.,
network cards in computers) and used for communication at the lowest level(s)
of the network (as opposed to the network addresses used at higher levels like IP
addresses).

Machine language—the programming language native to the given processor; a computer
can only execute a program written in machine language such that a program
written in any other language must be translated first.

Macintosh OS—a GUI operating system; with MacOS X (version 10), the OS sits on top of
a Unix-like operating system.

Magnetic core memory—form of main memory used in the second generation of comput-
ers, composed of small, iron rings (cores), each of which would store 1 bit; 1 MB of
magnetic core memory could cost up to $1 million in the early 1960s.

Mainframe—primary form of commercially marketed computers from the 1950s through
the 1980s, these computers are expensive but powerful, supporting hundreds to
thousands of users; have largely been replaced by personal computers and servers
since the 1990s.

Malware—a class of software that has malicious intent; includes Trojan horses, viruses,
worms, and spyware.

Megaflops—millions of floating point operations per second, a rate used to express the
performance of a processor on programs that contain floating point computations.

Memory—hardware used to store program code and data; there are many forms of mem-
ory that make up the memory hierarchy.

Memory chips—memory stored in integrated circuits that are plugged into the mother-
board of a computer.

Memory hierarchy—the organization of the different types of memory (registers, cache,
main memory, swap space, hard disk file system, removable storage) such that the

Appendix A: Glossary of Terms ◾ 517

higher forms of memory are faster but more expensive and so there is less of it in
the typical computer system.

Memory management—an operating system task to handle memory accesses of running
processes, typically composed of virtual memory mapping, swapping, and the pre-
vention of memory violations.

Memory violation—a situation in which a process requests access to memory owned by
another process; if not prevented, a memory violation could corrupt the memory
owned by another process, and therefore memory violations usually lead to run-
time errors and termination of the process that causes the violation.

Mesh network—a topology of computer network in which all resources have a direct con-
nection with all other resources. Although this presents an optimal means of com-
munication, it is prohibitively expensive.

Metacharacters—characters used in regular expressions to describe how to interpret lit-
eral characters; metacharacters can express such notions as “1 or more instances
of” or “match any character in the given list”.

Microcomputer—a class of computers whose CPU is built using a microprocessor so that
the computer can be relatively small in size; all personal computers and laptop
computers are of this category.

Microprocessor—a CPU placed entirely on one chip; the earliest microprocessor was the
Intel 4004, released in 1971.

Minicomputer—a category of computer, the minicomputer is a scaled-back mainframe. It
has less power and fewer resources to keep the cost down.

Minix—a Unix-like operating system developed by Andrew Tanenbaum to accompany an
operating system textbook and used in college courses.

MIPS—millions of instructions per second, a rate used to express the performance of a
processor when executing an integer-based program.

MODEM—a piece of hardware used to convert digital information to an analog form to
be broadcast over the telephone network, and to convert received analog messages
back to digital; MODEM stands for MOdulation and DEModulation.

Motherboard—the printed circuit board that houses the CPU, memory chips, and expan-
sion cards in any computer.

Mount point—the physical location in a file system where a partition is added.
Mounting—the process of adding a partition to a file system.
MS-DOS—Microsoft Disk Operating System, the original IBM PC operating system; it is

text-based and single tasking.
Multiprocessing—a form of processing in which there are multiple processors (CPUs) to

execute multiple processes simultaneously.
Multiprogramming—a form of concurrent processing in which the CPU switches off

between processes whenever one process surrenders the CPU either because it needs
to perform time-consuming I/O, is waiting for an event to happen, or is of lower
priority than other waiting processes; also known as cooperative multitasking.

Multitasking—a form of concurrent processing in which the CPU switches off between pro-
cesses; the two forms are competitive multitasking and cooperative multitasking.

518 ◾ Appendix A

Multithreading—a form of concurrent processing in which the CPU switches off between
both processes and threads.

Mutually exclusive—a restriction placed on processes when attempting to access a shared
resource in a computer system; access of the resource must be wholly performed
by one process at a time to ensure that the shared resource is not corrupted in case
one process is interrupted mid-access and another process is then given access.

Nearest neighbor—a form of computer network topology in which each computer con-
nects only to the nearest computers/resources near it; nearest neighbor can be
one-, two-, three-, or four-dimensional.

Netmask—a sequence of binary bits applied to an IP address using the AND operation
to return a portion of the IP address that either matches the resource’s network
address or the address of the resource on the network.

Network—a collection of computers and resources connected by various media so that
they can communicate with each other.

Network address translation (NAT)—a process of converting an external address into an
internal local area network address; the many-to-one variation of NAT permits an
organization to have a single external IP address but multiple internal addresses.

Network administrator—a role in IT whereby a person (or people) is responsible for instal-
lation, configuration, maintenance, securing, and troubleshooting of the computer
network.

Network handshake—in network communication, the sending device must establish a
connection with the recipient through a two-way or three-way handshake.

Network topology—a way to categorize the structure of a network.
NFS—the network file system, often used in local area networks for Unix and Linux

machines.
Non-volatile memory—a form of memory that does not require a constant power supply

to retain its contents; both read-only memory (ROM) and solid state memory (e.g.,
flash drives) are of this form.

Obscenity—a piece of information (image, communication, video, etc.) found to be unac-
ceptable by a community because it violates that community’s acceptable stan-
dards; obscenity is a concern of IT in that content may need to be blocked to
protect some members of the community (particularly children).

Octal—the base 8 numbering system which uses digits 0–7 and is often used in place of
binary because it is somewhat easier to read.

Octet—a portion of an IPv4 address equivalent to 8 bits or a single number from 0 to 255.
Off-chip cache—added SRAM in a computer because the on-chip cache must be limited

due to space restrictions on the CPU.
OLAP—online analytical processing, used in business to analyze large collections of data

for decision making.
On-chip cache—small SRAM placed on the CPU to help support fast memory access.
Open architecture—publishing the details of a computer architecture to make it avail-

able to others; IBM did this with the IBM PC, which resulted in many compatible
computers (clones).

Appendix A: Glossary of Terms ◾ 519

Open source—software that is made available as source code.
Open source initiative—to support Unix and later Linux, a number of early programmers

were willing to make their code available as open source and for free.
OSI—the open systems interconnections network model, a seven-layer model, often used

when developing new computer networks.
Output—taking computer processed results and delivering them to the outside world;

common forms of output are displayed via the monitor, printed output, and audio
over speakers.

Output statement—an instruction that will deliver output to an output device (or stored
to a file).

Owner—the user who has full access and authority to a resource.
Package manager program—a program that allows a user to easily install, uninstall, or

upgrade software packages.
Packet—the unit of information to be transmitted over the Internet.
Packet switching—a type of network routing in which a packet sent over the network finds

its way en route, rather than having a pre-established route.
Page—a piece of an executable program; used to support virtual memory; a page is loaded

from swap space into a free frame in memory upon demand.
Page fault—a situation where the address generated by the CPU is of a page that is not cur-

rently in memory and so must be swapped into memory from swap space by the
operating system.

Page table—mapping information so that a CPU address, which specifies locations by
page number, can be converted into a physical memory address, specified by frame
number.

Parameter—a piece of information passed from one program routine (procedure, func-
tion, method) to another.

Parent process—a process that starts (spawns) another process.
Parity—the evenness or oddness of a value, used for error detection and correction.
Parity bit—a simple form of error detection that is an added bit to a byte such that the

9 bits contain an even number of 1s.
Partition—divisions of the file system such that each partition can be handled indepen-

dently of others; for instance, one partition can be removed to perform a backup
without impacting the other partitions.

Password—a mechanism used in operating systems to authenticate users.
Patch—a software update released to fix bugs or security flaws.
PATH variable—an operating system environment variable that stores directories that

should be searched whenever any instruction or file name is entered at the com-
mand line prompt.

Peer-to-peer network—a type of network in which all computers are roughly equivalent
peers (i.e., there is no server in the network).

Peripheral—a hardware device connected to the computer outside of the system unit.
Permission—a means of allowing users to control who can access their resources (files,

directories). Permissions are usually limited to read, write, and execute.

520 ◾ Appendix A

Phishing—a means of obtaining secure information from a computer user by tricking the
user through a fraudulent e-mail or website.

PID—process ID, a unique identifier assigned to each executing process.
Ping—a network program that allows one to determine if a network resource is responding.
Pixel—picture element, the smallest part of an image as stored by a computer.
Platter—one disk within a hard disk drive.
Port—a portion of a network address used to specify the intended application that should

handle the message.
Portability—the capability of software to be run on multiple platforms.
Priority—as used in scheduling processes, the higher the process’ priority, the sooner the

CPU will get to it.
Private key—the key used to decrypt messages and must be kept secure.
Private key encryption—symmetric encryption in which one key (the private key) is used

to both encrypt and decrypt messages.
Process—a program that is in some state of execution.
Process management—the operating system task of running processes on the com-

puter; two basic categories are single tasking (which includes batch processing)
and concurrent tasking (which includes multiprogramming, multitasking, and
multithreading).

Process status—the current execution status of a process, commonly one of waiting, ready,
running, suspended, or terminated.

Process tree—the relationships between parent and child processes.
Processing—executing programs.
Processor—also known as the central processing unit or CPU, the hardware device respon-

sible for processing (executing) programs.
Productivity software—the category of software that contains the types of software found

useful for most individuals and companies: word processing, spreadsheet soft-
ware, database management system software, presentation graphics software.

Program—a listing of instructions that the computer is to execute to accomplish a task.
Program counter (PC)—a register in the CPU storing the location in memory of the next

program instruction.
Projection—a database operation to retrieve specified fields of all records in a relation.
Proprietary software—programs that are sold. Purchasing the software does not give you

ownership, just the right to use the software.
Protection—an operating system task that ensures that a user or a user’s process does not

incorrectly use system resources.
Protocol—rules for communication, commonly referred to as how an operating system

packages up (or unpackages) a message to be sent over a network.
Protocol attack—a type of network attack that exploits a weakness in the network protocol.
Proxy server—a type of program used by organizations so that recently accessed web

pages are cached for efficiency. The proxy server can also be used to filter content.
Public domain software—a category of software that is freely available to use any way you

wish.

Appendix A: Glossary of Terms ◾ 521

Public key—the key used to encrypt messages in public key encryption; the public key can
be made available to anyone as it cannot be used to decrypt messages.

Public key encryption—an asymmetric form of encryption using two keys, a public key
for encryption and a private key for decryption.

Query—a command sent to a database to retrieve, insert, delete, or modify records.
Queue—a waiting line, used in operating systems to organize waiting processes.
RAID—redundant array of independent (or inexpensive) disks, a form of storage used to

ensure that data are reliably stored; extra disks are used to provide the opportunity
for multiple disk accesses at a time and for storing redundancy (error correction)
information.

Read—a type of programming language instruction that accepts input from the user.
Read access—the ability to read (input) a file.
Read/write head—the mechanism in a disk drive that reads and writes magnetic informa-

tion from and onto the surface of the disk.
Ready queue—the waiting line in the operating system that stores the processes that the

CPU is currently switching off between.
Record—a row in a database relation pertaining to an individual (e.g., a customer, a stu-

dent, a piece of inventory).
Recovery—the amount of time that the Windows operating system should wait before

attempting to restart a service that has stopped working.
Red Hat Linux—a distribution or dialect of Linux, one of the most popular (along with

Debian).
Redundancy—a means of ensuring data availability and integrity by adding extra data in

the form of either an exact duplicate of the file (a mirror), or error detection and
correction information through Hamming code bits or parity bits.

Register—temporary storage in the CPU used to store data or to support the fetch–execute
cycle.

Regular expressions—a means of expressing a search pattern in strings.
Relation—a table in a database, consisting of records and fields.
Relational database—a database that stores relations; the most popular format of database.
Relative path—a specification of a file or directory as indicated from the current directory.
Remote access—the ability to access a computer over a network.
Remote computer—the computer being accessed over the network.
Rendezvous—through synchronization, this is a situation in which one process (or thread)

must wait for another to produce a result.
Repetitive stress injuries—a class of injury that arises from performing a repetitive motion

over and over in such a way that it damages some part of the body.
Resident monitor—the earliest form of operating system, it remained resident in memory

to start new processes and handle user I/O requests.
Resource management—a task of the operating system to allocate and deallocate system

resources from program requests.
Resources—components of a computer system including disk access, file access, network

access, and memory access.

522 ◾ Appendix A

Restriction—a type of database operation to retrieve records that match given criteria.
Ring network—a computer network topology in which all computers are connected to

their nearest two neighbors so that messages must be transmitted from compo-
nent to component around the ring until the destination is reached; this is a cheap
but not very efficient topology.

Risk assessment—a step in risk management where the organization specifically focuses
on the risks and vulnerabilities of their assets.

Risk management—a process that most organizations will undergo to determine their
threats and vulnerabilities, critical to ensuring information assurance and security.

Root—the name given to the Linux/Unix system administrator(s); also the name given to
the top-most point in the Unix/Linux file system (/).

Rotational delay—the time it takes for the proper disk sector to rotate underneath the
read/write head as the disk spins (also known as rotational latency).

Round-robin scheduling—the scheduling algorithm used in multitasking whereby the
processes in the ready queue are rotated through one at a time, moving to the front
of the queue after visiting the last process in the queue.

Router—a network broadcast device that takes the destination address of a message to
select a network to pass the message on to.

Routing—the process of a router moving a message onto the appropriate network.
Runlevel (Linux)—the start level used in Linux to select which services should be started

or stopped at system initialization time.
Run-time error—an error in a computer program that arises during program execution,

typically causing the program to terminate abnormally.
Scheduling—an operating system task that places waiting processes in the order that the

processor will execute them.
Script—a small, interpreted program often used to automate simple tasks.
Scripting language—a class of interpreted programming language used to write script

programs.
Sector—a region on a disk surface used for addressing.
Security—an operating system task that extends resource permission across networks to

ensure that people who remotely access the computer are authorized to do so.
Seek time—the time it takes to relocate the read/write head to the proper track of a hard

disk.
Selection statement—a type of programming language instruction that, based on a condi-

tion, takes one of two (or more) paths through the code.
SELinux—security enhanced Linux offers a different mechanism for permissions by using

access control lists.
Semantic web—extending the World Wide Web to include automated reasonsers so that

the knowledge can be more readily processed by computer rather than human.
Server—a stand-alone computer (and the software it runs) that provides a service for

remote users; examples include file server, web server, and e-mail server.
Service—a program that runs in the background of an operating system, responding to

requests from users and software alike.

Appendix A: Glossary of Terms ◾ 523

Shareware—a category of free software with restrictions placed on the usage of the soft-
ware such as a limited number of uses or a time limit that, once exceeded, causes
the software to be unusable; typically made available to entice the user to buy the
full version.

Shell—an environment in an operating system like Linux/Unix, controlled by an inter-
preter, in which the user has a session.

Shortcut icon—a soft link in Windows to permit easy access to starting programs.
Shut down—the process of stopping the operating system and shutting down the hard-

ware. The process is useful in that it ensures that all files are closed to avoid file
corruption problems.

Single tasking—a form of process management in which the operating system only allows
one program to execute at a time from start to completion.

Sleeping—when a process (or thread) moves itself to a waiting queue to await some situa-
tion such as a rendezvous with another process (or thread) or for a specified time
interval.

Social engineering—the effort of a person to obtain confidential information from a user
by posing as a person in authority, such as calling someone at home, claiming to
be from IT and requesting the person’s password.

Soft Link—a pointer used in a file system to point from a filename to another filename; in
Linux, these are called symbolic links, and in Windows, these are called shortcut
icons.

Soft skills—skills that employers often seek in employees that are not technical in nature.
The most useful forms of soft skills revolve around the ability to communicate
(speaking, listening and writing skills).

Software—the name we give to computer programs to differentiate them from hardware.
Software engineering—the field of software development, often made up of people who

have computer science degrees.
Software exploit—a known security flaw in some software used to attack a computer sys-

tem or network.
Software release—a major distribution of a piece of software that has new features (per-

haps a new look) and has resolved problems of older distributions of the software.
Source code—a program written in a high-level language; the program must be translated

into machine language before it can be executed on a computer.
Spaghetti code—the result of using unconditional branches such as GO TO statements in a

program so that tracing through the program begins to look like a pile of spaghetti.
Spawn—an event where one process starts another process; the original process is often

called the parent and the spawned process is called the child.
Spindle—a motorized cylinder that rotates all hard disk platters at the same time.
SQL injection—an attack on a website where the attacker enters an SQL command as part

of a URL (or part of a web form) in an attempt to access the backend database.
SRAM—static RAM, a fast form of memory used to build registers and cache.
Star network—a computer network topology in which all resources in the network con-

nect to a central server. Today, that server is usually a network hub or switch.

524 ◾ Appendix A

Startup level—the level that a service should be started as in Windows, which provides the
service with a set of access rights.

Status flags (SF)—a register in the CPU that stores results of the most recent arithmetic or logic
operation such as “positive”, “negative”, “zero”, “carry out”, “overflow”, and “interrupt”.

Storage—long-term memory used for permanence, unlike main memory, which is vola-
tile; storage devices include the hard disk, flash memory, and optical disk.

Storage capacity—the amount that can be stored on the given device.
Store—a CPU operation of taking a result stored in a register and copying it into memory.
Strong password—the requirement that passwords meet certain restrictions such as at

least 8 characters in length and a combination of upper- and lower-case letters and
non-letters; these restrictions make passwords much harder to crack.

Subroutine—a piece of a larger program that solves a specific subproblem, invoked from
the main program or another subroutine via a subroutine call; subroutines are
often named functions, procedures, or methods depending on the language.

Suspended—a process that has voluntarily stopped processing for the time being; also, in
Linux, a process is suspended when the user types control+z in the shell running
the process.

Swap space—an area of the hard disk reserved to store program pages as an extension to
main memory; swap space supports virtual memory.

Swapping—the process whereby the operating system moves pages between swap space
and memory.

Symmetric key encryption—a form of encryption that uses a single, private key for both
encryption and decryption.

Synchronization—a requirement in operating systems whereby two or more processes
that share some common resource must access that resource one at a time.

Syntax error—an error in a program that is a misuse of the syntax of the language; syntax
errors are usually caught at compile time by the compiler.

System administrator—a person in charge of administering a computer system or a col-
lection of computer systems.

System software—software that supports the use of the computer system; in other words,
the operating system and other supporting software.

System unit—the main cabinet in which the primary components of a desktop computer
are housed including the motherboard, the hard disk and optical disk, a power
supply unit, and one (or more) fan(s).

Tab completion—an editing feature of the Bash shell in Linux in which the user can type
part of a file name and press the <tab> key and the interpreter will attempt to com-
plete the file’s name.

Task manager—a Windows utility that allows the user to control running applications,
processes, and services.

TCP/IP—a pair of protocols (TCP and IP) used by all computers on the Internet.
Then clause—the portion of an if–then or if–then–else statement that executes when the

condition is true.

Appendix A: Glossary of Terms ◾ 525

Thread—an instance of a process that shares the same process code with other running
instances; each thread has its own data.

Timer—a hardware device in a computer used to count clock cycles so that the CPU can
be interrupted to force a context switch to another process; used in multitasking/
multithreading.

Track—a subdivision of a disk surface for addressing; essentially, tracks are concentric
rings.

Transfer time—the time it takes for the operating system to move a block of information
between memory and a storage device.

Transmission media—the physical connection between components in a network; the
most common forms are twisted wire pair, coaxial cable, and fiber optic although
wireless uses radio signals.

Tree topology—a nearest-neighbor form of computer network organization where
resources are arranged hierarchically.

Twisted wire pair—a form of transmission media used in computer networks and tele-
communications; it is cheap but has low bandwidth.

Two’s complement—a binary representation that can store positive and negative integers.
Type mismatch—a syntax error in which a program instruction attempts to place the

wrong type of value in a variable, such as attempting to put a real number into an
integer.

Ubuntu Linux—a popular distribution platform of Linux based on Debian Linux.
UDP—a protocol used in place of TCP when packet delivery is less important than speed

of delivery.
Unconditional branch—a form of program instruction that branches to another loca-

tion in a program; in FORTRAN, these types of instructions are called GO TO
statements.

Unicode—an extension of the ASCII character representation set from 7 bits to 16 bits.
Unix—a popular operating system for mainframe computers developed starting in the

late 1960s, it eventually became a model for Linux. Unix and Linux developers are
often part of the open source community.

Upgrade—a minor release in software to fix known problems including security holes.
User—a person who uses a computer. Typically, a user is given a user account.
User account—a collection of access rights and login information for a user.
User name—the name associated with a user account.
User interface—the means by which a user interacts with the computer hardware and soft-

ware. The common two forms of interface are the command line and the graphical
user interface (GUI).

Utility program—a piece of system software that the user might decide to run from time
to time to help manage some aspect of the system.

Vacuum tube—a hardware component used in first-generation computers used as part of
the computer’s computational unit; vacuum tubes had short shelf lives such that
first generation computers were not very reliable.

526 ◾ Appendix A

Variable declaration—specifying the name and type of a variable in a program; many
programming languages require a variable declaration before the variable can be
used.

Vertical software—software used within a specific division of an organization or by a
single profession.

Virtual machine—an illusionary computer that is stored in computer memory and made
available by software in order to permit a computer user to use multiple comput-
ers and multiple platforms without the expense of purchasing multiple computers.

Virtual memory—the extension of main memory onto swap space so that the user can run
more programs than would normally fit in memory.

Virtual private network—a local area network that permits secure remote access through
an authentication mechanism.

Virtual reality—a combination of software and I/O devices that give a user the illusion
of being in a world created by the software; often used to control devices remotely
and to explore locations that might be too remote or dangerous to reach.

Visual programming—a form of programming in which GUI components are added to
software through a “drag-and-drop” approach.

Volatile memory—memory that requires electrical power to retain its contents; if power is
turned off, the contents disappear from memory.

Waiting—a process that is not in the ready queue because it is either waiting on I/O to
complete, suspended, or waiting for a rendezvous.

Waiting queue—a waiting line for processes in a waiting state.
Wearable—a newer form of I/O device in which the interface device is something that a

person would wear on their body.
Web developer—a person hired to build web pages and web sites through the use of html,

css, and a variety of scripting languages.
Web server—a hardware device that stores an organization’s web site, or the software that

provides the service of responding to HTTP requests from clients.
Website administrator—a person in charge of administering, configuring, installing,

monitoring, and troubleshooting the hardware and software of a web server.
White space—spaces, tab keys, and return keys in a program that are placed there to make

the program more readable, but are ignored by the compiler.
Wide area network—a type of computer network that is distributed across a large geo-

graphical area.
Windows—a common platform of operating system, introduced in the mid-1980s.
Windows installer—a program that allows a user in the Windows operating system to

easily install new software.
Word—the storage size of the common datum in a computer. Today, typical word sizes are

32 or 64 bits.
Write—the ability to store something to a file.

527

Appendix B: Linux and
DOS Information

Linux Commands
&—when used after a command, it launches the command in the background.
! (bang)—used to retrieve a command from the history list. !! retrieves the last instruction,

!#, where # is a number that retrieves the instruction # from the list.
~—used to denote a user’s home directory. When used as ~username, it denotes user-

name’s home directory.
.—used to indicate the current directory, as in cp ~foxr/* . (copy all files in foxr’s home

directory to this directory).
..—used to indicate the parent directory, as in cd ../.. (move up two levels in the file system).
apropos string—display all commands whose description field contain the given string;

used to identify a command when the name of the command is not known.
bash—start a new bash session in the current window.
bg number—where number is an integer number; it moves the job corresponding to num-

ber to the background.
cat item(s)—concatenate the items specified (items are typically file names), default output

is sent to the screen.
cd path—change directory to the directory given in path. If path is an absolute path, then

you are changed to that directory. Otherwise, you are moved relative from where
you currently are (pwd) to the new location. The use of .. moves you up one level
in the file system.

chgrp group item(s)—change item(s)’ group ownership to the given group.
chmod modification item(s)—change the item(s)’ permissions to the given modification.

Can be specified in one of three ways:
1. Using +/– with ugo and rwx
2. Using = with ugo and rwx
3. Using three digits as in 755 to denote owner, group, world

chown owner item(s)—change item(s)’ owner to given owner.
configure—execute the configure script to create a makefile, issued as ./configure fol-

lowed by any desired parameters. Parameters are software specific. See make and
makefile.

528 ◾ appendix B

cp source target—copy file(s) listed as source to target. Target is typically a directory
although if source is a single file, target can be a new file name. Two options of
note are –i for interactive mode (prompt the user before overwriting a file that may
already exist) and –r for a recursive copy (if source is a directory, it not only copies
the contents of the directory, but all subdirectories).

echo string—output string to screen. The string can comprise literal values, variables (with
a $ before each variable name) and Linux commands. When placed in ‘’, output
all items literally. When command is placed in ` ,̀ execute command and use its
output as part of the string.

exit—leave the current bash session. If another session exists in the same window, you will
resume it, otherwise the window will close.

fg number—where number is an integer number, it moves the job corresponding to num-
ber to the foreground.

find path options—the find command searches for files that fill some criteria, the path
is the starting point of the search, you might use your home directory (~) or you
might start at root (/). Keep in mind that if you run this program without being
root, some directories and files may not be accessible by you. The options that you
most likely will use are –name string to specify that you are searching for all files
with string in their name followed by –print to output the list of files found.

fsck—file system check, used to check the integrity of the file system.
jobs—list all active processes in the given terminal window, often used along with fg and

bg.
gcc—the GNUs C compiler used to compile programs. g++ is the GNU’s C++ compiler.
grep expression file(s)—match the regular expression to each line of the file, returning any

matches. egrep uses the extended regular expression set. Common options include
–e (same as using egrep), –c to output just the number of matches, –i to ignore the
case of the letters, and –n to output line numbers for each match.

gzip/gunzip filename—zips/unzips filename.
history—display the history list.
ifconfig—may require /sbin/ifconfig—display network interface information for computer

including IP address.
kill signal pid—kill the process of the given process ID using the given signal, signal is

often –9.
less filename—like cat, displays filename to the screen, but pauses at each screen. You can

also use the arrow keys to move up and down in the file. The command more is
similar but cannot step backward.

ln [–s] filename linkname—create a link (symbolic link if –s is used) from linkname to
filename.

ls filenames—list the filenames provided. ls by itself lists all items in the current directory.
ls permits wildcards for filename expansion such as ls *.txt. Common options for
ls are given:
ls –l—long listing
ls –a—include “hidden” files (filenames that start with a dot)

appendix B: Linux and dos information ◾ 529

make—run the makefile script to compile software, options include make all, make install,
make tar.

man command—provide the manual page for the given command.
mkdir dirname—create the directory named dirname in the current directory.
mount physical logical—a command to mount a partition indicated by physical (the actual

name of the file system) to the file system at the location logical. The command
umount is used to unmounts a partition. mount –a mounts all partitions found in
the file /etc/fstab.

mv source destination—move the item source to destination. If destination is a filename,
then this is a rename operation; otherwise, the file is moved to the new directory.

nice value command—execute command with the niceness value of value. Can also adjust
a running process using nice –n value PID.

nslookup alias—query the local DNS for the IP address of the given alias. Can also be
called as nslookup alias server if you want to specify a different DNS.

passwd username—prompt the user to change username’s password. If username is omit-
ted, then change the current user’s password. Unless you are root, you will be
required to enter username’s password before changing it. Options include:
-l—lock the account so that only root can access it
-u—unlock the account
-d—delete the password for the account

 -x—establish an expiration date for the password (a date by which the password
must be changed)

 -w—establish the number of days in advance that the user will be warned to change
passwords

ps—process status information, that is, output the running processes. There are many
options available. The ps command by itself only prints processes running in the
current terminal window owned by the current user. Other options of note include:
a—print processes of all users of the current window
f—denote parent-child relationships using ASCII “art” output
u—user “user-oriented format” for output (see below)
x—print processes no matter which window or console it originated from

 Using option u outputs processes by user name, PID, %CPU usage (the percentage
of time it has been running versus waiting), %memory usage (as a percentage of the
computer’s main memory capacity), total amount of memory usage, virtual memory
utilization, the console that started the process, the process’ execution status, the date
that the process started, the amount of CPU time it has used, and the process’ name.

pwd—print working directory.
Redirection—although this is not a Linux command, you can use redirection in your

Linux commands in order to alter the standard input or output of a command.
The redirection operators are
>—redirect output to the given file as in cat foo1.txt foot2.txt > foo3.txt.
>>—redirect output to append to the given file.
<—redirect input from keyboard to the given file.

530 ◾ appendix B

<<—redirect input from file to keyboard, end input after given string is reached, as
in cat << quit > foo.txt, which will allow the user to enter items until the string
“quit” is entered.

|—a pipe, take the output of one Linux command and use it as input to another,
such as ls –al | egrep “rwx”, which takes the output of the ls –al command and
uses it as input to the egrep command.

rm item(s)—remove (delete) the item(s). Options include –r for a recursive delete (this
deletes subdirectories and their contents recursively), –f to delete without permis-
sion, and –i to delete interactively—that is, to ask the user before deleting each
item.

rmdir item—remove the given directory. This is only available if the directory is empty.
service servicename command—command to change the service servicename. The com-

mand is one of start, stop, status, and restart.
ssh host—open a secure shell communication with host using encryption. This has replaced

telnet, which opens communication with a host but without encryption.
su [username]—switch to username’s account. If username is omitted, switch to root. The

instruction requires that you provide the account’s password (unless you are cur-
rently root).

sudo username command—literally, this command executes command as username, that
is, it executes the specified command as if it was issued by the given username.
Commonly, this command is used without username so that the command exe-
cutes as if issued by root. An entry must be placed in the file /etc/sudoers that
specifies that the given user has access to the specified command. For instance,
if zappaf were permitted to use useradd, the following line would be added to the
suoders file:

 zappaf localhost=/usr/sbin/useradd

 Before the command executes, the user is required to enter their password.
tar filename [source]—the tape archive utility bundles one or more files and directories

into a single file. When the options –xf are used, the files/directories are extracted
from the bundle and copied into the current directory. When used with –cf, a
new tar file is created from the entry(ies) listed under source. For instance, tar –cf
foo.tar /myfiles would take all of the files in the subdirectory myfiles along with
the myfiles directory and place them into foo.tar. An added option, z, will gzip or
gunzip the files (gzip when used with –c and gunzip when used with –x). –c stands
for create, –x for extract.

useradd options username—create a new account with the name username. This instruc-
tion can only be executed by root. The instruction adds associated entries in /etc/
passwd, /etc/shadow, and /etc/group. The command has many options including:
-m—create a home directory
-d dir—use dir the in place of the default directory
-s shell—use shell in place of the default log in shell

appendix B: Linux and dos information ◾ 531

-G groups—add user to the list of groups (the list is separated by commas but no
spaces)

-c comment—add comment to the /etc/passwd file, usually used to specify the
user’s full name

-p password—use the encrypted password for an initial password
-u uid—give the user the specified uid (user ID)

userdel username—delete username’s account. The option –f forces the deletion even if
the user is still logged in and –r removes the user’s home directory and e-mail files
along with the user account.

usermod options username—modifies username’s account based on the options specified.
These options are the same as in useradd.

vi—launch the vi text editor (also vim). Emacs launches the Emacs text editor.
wget URL—download the file specified by the URL. Similar to entering an http request in

a web browser except that the file is stored to disk.
who—lists all usernames of currently logged in users.
whoami—outputs the current user’s username. This is useful if you cannot remember who

you are if you have used su.
yum command package—the Yellowdog Updater, Modifier program is used to install,

remove, and update software packages. Command is usually one of install, update,
check-update, upgrade, remove, list, info, clean, or reinstall. The yum program
uses the rpm program.

Linux FiLes and direCtories oF note
/etc/group—file that stores all group information.
/etc/init.d—a Linux directory where services are stored.
/etc/inittab—the initialization script first executed after the Linux operating system boots,

it is responsible for setting the runlevel.
/etc/passwd—file that stores all user account information (excluding user passwords).
/etc/rc#.d—a set of directories in Linux which stores symbolic links to services that should

be started or stopped at system initialization time. The # is the run-level, one of
0–6.

/etc/rc.sysinit—a script executed during system initialization that starts and stops services.
/etc/shadow—file that stores all user passwords in an encrypted form.
/etc/syslog.conf—the configuration file for the syslogd service that logs application soft-

ware and non-kernel operating system messages.

dos Commands oF note
cd or chdir—change directories, used with a path as in cd ..\foo\bar. See also C:, D:, etc.
chkdsk—checks the specified disk for file system integrity.
cls—clear the screen.
copy—copy a file from one location to another in the file system. Wildcards are permissible.
C:—change to the C: partition. D:—change to the D: partition. This also applies for any

other partitions.

532 ◾ appendix B

del (also erase)—delete the given file(s). Wildcards are permissible.
dir—list the contents of the current directory or the given directory if a path is supplied.
echo—output the given string and/or variables to the screen.
edit—launch the DOS text editor program.
exit—can be used to exit the DOS window if running DOS within windows.
format—to format a disk. WARNING: formatting a disk erases its contents.
help—gives general help on DOS. help command lists command’s help page.
md (also mkdir)—create a new directory.
mem—display memory usage information.
more—displays contents of a file, one screen at a time.
move—move a file to a new location. If the new location is the same directory, this per-

forms a rename. The ren instruction is a rename instruction.
path—display the contents of the path variable. Can also be used to set new paths in the

variable.
print—sends a specified file to a printer.
rd (also rmdir)—remove an empty directory.
undel—undelete a previously deleted file. This works on files that are “recoverable” only.

A deleted file may or may not be recoverable based on the amount of time that has
elapsed since the deletion.

	Front Cover
	Dedication
	Contents
	Preface
	How to Use This Textbook
	Acknowledgments and Contributions
	Author
	Chapter 1: Introduction to Information Technology
	Chapter 2: Computer Organization and Hardware
	Chapter 3: Binary Numbering System
	Chapter 4: Introduction to Operating System Concepts
	Chapter 5: Files, Directories, and the File System
	Chapter 6: Users, Groups, and Permissions
	Chapter 7: History of Computers
	Chapter 8: Operating Systems History
	Chapter 9: Bash Shell and Editing
	Chapter 10: Regular Expressions
	Chapter 11: Processes and Services
	Chapter 12: Networks, Network Software, and the Internet
	Chapter 13: Software
	Chapter 14: Programming
	Chapter 15: Information
	Chapter 16: Careers in Information Technology
	Appendix A: Glossary of Terms
	Appendix B: Linux and DOS Information

